
Proceedings of the 31st International Conference on Computational Linguistics, pages 693–709
January 19–24, 2025. ©2025 Association for Computational Linguistics

693

Language Models Encode the Value of Numbers Linearly

Fangwei Zhu, Damai Dai, Zhifang Sui
School of Computer Science,

State Key Laboratory of Multimedia Information Processing,
Peking University

zhufangwei2022@stu.pku.edu.cn
{daidamai, szf}@pku.edu.cn

Abstract

Large language models (LLMs) have exhib-

ited impressive competence in various tasks,

but their internal mechanisms on mathemati-

cal problems are still under-explored. In this

paper, we study a fundamental question: how

language models encode the value of numbers,

a basic element in math. To study the question,

we construct a synthetic dataset comprising ad-

dition problems and utilize linear probes to read

out input numbers from the hidden states. Ex-

perimental results support the existence of en-

coded number values in LLMs on different lay-

ers, and these values can be extracted via linear

probes. Further experiments show that LLMs

store their calculation results in a similar man-

ner, and we can intervene the output via simple

vector additions, proving the causal connection

between encoded numbers and language model

outputs. Our research provides evidence that

LLMs encode the value of numbers linearly,

offering insights for better exploring, design-

ing, and utilizing numeric information in LLMs.

The code and data are available at https:
//github.com/solitaryzero/NumProbe.

1 Introduction

Large language models (LLMs) have demonstrated

excellent ability in various scenarios like question

answering (Zhao et al., 2023; Li et al., 2023b), in-

struction following (Brown et al., 2020; Ouyang

et al., 2022; Taori et al., 2023), and code genera-

tion (Chen et al., 2021; Nijkamp et al., 2022; Li

et al., 2023a). Solving mathematical problems is

generally viewed to be more difficult (Yu et al.,

2023), and language models even struggle to solve

simple arithmetic problems (Dziri et al., 2024).

Numbers are fundamental elements in math. In

order to accurately answer mathematical problems,

LLMs should be able to precisely encode value of

numbers in the input text. Currently, the way how

LLMs process numbers is still not fully explored.

While previous studies (Stolfo et al., 2023; Hanna

1 2 3+ 4 =···

··· ··· ··· ··· ··· ···

··· ··· ··· ··· ··· ···

4 6

Linear

12

Linear

34

Linear

46

Figure 1: Encoded number values in the hidden state

of language models. We find that both the value of

input numbers (blue and green) and calculation results

(red) can be read out from the hidden state of language

models via linear probes.

et al., 2024) have explored the inner mechanisms of

language models on mathematical problems, they

focus on small numbers or modular arithmetic (En-

gels et al., 2024; Zhong et al., 2024), and how

LLMs utilize numbers in a larger, unconstrained

range remains largely unknown.

In this paper, we explore the question whether

and how LLMs encode the value of numbers

through extracting numerical information from

their internal representations. To be specific, we

construct a synthetic dataset comprising simple ad-

dition questions, and train linear probes (Nanda

et al., 2023; Gurnee and Tegmark, 2023) on the

hidden states of LLMs to predict the number val-

ues provided in the input text. Experimental results

on the dataset demonstrate that the value of input

numbers can be probed from the hidden states of

language models from early layers, as illustrated in

Figure 1. Both input values and calculation results

can be read out, and encoded values can be found at

different token positions. These results support that

language models do encode numerical information,

and possibly in a linear manner.

To further verify the fact that the encoded num-

ber values are utilized by language models, we

694

study the causal connection between numeric in-

formation and model outputs. To be specific, we

discover that we can influence the calculation result

of language models by performing interventions

like activation patching or adding linear vectors.

The above discoveries may reveal future direc-

tions for utilizing the encoded numerical informa-

tion, for example, specialized encoding systems

and error mitigation modules.

To sum up, our contributions can be listed as: (1)

We study the question of whether language models

are able to encode the value of numbers in the input

text and construct a synthetic dataset to analyze the

language models. (2) We discover that language

models encode the value of numbers linearly by

utilizing linear probes to probe encoded number

values in the hidden states of language models. (3)

We further prove that language models utilize the

encoded numerical information by revealing the

causal connection between encoded number values

and the final output of language models.

2 Probing Numbers in Language Models

2.1 The Goal of Probing
Given that there is a number x in the input text

t, we assume that a language model LM can en-

code the number in its hidden state hi ∈ R
dmodel

of a specific layer i, where dmodel is the hidden

dimension. We denote the mapping as:

hi = fi(x, t− x) (1)

where fi refers to the encoding process on layer i,
and t− x refers to the tokens in t excluding x.

If the mapping function f is a bijective function,

there will exist an inverse function f−1
i that recon-

structs the original number x from the hidden state

hi. For each layer i, we aim to find a optimal pre-

dictor P∗
i that imitates f−1

i , whose prediction best

fits the original number x:

P∗
i = argmin

Pi

|x− Pi(hi)| (2)

Considering the numerical stability, we probe the

logarithmic value log2(x) instead of the original

number x in all our experiments.

