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Abstract

As prompt engineering research rapidly
evolves, evaluations beyond accuracy are cru-
cial for developing cost-effective techniques.
We present the Economical Prompting Index
(EPI), a novel metric that combines accuracy
scores with token consumption, adjusted by a
user-specified cost concern level to reflect dif-
ferent resource constraints. Our study examines
6 advanced prompting techniques, including
Chain-of-Thought, Self-Consistency, and Tree
of Thoughts, across 10 widely-used language
models and 4 diverse datasets. We demon-
strate that approaches such as Self-Consistency
often provide statistically insignificant gains
while becoming cost-prohibitive. For exam-
ple, on high-performing models like Claude
3.5 Sonnet, the EPI of simpler techniques like
Chain-of-Thought (0.72) surpasses more com-
plex methods like Self-Consistency (0.64) at
slight cost concern levels. Our findings suggest
a reevaluation of complex prompting strategies
in resource-constrained scenarios, potentially
reshaping future research priorities and improv-
ing cost-effectiveness for end-users.

1 Introduction

Prompt engineering is a growing subdiscipline of
natural language processing, providing a consumer-
friendly alternative to fine-tuning methods. Recent
research focuses on enhancing reasoning in Large
Language Models (LLMs) across various domains
of problem-solving, such as arithmetic, common-
sense, spatial, and multimodal reasoning (Wei et al.,
2023; Yao et al., 2023; Gu et al., 2023; Ma, 2023).

With many new works being published in rapid
succession, there has been an increased reliance
on accuracy gains as the primary justification for
new techniques (Bender and Koller, 2020; Lipton
and Steinhardt, 2018). Though iterative and recur-
sive techniques promise accuracy improvements

*Equal contribution.

Figure 1: Economical Prompting Index (EPI) for GPT-4
across datasets, comparing no cost concern (C = 0) and
moderate cost concern (C = 0.0005) scenarios. Prompt
rankings shift when considering both accuracy (ACC)
and token cost (TC).

through deliberate and continuous reasoning, there
is a lack of appropriate consideration for the fi-
nancial constraints of computationally burdensome
methods (Sahoo et al., 2024). This oversight can
lead to techniques that, while marginally more ac-
curate, may be prohibitively expensive for practical
applications, potentially limiting their adoption and
real-world impact. Token usage serves as an effec-
tive proxy for computational cost, as it directly
correlates with the resources required for model
inference and often forms the basis for pricing in
commercial LLM services.

To address this gap, we propose evaluating popu-
lar techniques through dimensions beyond accuracy
alone. Our approach aims to provide a more holis-
tic assessment of prompting techniques, discourag-
ing the development of new methods solely for the
purpose of incremental gains. To demonstrate this,
we introduce the ECONOMICAL PROMPTING IN-
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Cost
Concern

C
Value

Application Scenario

None 0 Research with unlimited resources
Slight 0.00025 Production with ample resources
Moderate 0.0005 Typical commercial applications
Elevated 0.001 Resource-constrained environments
Major 0.002 Highly cost-sensitive scenarios

Table 1: Weight classes for cost concern factor C.

DEX (EPI), a novel metric for evaluating prompting
techniques that considers both token usage along-
side dataset accuracy.

Figure 1 illustrates the utility of the EPI, show-
casing results obtained from GPT-4 averaged
across all datasets studied. The EPI demonstrates
how different levels of cost concern can signifi-
cantly alter the perceived effectiveness of various
prompting techniques. For instance, while Self-
Consistency shows high efficacy at low-cost con-
cern levels, its effectiveness diminishes rapidly as
cost considerations increase, with simpler methods
like Chain-of-Thought becoming more favorable.