We can assess the existence of encoded number

values by observing how much the probing result

P∗
i ((hi)) resembles the original number x.

2.2 Dataset Construction
To investigate whether LLMs encode numbers, we

construct a synthetic dataset containing different

magnitudes of numbers. The dataset contains num-

bers ranging from 2 digits to 10 digits, with each

digit corresponding to 1000 entries1. We split the

dataset into training, validation, and test sets at a

ratio of 80%/10%/10%.

To observe how LLMs encode and utilize num-

bers, we adopt addition problems as our prompt2.

Let a and b be two randomly generated numbers,

each question is formulated as:

Question: What is the sum of {a} and {b}?
Answer: {a + b}

2.3 Probing Method

Obtaining Hidden States. We choose the

LLaMA-2 model family (Touvron et al., 2023b)

and Mistral-7B (Jiang et al., 2023) as base models

to be investigated. We feed the question text in Sec-

tion 2.2 into the models, and save the hidden states

of all layers. For each layer, we obtain a set of hid-

den states (i.e. the residual stream) H ∈ R
n×dmodel

at every token position, where n is the number of

samples in the dataset.

Training Probes. Following previous work, we

adopt the widely acknowledged linear probing

technique to reconstruct numbers from the hidden

states. To be specific, for each layer, given a set of

hidden states H and their corresponding original

numbers X = {x}, we train a linear regressor P
that yields best predictions P = HW + b, where

W ∈ R
dmodel and b are the weights of P .

In practice, directly performing linear regression

could give erroneous results, as the value of num-

bers varies over a wide range. We do a logarithmic

operation on input numbers X with a base of 2 to

guarantee the numerical stability of probes.

We utilize Ridge regression, which adds L2 reg-

ularization to the vanilla linear regression model,

to construct the probes:

W∗, b∗ = argmin
W,b

|| log2(X)−HW−b||22+λ||W||22 (3)

where W∗, b∗ are the weights of regressors, and

λ is a hyperparameter that controls regularization

strength. In this way, we can predict logarithmic

results P∗ = HW∗+b∗ based on the hidden states.

1See Appendix A for more details.
2The experimental results on subtraction problems are sim-

ilar to the results on addition problems (see Appendix C).
We do not include multiplication and division problems ei-
ther, as LLMs perform poorly on these problems (even 5-digit
multiplication yields an accuracy of about 0%).

695

(a) ρ of probes on a. (b) ρ of probes on b. (c) ρ of probes on o.

(d) R2 of probes on a. (e) R2 of probes on b. (f) R2 of probes on o.

Figure 2: Pearson coefficient (ρ) and out-of-sample R2 of probes on different layers. a and b refer to the two input

numbers denoted in Section 2.2, and o refers to the prediction of language models respectively. High ρ and R2

indicate the existence of encoded number values in the hidden states.

2.4 Evaluation Metrics
We use two standard regression metrics on the prob-

ing task to evaluate the probes: R2 which deter-

mines the proportion of variance in the dependent

variable that can be explained by the independent

variable, and the Pearson coefficient ρ which mea-

sures the linear correlation between two variables.

As mathematical problems require a precise un-

derstanding of numbers, we introduce two addi-

tional metrics to examine how well can a language

model encode numbers:

Approximate accuracy (AAcc) evaluates

whether the predicted number is approximately the

same as the original number, namely with an error

margin of < 1%. Higher AAcc indicates that the

number encoding is more likely to be precise.

Mean square error (MSE) is the average

squared difference between probe predictions and

actual values. Smaller MSE means lower loss dur-

ing the encoding process.

AAcc(P∗,X) =
|(2P∗ −X) < 0.01X|

|X| (4)

MSE(P∗,X) = avg((P∗ − log2X)2) (5)

2.5 Experimental Setup
We use the original LLaMA-2-7B, LLaMA-2-13B,

and Mistral-7B models without fine-tuning for all

experiments. The outputs are obtained by perform-

ing greedy search with a max new token restriction

of 30 during decoding. The regularization strength

is set to λ = 0.1 for all probes.3.

In main experiments, we probe 3 distinct values

at different positions: the first number a at the

last digit of a (for example, 3 for 123), the second

number b at the last digit of b, and the prediction

of language models o at the last token of the entire

input text. We report the accuracy of o, i.e. the

ratio of o = a+ b, in Appendix D.

3 Do LLMs Encode Number Values?

3.1 The Existence of Encoded Number Values

LLMs do encode number values. We first in-

spect the overall Pearson coefficient (ρ) and out-of-

sample R2 on all layers. High ρ and R2 indicate

that LLMs are likely to be able to encode num-

ber values in their hidden states. As illustrated in

Figure 2, the probes achieve surprisingly high ρ
and R2 on all layers, proving that the hidden states

of LLMs contain the encoded value of input num-

bers, and the encoding process starts from even the

first layer. Meanwhile, notice that both ρ and R2

slightly drop on late layers, which may indicate that

intermediate layers better encode number values.

3See Appendix B for more details.

696

(a) AAcc of probes on a. (b) AAcc of probes on b. (c) AAcc of probes on o.