Building on these insights, our work makes sev-
eral key contributions. We introduce the ECONOM-
ICAL PROMPTING INDEX (EPI), a novel metric
that balances accuracy with resource usage, provid-
ing a flexible, user-centric measure of prompting
methods’ efficacy. Our comprehensive evaluation
of 6 prompting techniques across 4 diverse datasets
and 10 flagship language models demonstrates the
varying performance and resource implications of
different methods. By applying the EPI to our
experimental results, we reveal how the relative ef-
fectiveness of techniques like Self-Consistency can
shift dramatically when resource utilization is con-
sidered, often favoring simpler, more cost-effective
methods in practical scenarios.1

2 Economical Prompting Index

The ECONOMICAL PROMPTING INDEX (EPI)
addresses the need for a comprehensive metric
that balances accuracy with token consumption in
prompt design, providing a more complete evalua-
tion of prompting techniques.

For any prompting technique P and input ques-
tion Q, we obtain a response with accuracy A and a
total token count T (both input and output tokens):

P(Q) → A, T

1The complete code and detailed interactions with the
language models can be found here.
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Figure 2: Graph of the token count T against the EPI
given the demonstrative weight classes C, for A = 1.

where A ∈ [0, 1] is the proportion of correct re-
sponses and T ∈ N is the total number of tokens
used. The EPI ∈ [0, 1] calculates a final perfor-
mance measure by including a cost concern factor
C ∈ [0, 1]:

EPI(A,C, T ) = A× e(−C×T )

The cost concern factor C represents the rela-
tive importance of resource efficiency in a given
application scenario, with higher values indicating
greater sensitivity to token usage.

Alternative considerations, such as linear and
polynomial functions, were explored as per Ap-
pendix A; however, linear models fail to adequately
capture the cost-performance tradeoff in sensitive
settings (for C = 0.00083, EPI = 0.7925 at
T = 250 and EPI = 0.585 at T = 500 — a
26% reduction despite requiring double the tokens),
while polynomial approaches exhibit vanishing be-
havior at large values of T (for C = 1.5 × 10−6

and T > 666, EPI = 0). As such, an exponential
model was chosen to faithfully depict the concerns
associated with mounting token cost at various sen-
sitivities.

Interpreting the EPI:
• When C = 0, EPI equals the raw accuracy (A),

providing a baseline for cost-aware scenarios.
• As EPI approaches 1, it indicates high accuracy

with efficient token usage relative to the chosen
cost concern level.

• A low EPI suggests either poor accuracy, exces-

https://github.com/tm21cy/EconomicalPromptingIndex
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Prompt Methods CSQA MMLU GSM8K DQA

Accuracy Token Count Accuracy Token Count Accuracy Token Count Accuracy Token Count

Chain-of-Thought 0.79 205.22 0.74 301.84 0.89 257.03 0.60 229.80
Self-Consistency 0.88 619.93* 0.84 902.89* 0.95 773.03* 0.76 689.78*
Tree of Thoughts 0.74 383.69 0.66 427.24 0.79 375.44 0.60 385.17
Thread of Thought 0.78 324.17 0.73 417.74 0.89 348.68 0.60 274.41
Standard 0.77 140.77 0.75 221.26 0.86 217.95 0.58 161.80
System 2 Attention 0.67 303.55 0.62 401.76 0.68 353.76 0.45 363.93

Table 2: Accuracy and token count averaged across all models. Red: highest cost/lowest accuracy; green: lowest
cost/highest accuracy. * indicates statistical significance at p < 0.05 as outlined by our procedures in Appendix D.

sive token usage, or both, depending on the spe-
cific values of A, C, and T .

• For a given C > 0 , techniques with similar EPI
values represent comparable trade-offs between
accuracy and efficiency, even if their raw accu-
racy and token counts differ.

We provide five representative weight classes sam-
pled from the continuous range of C, shown in
Table 1. Figure 2 shows how the EPI changes with
token count for different levels of cost concern,
assuming perfect accuracy (A = 1).

3 Experimental Setup

3.1 Datasets and Models
We sampled from four diverse datasets: Grade
School Math 8K (GSM8K), CommonsenseQA
(CSQA), Massive Multitask Language Understand-
ing (MMLU), and BIG-Bench Hard Disambigua-
tion QA (DQA) (Cobbe et al., 2021; Talmor et al.,
2019; Hendrycks et al., 2021; Suzgun et al., 2022).
For each dataset, we used n = 200 samples, except
for MMLU, where we sampled 4 entries from each
of its 57 subjects (n = 228).

We evaluated 10 models from 5 publishers: Ope-
nAI (GPT-3.5-Turbo, GPT-4), Google DeepMind
(Gemini 1 Pro, Gemini 1.5 Pro), Anthropic (Claude
3 Haiku, Claude 3.5 Sonnet), Meta (Llama 3 8B,
Llama 3 70B), and Mistral AI (Mixtral 8x7B,
8x22B) (Brown et al., 2020; Achiam et al., 2023;
Team et al., 2023; Touvron et al., 2023; Jiang et al.,
2024). Llama and Mixtral models were queried via
Anyscale, while others used their provided APIs.2

3.2 Prompting Techniques and Evaluation
We tested six prompting techniques: standard,
Chain-of-Thought, Self-Consistency, Tree of
Thoughts, Thread of Thought, and System 2 Atten-
tion (Wei et al., 2023; Wang et al., 2023; Yao et al.,
2023; Zhou et al., 2023; Weston and Sukhbaatar,
2023). All prompts were applied in a zero-shot

2https://www.anyscale.com/

setting (see Appendix B for prompt templates). Ac-
curacy was computed as a percentage of correct
responses, and token count as the average input
and output tokens per query over the full sample.

3.3 EPI Calculation

We calculated EPI scores for each prompting tech-
nique, both model-specifically (averaged across
datasets per model) and model-agnostically (av-
eraged across models per dataset).

4 Results

4.1 Accuracy and Token Count Analysis

Table 2 shows the accuracy and token counts av-
eraged across the 10 models employed for testing,
while example outputs on CSQA with GPT-4 can
be found in Appendix C.
Key Observations:
• Self-Consistency provides the highest accuracy

across all tasks, but at a disproportionately higher
cost. On GSM8K, a statistically insignificant
6.74% increase in performance comes with a
200% increase in token consumption compared
to standard prompting.

• System 2 Attention, despite its complexity, shows
the lowest accuracy across all datasets, suggest-
ing that more elaborate techniques do not always
yield better results.

4.2 Model-Agnostic EPI Results

Figure 3 illustrates the application of the EPI across
different prompting techniques on GSM8K. Our
analysis reveals the following key findings:
• Self-Consistency shows rapid deterioration in

cost efficacy (slope m = −361.09) as cost con-
cern increases, indicating a steep decline in ef-
fectiveness when considering token usage. This
slope represents the rate at which the EPI de-
creases as the cost concern factor increases.

• Chain-of-Thought demonstrates slower dete-
rioration (m = −177.22), indicating better via-
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Figure 3: EPI by prompt method on GSM8K, relative
to cost concern & averaged across all models

bility under cost constraints. The shallower slope
suggests this method strongly retains its effec-
tiveness as cost concerns grow.
Additional visualizations can be found in Ap-

pendix Section E.

4.3 Model-Specific EPI Results

Figure 4 shows the EPI scores for Claude 3.5 Son-
net across all datasets. Analysis of these results
yields the following insights:
• For high-performing models like Claude 3.5

Sonnet, complex techniques offer only incre-
mental gains (e.g. Self-Consistency: 0.83,
Chain-of-Thought: 0.79). Moreover, these gains
are not statistically significant on all tasks except
MMLU (p < 0.05).

• As cost concern increases, simpler techniques
like Chain-of-Thought become more viable
(overtaking Self-Consistency at C = 0.00008).
This intersection point indicates that even at very
low levels of cost concern, simpler methods be-
come more cost-effective.
Additional visualization of model-specific re-

sults can be found in Appendix Section F.