(d) MSE of probes on a. (e) MSE of probes on b. (f) MSE of probes on o.

Figure 3: Approximate accuracy (AAcc) and mean square error (MSE) of probes on different layers. a and b refer

to the two input numbers denoted in Section 2.2, and o refers to the prediction of language models respectively.

High AAcc and low MSE indicate precise number encoding.

Linear probes cannot reconstruct the precise
value. Aside from the existence of encoded num-

ber values, we are also interested in their precision,

which is depicted by AAcc and MSE in Figure 3.

In contrast to high correlation coefficients, the

AAcc is below 50% on all layers, which means that

the linear probes have difficulty in precisely recon-

structing the input numbers. The trends in AAcc

and MSE are consistent with ρ and R2, indicating

that LLaMA-2 models achieve the most precise

number encoding in intermediate layers, but the

encoding faces more error in deeper layers.

This phenomenon may indicate that language

models use stronger non-linear encoding systems,

which we will further explore in Section 3.4; Or it

may be a hint that the number encoding in language

models is not precise4.

3.2 Number Encoding Patterns are Different
across Layers

To better analyze how language models encode

numbers, we pick distinct layers in LLaMA-2-7B

and observe how the pattern of probe predictions

changes as the layer gets deeper. Layer 0 (i.e. the

first transformer block after embedding layer), 10,

and 30 are selected to represent early, intermediate,

and late layers respectively. The trend of change

4See Appendix F for more detailed experiments.

on the first input number a is shown in Figure 4.

On early layers like layer 0, the predictions of

probes are distorted to some extent: for original

numbers with the same length, their correspond-

ing predictions in the figure display a pattern of

horizontal lines. This phenomenon indicates that

early layers focus on the length of numbers, which

corresponds to the number of input digit tokens.

As the layer gets deeper, probes on intermediate

layers show the best performance. On layer 10,

the predicted results are very close to the actual

answers, yielding a near-perfect linear probe for

original numbers. However, noise emerges in the

prediction results again in late layers, with the form

of uniformly distributed errors.

The trend of change leads us to a conjecture that

language models first roughly estimate the value of

a number with its token length, and then refine the

estimation in subsequent layers. The process may

not be lossless, which leads to errors in the final

number encoding of language models.

3.3 Numeric Information Persist at
Subsequent Positions

Another question is whether these encoded values

are only stored at certain positions, or are they

persist at subsequent positions. For input number

values a, b, we train probes at every individual

697

(a) Layer 0 (b) Layer 10 (c) Layer 30

Figure 4: How the pattern of probe predictions on the first input number a changes as the layer gets deeper. Probe

predictions on different layers of LLaMA-2-7B show different patterns.

(a) MSE of probes on a. (b) MSE of of probes on b.

Figure 5: The mean square error (MSE) of probes at different token positions on LLaMA-2-7B. <n1> represents the

last token of the first input number a, and <n2> represents the last token of the second input number b, respectively.

The rectangular pattern indicates that the value of an input number can be read out at any subsequent position.

token position to examine where these values exist.

Figure 5 shows the mean square error of probes on

the LLaMA-2-7B model.

The results demonstrate a clear rectangular pat-

tern, indicating that the value of an input number

can be read out at any subsequent position. In other

words, the number values would persist at subse-

quent positions. It is also worth noticing that the

probing accuracy on the last token is lower than

other positions, which may be interpreted as lan-

guage models do not continue to remember input

numbers after computing the final outcome.

3.4 LLMs Encode Numbers Linearly

Previous work (Nanda et al., 2023; Gurnee and

Tegmark, 2023) on probing neural networks pro-

pose the linear representation hypothesis: the pres-

ence of features of a neural network can be proved

by training a linear projector which projects the

activation vector to the feature space, and complex

structures are unnecessary. To verify whether the

numbers can be represented linearly, we follow

the method of Gurnee and Tegmark (2023) which

trains two-layer MLP probes and compares their

performance with linear probes. The MLP probes

have an intermediate hidden state of 256 dimen-

sions and can be formulated as:

P = W2ReLU(W1H+ b1) + b2 (6)

where W1,W2, b1 and b2 are trainable weights.

Figure 6 demonstrates the comparison between

MLP probes and linear probes on mean square error.

We find that nonlinear MLP probes do not show

any clear advantage over linear probes, proving

that the encoded number values can be represented

linearly, or at least near-linearly.

4 Do LLMs Utilize Number Values?

The previous section has proved the existence of

encoded number values in language models. How-

698

Figure 6: The comparison between linear probes and

MLP probes on mean square error (MSE). The MLP

probes do not show advantage over linear probes. More

detailed experiments are reported in Appendix E.

ever, an inherent issue is that the probed informa-

tion is only correlational to the output of models,

and no causal effects can be directly claimed (Be-

linkov, 2022).

In this section, we will try to verify the hypothe-

sis that language models do use the encoded num-

ber values to get their calculation results by per-

forming a set of intervention experiments. Given

an input question Q with an expected result of o,

we intervene in the internal activation of language

models to make it believe in an altered question Q′,
and observe how the new result o′ changes.

To ensure the effectiveness of the intervention,

we conduct the experiments on Mistral-7B with 4-

digit addition questions as input, where the model

could correctly answer most of the questions.

Figure 7: The effect of patching on different compo-

nents. Early and mid refer to the non-number tokens

before and after the first input number a, and last refers

to the last token of the input text.

4.1 Patching Encoded Numbers

Firstly, we study the influence of number encoding

at different positions by changing the activation of

language models. We adopt the activation patching

technique proposed by Stolfo et al. (2023) to quan-

tify the importance of encoded number values hi

at different layers i and different token positions.

To be specific, given an input addition problem

consisting of input numbers a and b, we will con-

duct the following procedure:

1. Obtain the clean output of the language model

o = LM(a, b).

2. Replace a with another number a′ to get a

new output o′ = LM(a′, b), and record the

hidden states h′ at certain position t during

the forward pass;

3. Perform an additional forward pass with a and

b as input numbers, where we substitute the

hidden state hi of layer i with h′
i. This would

lead to an intervened result o∗.

We set a′ = 9999 in our experiments, and evaluate

the effect of intervention as:

E(i, t) =
|o∗ − o|
|o′ − o| (7)

which measures how much a specific layer i at po-

sition t affects the final result. Note that the metric

is intended for qualitative rather than quantitative

analysis.

Figure 7 demonstrates the effect of activation

patching on different components, from which we

can draw multiple observations:

Patching Result Explanation

None 6912 5678+1234=6912

Full 11233 9999+1234=11233

5 −→ 9 10912 9678+1234=10912

6 −→ 9 7212 5978+1234=7212

7 −→ 9 6932 5698+1234=6932

8 −→ 9 6913 5679+1234=6913

Table 1: Patching results on the question “Question:

What is the sum of 5678 and 1234 ?” by patching the

activation on layer 8.

Each digit affects the result independently.
The effect of patching on different number digits

displays a clear pattern: the earlier a digit appears,

the more patching it changes the final output value.

While the latter digits encode the values of partial

number sequences (See Appendix F for details),

activation patching seems to only change the final

699

Figure 8: The success rate of performing a linear inter-

vention on 6 consecutive layers. More detailed experi-

ments are reported in Appendix I.

result by the value of the digit itself. For exam-

ple, although the activation at digit “3” in “1234”

encodes the value of 123, patching it equals chang-

ing the input number to "1294" rather than "9994",

as demonstrated in Table 1. More detailed experi-

ments are reported in Appendix H.

Language models concern only certain tokens
during calculation. Despite our finding in Sec-

tion 3.3 that encoded number values would persist

in subsequent tokens, patching non-number tokens

has almost zero effect on the final outcome. This

pattern indicates that the encoded number values

at most positions are simply “memorized” rather

than “used” by the language model. An exception

is the last token, where language models seem to

store their calculation results.

Early and late layers play different roles. The

effect of activation patching can be divided into

two parts: on early layers before layer 14, patch-

ing the number tokens greatly influences the final

outcome, while patching the last token is mostly

ineffective; but in late layers after layer 20 it is just

the opposite. We assume that early layers perform

the task of processing the value of input number

token sequences, while late layers use encoded val-

ues to calculate the final outcome, which is similar

to the findings in Stolfo et al. (2023).

4.2 Linearly Intervening Encoded Numbers
To determine whether the encoded computational

results causally affect the outcome of language

models, we linearly intervene the hidden states and

see whether the output changes as expected.

Method. Following the method of Nanda et al.

(2023), for each intervened layer i, we add the

number encoding direction vector di to the residual

stream hi:

h
′
i = hi + αdi (8)

where α > 0 is a scaling factor and the direction

vector di is obtained by normalizing the probe co-

efficients:

di =
Wi

|Wi| (9)

Considering that the probed number value is the

projection of hi along the direction di, the effect

of our intervention is to “push” the residual stream

towards a larger encoded number. We set α = 2 in

our experiments, and intervened language models

outputting a larger number o′ > o than the original

prediction o is viewed as a success.

In the linear intervention experiment, we choose

probes for language model predictions o at the last

input token to obtain the direction vector di, and

perform an intervention on every newly generated

token. We use a test set of 1,000 entries and mea-

sure the efficacy of our intervention by observing

the ratio of successful interventions.

We also use two alternative directions as base-

lines: normalized hi as null intervention, and a

random unit vector I as random intervention.

Result and Findings. Figure 8 shows the success

rate of intervening on 6 consecutive layers. Linear

intervention achieves the highest success rate of

0.73 when intervening layer 14 to layer 19, outper-

forming the null intervention baseline by a large

margin. This suggests that the linearly encoded

number values are causal to model predictions.

It is also worth noticing that intervening on mid-

late layers is significantly more effective than on

early layers and late layers. We hypothesize that

this phenomenon is related to the findings of Stolfo

et al. (2023): language models use mid-late layers

to perform arithmetic computations, while the late

layers are responsible for converting the computa-

tional result to output tokens.