5 Case Studies

To demonstrate the practical utility of the EPI in
real-world scenarios, we present two contrasting
case studies that illustrate how organizations with
different priorities and constraints can use the met-
ric to make informed decisions about prompting
strategies.
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Tree of Thoughts Thread of Thought

Standard System 2 Attention

Figure 4: EPI by prompt method on Claude 3.5 Sonnet,
relative to cost concern & averaged across all tasks

5.1 Case Study 1: Optimizing Cost-Efficiency
for a Large-Scale Virtual Assistant

Company X, a leading provider of AI-powered cus-
tomer service solutions, currently uses GPT-4 for
their virtual assistant platform, serving over 500
enterprise clients at $45/1M tokens.3 The virtual
assistant handles approximately 1 million customer
inquiries daily.

To optimize their system, Company X con-
ducts an EPI analysis comparing their current
Chain-of-Thought prompting (257 tokens/query,
0.89 accuracy) against standard prompting (137 to-
kens/query, 0.86 accuracy). As shown in Figure
5, standard prompting demonstrates superior cost-
efficiency, with the approaches intersecting at a
very low cost concern (C = 0.00029).

By switching to standard prompting, Company
X projects:

• A 47% reduction in token consumption
• Annual savings of $134,700 based on current

usage
• Maintained performance levels (accuracy

drop from 0.89 to 0.86)

5.2 Case Study 2: Enhancing Performance for
a Product Recommendation System

Company Y, a mid-sized e-commerce platform,
uses Claude 3.5 Haiku for their recommendation
system at $0.75/1M tokens.4 Their current standard
prompting approach shows an average token con-
sumption of 159 with 0.43 accuracy, while Chain-

3https://openai.com/api/pricing/
4https://www.anthropic.com/pricing#anthropic-api
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Figure 5: EPI comparison between Chain-of-Thought
and standard prompting, given the parameters in Case
Study 1.

of-Thought prompting shows 242 tokens with 0.56
accuracy.

As illustrated in Figure 6, the EPI analysis
reveals that the benefits of standard prompting
are only realized at high levels of cost concern
(intersection at C = 0.00318), while Chain-of-
Thought’s performance gains outweigh its cost im-
plications for most practical purposes. By imple-
menting Chain-of-Thought prompting, Company
Y projects:

• A 30% increase in recommendation accuracy
• A manageable 52% increase in token usage,

justified by the performance gains

6 Related Work

Recent work has explored diverse prompting strate-
gies to enhance LLM performance, including
question decomposition, recursive reasoning, and
programmatic decomposition (Wei et al., 2023;
Wang et al., 2023; Yao et al., 2023; Weston and
Sukhbaatar, 2023; Zhou et al., 2023; Gao et al.,
2023). However, few studies have examined
these techniques through the dual lens of perfor-
mance and resource usage (Taherkhani et al., 2024;
Nananukul et al., 2024; Wang et al., 2024). Surveys
of the field have noted a disproportionate focus on
accuracy as the primary metric in most studies (Sa-
hoo et al., 2024; Vatsal and Dubey, 2024). While
some efforts have been made to create more effi-
cient versions of existing methods, such as Concise
COT prompting (Renze and Guven, 2024), there
remains a tendency to prioritize incremental per-
formance gains without adequately considering the
associated resource overhead.

No Cost Slight Moderate Elevated Major
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Cost Concern (C)

E
P

I

Chain-of-Thought Standard

Figure 6: EPI comparison between Chain-of-Thought
and standard prompting, given the parameters in Case
Study 2.

7 Conclusion

We introduce the Economical Prompting Index
(EPI), a metric balancing accuracy and token us-
age in prompt evaluation. Our study across diverse
datasets and models shows that while techniques
like Self-Consistency often achieve higher accu-
racy, simpler methods can be more cost-effective
under resource constraints. The EPI offers a flexi-
ble tool for assessing prompting techniques’ practi-
cal viability in various scenarios. As LLMs evolve,
metrics like the EPI will be crucial for develop-
ing accessible and efficient AI solutions. Future
work could extend the EPI’s application to broader
tasks and models, and explore its role in creating
resource-aware prompting techniques.