5 Discussion and Future Directions

In previous sections, we find that LLMs know the

value of numbers and utilize the encoded number

values to perform calculations. However, the com-

pression may not be lossless, and the calculation

ability scales with model size. Moreover, the abil-

ity to understand and utilize numbers is positively

correlated to mathematical competency. These find-

ings reveal some future research directions that are

potentially promising.

700

The exact way that LLMs encode numbers.
While our experiments show that the original input

number cannot be reconstructed from the hidden

state via linear probes, there exists a possibility that

the LLMs encode numbers in a way that is close

to a linear projection but not identical, such as the

floating-point system (Muller et al., 2018). Finding

out the exact encoding, if possible, will give us a

better insight into how LLMs function.

Specialized number encoding systems. The

loss of encoded number values in LLMs will in-

evitably bring errors to subsequent computation,

especially for large input numbers. Developing

specialized encoding systems that could give pre-

cise presentations for numbers (Golkar et al., 2023)

could eliminate errors at the root, thus helping

LLMs better solve mathematical problems.

Mitigating computational errors with encoded
numbers. By adding modules that directly uti-

lize the encoded numbers in language models, the

computational errors may be further reduced, espe-

cially on large-number calculations. We conduct

a pioneer experiment in Appendix J to reveal the

potential of controlling computational errors with

probed numbers.

6 Related Work

Large Language Models on Mathematical Prob-
lems. Large language models (LLMs) like the

GPT series (OpenAI, 2023), PaLM (Anil et al.,

2023) and LLaMA (Touvron et al., 2023a,b)

have demonstrated their impressive ability in var-

ious fields (Zhao et al., 2023; Li et al., 2023b;

Taori et al., 2023; Chen et al., 2021; Nijkamp

et al., 2022; Li et al., 2023a). On mathematical

datasets like GSM8K (Cobbe et al., 2021) and

MATH (Hendrycks et al., 2021), there have been

methods like chain-of-thought reasoning (Wei et al.,

2022) and self-consistency (Wang et al., 2022) to

help LLMs better solve these questions. Special-

ized large language models like MetaMath (Yu

et al., 2023) and Math-Shepherd (Wang et al., 2023)

also show great competency.

Interpreting Internal Representations in Lan-
guage Models. Prior research has unveiled that

language models are able to store certain informa-

tion in their hidden states, for example, passive

voice (Shi et al., 2016) and sentence structure (Ten-

ney et al., 2018). By adopting the probing tech-

nique (Alain and Bengio, 2016; Belinkov, 2022),

complex representations have also been detected in

language models: Li et al. (2022) shows that lan-

guage models are capable of memorizing the state

of an Othello game, and Nanda et al. (2023) further

proves that the states can be linearly represented; Li

et al. (2021) claims that language models are able

to encode the properties and relations of entities;

Gurnee and Tegmark (2023) reveals evidence that

large language models build spatial and temporal

representations about an entity from early layers.

Explaining Numbers and Arithmetic in Lan-
guage Models. How language models process

numbers has been studied by multiple researchers.

Wallace et al. (2019) detects the existence of numer-

acy in static pre-trained word embeddings. Hanna

et al. (2024) finds a critical circuit that performs

greater-than comparisions in GPT-2. Stolfo et al.

(2023) studies how language models process arith-

metic information by intervening on specific mod-

ules of the model. Zhong et al. (2024); Engels et al.

(2024) discover evidence that numbers on modular

arithmetic may be circularly encoded.

7 Conclusion

In this paper, we study the question of whether and

how large language models encode the value of

numbers. If number values can be extracted from

the internal representations of LLMs, we can as-

sume that LLMs encode the value of numbers in

their hidden states. We construct a dataset con-

sisting of simple addition problems and introduce

linear probes to investigate whether language mod-

els encode number values.

Experimental results prove that LLMs do encode

the value of input numbers, and the representation

could be linearly read out. The ability to linearly en-

code numbers is consistent across different model

scales, and the encoding seems to be the most pre-

cise on intermediate layers. Further experiments

show that LLMs utilize the encoded number values

to perform arithmetic calculations, and the behav-

ior of language models can be controlled via simple

linear interventions, proving the causal connection

between encoded numbers and model outputs.

Our work shows a glimpse of the internal mech-

anisms of how language models solve mathemati-

cal questions. Future works on the internal repre-

sentations of numbers, for example, better probes

and specialized number encoders, may enhance the

mathematical competence of language models in

an explainable way.

701

Acknowledgements

We thank the anonymous reviewers for their insight-

ful comments. This paper is supported by NSFC

project 62476009. The contact author is Zhifang

Sui.

Limitations and Risks

While we explore the inner mechanisms of how

language models understand numbers, the probes

trained in our current method are only approxi-

mations of the encoded numbers rather than exact

internal presentations. Directly performing calcu-

lations with probes would lead to undesired re-

sults. Meanwhile, our experiments are conducted

on LLMs whose parameters are openly available,

while other LLMs the ChatGPT or GPT-4 may ex-

hibit different behaviors.

References
Guillaume Alain and Yoshua Bengio. 2016. Under-

standing intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lor-
raine Li, Liwei Jiang, Bill Yuchen Lin, Sean Welleck,
Peter West, Chandra Bhagavatula, Ronan Le Bras,
et al. 2024. Faith and fate: Limits of transformers on
compositionality. Advances in Neural Information
Processing Systems, 36.

Joshua Engels, Isaac Liao, Eric J Michaud, Wes Gurnee,
and Max Tegmark. 2024. Not all language model
features are linear. arXiv preprint arXiv:2405.14860.

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Al-
berto Bietti, Miles Cranmer, Geraud Krawezik, Fran-
cois Lanusse, Michael McCabe, Ruben Ohana, Liam
Parker, et al. 2023. xval: A continuous number en-
coding for large language models. In NeurIPS 2023
AI for Science Workshop.

Wes Gurnee and Max Tegmark. 2023. Language
models represent space and time. arXiv preprint
arXiv:2310.02207.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2024. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Advances in Neural Information Pro-
cessing Systems, 36.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Belinda Z Li, Maxwell Nye, and Jacob Andreas. 2021.
Implicit representations of meaning in neural lan-
guage models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1813–1827.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda
Viégas, Hanspeter Pfister, and Martin Wattenberg.
2022. Emergent world representations: Exploring
a sequence model trained on a synthetic task. In
The Eleventh International Conference on Learning
Representations.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Lidong Bing, Shafiq Joty, and Soujanya Po-
ria. 2023b. Chain of knowledge: A framework for
grounding large language models with structured
knowledge bases. arXiv preprint arXiv:2305.13269.

Thomas McGrath, Matthew Rahtz, Janos Kramar,
Vladimir Mikulik, and Shane Legg. 2023. The hy-
dra effect: Emergent self-repair in language model
computations. arXiv preprint arXiv:2307.15771.

702

Jean-Michel Muller, Nicolas Brisebarre, Florent
De Dinechin, Claude-Pierre Jeannerod, Vincent
Lefevre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, Serge Torres, et al. 2018. Handbook
of floating-point arithmetic. Springer.

Neel Nanda, Andrew Lee, and Martin Wattenberg. 2023.
Emergent linear representations in world models of
self-supervised sequence models. In Proceedings
of the 6th BlackboxNLP Workshop: Analyzing and
Interpreting Neural Networks for NLP, pages 16–30.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural mt learn source syntax? In
Proceedings of the 2016 conference on empirical
methods in natural language processing, pages 1526–
1534.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A mechanistic interpretation of arith-
metic reasoning in language models using causal
mediation analysis. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 7035–7052.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, et al.
2018. What do you learn from context? probing
for sentence structure in contextualized word repre-
sentations. In International Conference on Learning
Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do nlp models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai,
Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 2023.
Math-shepherd: A label-free step-by-step verifier
for llms in mathematical reasoning. arXiv preprint
arXiv:2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei
Qin, and Lidong Bing. 2023. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework.
arXiv preprint arXiv:2305.03268.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob
Andreas. 2024. The clock and the pizza: Two sto-
ries in mechanistic explanation of neural networks.
Advances in Neural Information Processing Systems,
36.

A Dataset Details

The dataset in Section 2.2 contains 9000 addition

problems. For each number of digits between 2 and

10, 1000 problems are generated, and two numbers

in the same problem share the same digit. For ques-

tions whose number has 4 or fewer digits, we list all

possible combinations of numbers and randomly

sample 1,000 of them to generate the questions.

For questions whose number has 5 or more digits,

we randomly sample both numbers to generate the

1000 questions.

B Experiment Implementation

The experiments are conducted on 4 NVIDIA GTX

3090 GPUs. Acquiring the hidden states of LLMs

703

on our synthetic dataset requires 102̃0 GPU hours

per model.

We obtain the LLaMA-2 models and Mistral-

7B model from the huggingface model hub, and

implement the experiments with the huggingface

transformers Python library. The probes are trained

with the scikit-learn Python library. We use the

TransformerLens library5 for intervention experi-

ments. We follow the terms of use of all models

and use them only for research.

Figure 9: The overall accuracy of language model pre-

dictions on addition problems.

C Experiments on Subtraction Problems

In the main paper, we only show the results of

probing on addition problems. We also conduct

experiments on subtraction problems with the form

of:

Question: What is the result of {a}
minus {b}?
Answer: {a - b}

where we assert a > b to ensure the result being a

positive number.

Figure 10 demonstrates the result of probing

on subtraction problems. We can clearly observe

that the trends of different metrics are similar to

those on addition problems. In other words, the

behaviour of language models on subtraction prob-

lems are similar to the behaviour on addition prob-

lems.

D Overall Accuracy

Figure 9 shows the overall accuracy of different

language models on addition problems. We can see

5https://github.com/neelnanda-io/
TransformerLens

that the accuracy of all models, especially LLaMA-

2 models, faces a sharp decline at 6-digit problems,

which may have a possible correlation with the

partial number encoding accuracy demonstrated in

Figure 12.