Limitations

Temporal Validity of Results: The field of
LLMs and prompt design and optimization is
rapidly evolving. Our results reflect the state of
the art at the time of the study, but new models,
prompting techniques, or optimization methods
could emerge that significantly alter the landscape.
This dynamic nature of the field means that the rel-
ative performance and efficiency of different tech-
niques may change over time, potentially affecting
the long-term applicability of our current findings.

Simplification of Cost Metrics: The EPI uses to-
ken count as a proxy for computational cost. While
this provides a straightforward and comparable met-
ric across different models and techniques, it may
not capture all aspects of real-world implementa-
tion costs. Factors such as inference time, memory
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usage, or model-specific pricing structures are not
directly accounted for in our current formulation
of the EPI. This simplification, while necessary
for broad comparability, may not fully reflect cost
considerations in all practical applications.

Generalizability Across Tasks: Our study fo-
cuses on a specific set of task types represented by
the chosen datasets. While these cover important ar-
eas such as mathematics, common sense reasoning,
and multitask understanding, they may not encom-
pass the full range of tasks for which LLMs are
employed. The effectiveness of different prompt-
ing techniques, and consequently their EPI scores,
may vary for more specialized or complex real-
world applications not represented in our current
task set.

The Hidden Cost of Performance Reduction:
While the EPI considers computational efficiency,
it doesn’t account for potential financial impacts
of reduced performance. In some applications, a
small decrease in accuracy could have significant
economic consequences (e.g., in financial forecast-
ing or medical diagnosis) that might outweigh the
computational cost savings.

Token Pricing Simplification: Our current EPI
implementation treats all tokens equally. However,
in many LLM services, input tokens (prompts) are
priced higher than output tokens (responses). This
simplification in our model may not fully reflect
the varied pricing structures in real-world LLM
applications.

Limited Cost Concern Levels: We provided five
sample levels of cost concern in our analysis. How-
ever, this may not cover the full spectrum of real-
world scenarios. Future work could explore a wider
range of cost concern levels and incorporate user
studies to better understand typical constraints in
various applications.

Model and Machine Level Metrics: The EPI is
designed to evaluate the level of accuracy and cost
of various prompts, but does not include consider-
ations for advanced model metrics, such as infer-
ence time, or machine-level metrics, such as power
consumption. Due to the closed-source nature of
multiple models included for testing, machine-level
metrics cannot feasibly be evaluated; future work
could explore an additional study into response
times with respect to various prompts.
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Appendix

A Visualization of Linear and Polynomial EPI Approaches
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Figure 7: Graph of input token count T against a linear
EPI calculation (EPI = max(0, A−C ·T )), given the
weight classes C for A = 1.
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Figure 8: Graph of input token count T against a
quadratic EPI calculation (EPI = max(0, A−C ·T 2)),
given the weight classes C for A = 1.