In the LLaMA-2 family, the 13B model does not

show any advantage over the 7B model on prob-

ing metrics. In contrast, Mistral-7B displays bet-

ter performance on all probing metrics, which is

consistent with its outstanding math ability. The

difference implies that the ability to encode num-

bers is consistent across different model scales, but

varies between different model families. Mean-

while, the ability to understand numbers show a

positive correlation with the math ability of LLMs.

E Detailed Experiments on Linearity

Figure 11 shows the comparison between linear

probes and MLP probes on ρ, R2 and MSE. We

can observe that MLP probes generally perform no

better than linear probes.

F Experimental Results on Partial
Number Encoding

In large language models like LLaMA-2, large

numbers are split into multiple tokens, where each

token represents a certain digit of the original num-

ber. This raises a question: whether the encoding

process will proceed from token to token, or will it

only happen at the end of number token sequences?

To investigate the problem, we choose addition

problems consisting of 8-digit numbers and probe

the value of the partial number sequence at every

token position. For example, given a number token

sequence “12345678”, we will probe the value 12

at the position of token “2”, and probe the value

123 at the position of token “3”.

Figure 12 shows the probing accuracy of 3 mod-

els. It can be observed that the value of the partial

number sequence can be read out at every token

position. In other words, language models encode

the number token sequence incrementally.

Meanwhile, the accuracy significantly declines

as the token sequence gets longer, which means that

language models face increasing difficulty in cap-

turing the precise value as the number gets larger

in scale. Notice that Mistral-7B suffers less from

accuracy decay, we can assume that the ability to

precisely encode long number token sequences is

positively correlated to the mathematical ability of

language models.

704

(a) ρ of probes on a. (b) ρ of probes on b. (c) ρ of probes on o.

(d) R2 of probes on a. (e) R2 of probes on b. (f) R2 of probes on o.

(g) AAcc of probes on a. (h) AAcc of probes on b. (i) AAcc of probes on o.

(j) MSE of probes on a. (k) MSE of probes on b. (l) MSE of probes on o.

Figure 10: Pearson coefficient (ρ), out-of-sample R2, approximate accuracy (AAcc), and mean square error (MSE)

of probes on different layers for subtraction problems. a and b refer to the two input numbers denoted in Section

2.2, and o refers to the prediction of language models respectively. High ρ and R2 indicate the existence of encoded

number values in the hidden states.

705

(a) Pearson coefficient (b) Out of sample R2 (c) Mean square error

Figure 11: Comparison between linear probes and non-linear MLP probes. Pearson coefficient, out-of-sample R2,

and AAcc of probes on the first input number a on different layers are shown in the figure.

(a) AAcc of LLaMA-2-7B. (b) AAcc of LLaMA-2-13B. (c) AAcc of Mistral-7B.

Figure 12: The approximate accuracy (AAcc) of probes on partial number sequence of 8-digit numbers. The y-axis

represents the index of number tokens in the token sequence.

Figure 13 shows the Pearson coefficient, out-of-

sample R2, and mean square error of probes on

partial sequence of 8-digit numbers. These metrics

remain stable as the length of number token se-

quence gets longer, indicating that language models

do have the ability to incrementally encode number

values, but there would be more error when the

number gets larger in scale.

G Probing With Control Tasks

There exists the risk that probes may learn to ex-

tract values that language models do not encode.

In Figure 5, we can see that probing on the sec-

ond input number b at positions before it appears

would lead to extremely large mean square errors,

which acts as a piece of preliminary evidence that

the probe performance does not solely come from

probe strength.

To quantify the influence of probe strength, we

conduct an experiment that probes with control

tasks. For each question, we generate a random

number c that shares the same digit with a and b
as the control signal. If the probing performance

comes from the encoded number values rather than

probe strength, there would be a clear gap between

the probing performance on c and a, b.

Figure 14 shows the difference between probe

performances. It can be observed that probing on

input numbers constantly yields better performance

than probing on random control signals, proving

that language models do encode number values in

their hidden states.

Meanwhile, probing b on positions before b
shows performance similar to probing c, which

corresponds to the fact that b is unknown to the

model at these positions.

Patching Result Explanation

None 6912 5678+1234=6912

Full 11233 9999+1234=11233

5 −→ 9 10912 9678+1234=10912

6 −→ 9 7212 5978+1234=7212

7 −→ 9 6932 5698+1234=6932

8 −→ 9 6913 5679+1234=6913

Table 2: Patching results on the question “Question:

What is the sum of 5678 and 1234 ?” by patching the

activation on layer 8.

706

(a) ρ of LLaMA-2-7B. (b) ρ of LLaMA-2-13B. (c) ρ of Mistral-7B.

(d) R2 of LLaMA-2-7B. (e) R2 of LLaMA-2-13B. (f) R2 of Mistral-7B.

(g) MSE of LLaMA-2-7B. (h) MSE of LLaMA-2-13B. (i) MSE of Mistral-7B.

Figure 13: The Pearson coefficient (ρ), out-of-sample R2, and mean square error (MSE) of probes on partial number

sequence of 8-digit numbers. The y-axis represents the index of number tokens in the token sequence.

H Detailed Experiments on Activation
Patching

Table 3 shows the results of patching on layer 8 of

Mistral-7B on the question “Question: What is the

sum of 5678 and 1234 ?”

We can clearly see that patching a digit will only

influence the value of the digit itself, rather than the

value of the partial token sequence: patching the

last digit 8 in 5678 equals changing the number to

5679 rather than 9999, although the encoded value

of 9999 can be found in the activation. We hy-

pothesize that language models encode the number

values from scratch at every new position, rather

than using previous encoded values.

We also notice that patching the last number digit

on early layers shows a higher effect than expected,

but the reason why the last digit is more special is

still unknown.

I Detailed Experiments on Linear
Intervention

I.1 Success Rate

Figure 15 shows the success rate of intervening on

5 consecutive layers with a maximum success rate

of 0.698, and Figure 16 shows the success rate of

intervening on a series of layers starting from layer

14. It can be observed that a sufficient number of

layers need to be intervened for language models to

successfully change their predictions. Nanda et al.

(2023) observed a similar phenomenon in Othel-

loGPT, and a related hypothesis is that language

models demonstrate the Hydra effect (McGrath

et al., 2023), where other layers would self-repair

the intervention on certain layers.

I.2 Output Patterns

We also observe that while intervening on early or

late layers both lead to poor success rates, they dis-

707

(a) a versus c of LLaMA-2-7B. (b) a versus c of LLaMA-2-13B. (c) a versus c of Mistral-7B.

(d) b versus c of LLaMA-2-7B. (e) b versus c of LLaMA-2-13B. (f) b versus c of Mistral-7B.

Figure 14: The difference in mean square error (MSE) between probes on input numbers and control signals. A

lighter color indicates a greater performance gap.

Figure 15: The success rate of performing a linear inter-

vention on 5 consecutive layers.

play different patterns of output. Table 3 shows the

result of intervening on different layers of Mistral-

7B. It can be seen that performing a linear interven-

tion on early layers would completely destroy the

final outcome, while intervening on late layers will

not change the result at all. We hypothesize that

the number encoding in early layers has not fully

developed yet, and intervening in it would lead to

unexpected results; In late layers, the number en-

coding is simply remembered but not used, and the

language models rely on other subspace to decode

the final outcome.

Figure 16: The success rate of performing a linear inter-

vention on layers starting from layer 14.

I.3 Additional Experiments
We have also tried to change the probed number

from the original value o to a new value o+ o′:

hiWi + bi = o (10)

di = o′
Wi

|Wi|2 (11)

(hi + di)Wi + bi = o+ o′ (12)

However, the intervention does not yield results

as expected: the intervened model continues to

predict o rather than o+ o′.
A possible hypothesis is that the probed number

value is the projection of hi along the direction

708

Layer Generation Result

0-5 Answer: gainedcnt I

I I I I I I I I I C C C

14-19 Answer: 12515

25-30 Answer: 6455

Table 3: Intervention results on the question “Question:

What is the sum of 2936 and 3519 ?”. Running Mistral-

7B without intervention would lead to the result of 6455.

Wi, and simply adding vectors to hi would draw

it away from its valid subspace. To maintain inter-

vened hi in its valid subspace, it should be rotated

along certain direction. The method of precisely

changing the encoded number values in language

models still remains to be explored.

Figure 17: The success rate of performing a linear

intervention on 6 consecutive layers, with a negative

α = −2.0

We also experimented on negative α values,

which will "push" the residual stream towards a

smaller encoded number. The results are demon-

strated in Figure 17. We can see that the trend of

success rate is similar to the trend in Figure 8, fur-

ther proving that the value of calculation result can

be linearly intervened.

J Directly Calculate with Encoded
Number Values

We are curious about whether the probed number

values could help LLMs better perform calcula-

tions. Considering that adding the probed input

numbers does not yield precise answers (Section

3.1), we evaluate the sum of probed numbers with

two new metrics: logMSE and error margin.

logMSE(S,G) = avg((log2 S− log2G)2) (13)

margin(S,G) = min(
max(|S−G|

G
), 1) (14)

where S and G represent predicted answers and

golden answers respectively. Both metrics indicate

how much the calculated results deviate from the

golden answers.

In Figure 18, despite failing to generate accurate

answers, all three models could keep their logMSE

and error margin at a very low level by adding

probed a and b, while directly accepting the out-

put of language models would lead to results that

deviate far away from the golden answers. We

think that this reveals a possibility to control the

computational error of language models within a

reasonable range, and will not produce results that

are far too unreasonable.

We also notice that for LLaMA-2 models, adding

the probed number on late layers will result in a

high error margin, which may be a result of the

findings in Section 4.1: number encoding on late

layers is not used by the model.

709

(a) logMSE (b) Error margin

Figure 18: Comparison between the sum of probed (a, b) and language model predictions. AB means the sum of

probed (a, b) and LM means language model predictions.