B Prompt Input Texts

Chain-of-Thought: "<question>. Let’s think step-by-step."
Self-Consistency: Chain-of-Thought sampled 3 times, highest occurring result marginalized.
Tree of Thoughts: "Imagine three different experts are answering this question. All experts will write
down 1 step of their thinking, then share it with the group. Then all experts will go on to the next step, etc.
If any expert realizes they’re wrong at any point, then they leave. The question is <question>."
System 2 Attention: "Given the following text by a user, extract the part that is unbiased and not their
opinion, so that using that text alone would be good context for providing an unbiased answer to the
question portion of the text. Please include the actual question or query that the user is asking. Separate
this into two categories labeled with “Unbiased text context (includes all content except user’s bias):” and
“Question/Query (does not include user bias/preference):After such, use this new unbiased text to answer
the proposed question”. Text by User: question’)”. Text by User: <question>"
Thread of Thought: "Walk me through this context in manageable parts step by step, summarizing and
analyzing as we go. <question>"
For each multiple choice dataset (CSQA, DQA and MMLU) an additional statement was added to
ensure that the response declared a final answer: "End your answer in this exact format: Final Answer =
(LETTER) ex. Final Answer (B). The letter you are selecting for your final answer must be surrounded by
2 parentheses, ex. (A). Only do this once."
For the MMLU dataset, the declared answer had to be surrounded by 2 parentheses on each side. (ex.
Final Answer = ((LETTER)).)
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C Example Outputs - CSQA
Input: The sanctions against the school were a punishing blow, and they seemed to what the efforts the
school had made to change? A) ignore, B) enforce, C) authoritarian, D) yell at, E) avoid.
Standard: Final Answer = (A)
Chain-of-Thought: Firstly, the sentence suggests that the sanctions have a negative impact on the school’s
efforts. Therefore, any word suggesting a positive impact, such as "enforce" (B), cannot be the right
one. Secondly, the sentence is about the sanctions’ impact, so a verb should be used here, meaning
"authoritarian (C)" and "yell at (D)", which are an adjective and a phrase respectively, are not correct
either. Thirdly, this sentence seems to suggest that the sanctions are not recognizing or taking into account
the school’s efforts at change. This leaves "ignore (A)" and "avoid (E)". Out of these two, "avoid" implies
a deliberate action of staying away from the school’s efforts, which is not really what the sentence is
suggesting. So, "ignore (A)", which suggests the sanctions are not acknowledging the school’s efforts at
change, is the most suitable choice. Final Answer = (A)
Self-Consistency:
Answer 1: The sentence is saying that the sanctions against the school were harsh and seemed to overlook
or disregard the efforts the school had made to change. So, we want an option that can fit this theme. The
options B), C), D) and E) are not fitting in this context. The best fit in this context is A) ignore. This
portrays a situation where the school has put in an effort to make changes, but the sanctions were a blow
to this effort, as if those efforts were ignored or not recognized. Therefore, the correct answer is A) ignore.
Final Answer = (A)
Answer 2: Firstly, we can eliminate C and D, as ’authoritarian’ is not a verb and ’yell at’ doesn’t fit in this
context. Secondly, ’enforce’ and ’avoid’ also doesn’t make sense in this context. So, the remaining option
is ’ignore’. The sanctions seem to disregard or ignore the efforts the school had made to change. Final
Answer = (A)
Answer 3: Firstly, we need a verb that suits the context. So, we rule out ’C’ which is an adjective and
’D’ which seems very informal. Secondly, we consider the meaning of the remaining options. ’Enforce’
suggests that the sanction would strengthen the school’s efforts, which doesn’t align with the previous
part of the sentence mentioning a ’punishing blow’. ’Avoid’ would suggest the sanction were designed to
dodge the efforts - again, not matching the context. ’Ignore’ fits best, signifying that despite the school’s
efforts, the sanctions acted as though these efforts didn’t matter. Final Answer = (A)
Tree of Thoughts: Expert 1: The question is asking us to find a word that fits the context of the sentence.
The sanctions had an impact which didn’t consider the school’s efforts to change. Drawing from this, my
initial thought is that the correct option will be a word meaning to disregard or not take into account. Final
Answer = (A)
Expert 2: Considering the thematic of the question, it’s clear we are looking for a word that could show
a lack of regard for the changes done by the school. The word that fits this description better from the
options given is "ignore". Final Answer = (A)
Expert 3: The sanctions are delivered to the school despite the actions it has taken to amend its ways,
suggesting that the sanctions don’t take into account these efforts. The word that matches with this concept
from the options provided is "ignore". Final Answer = (A)
System 2 Attention: Unbiased text context (includes all content except user’s bias): The sanctions against
the school were a punishing blow. Question/Query (does not include user bias/preference): What did the
sanctions against the school seem to do to the efforts the school had made to change?
Thread of Thought: The context describes a situation where the school is facing sanctions, described as
a punishing blow. These sanctions appear to be ignoring or dismissing the efforts the school has already
put into making changes. Now let’s break down the possible answers one by one: A) Ignore: This answer
could be correct as it fits the context. The sanctions might be neglecting the efforts made by the school.
B) Enforce: this doesn’t fit because sanctions enforce a penalty, not the efforts made by the school. C)
Authoritarian: This isn’t fitting as it’s an adjective and doesn’t make grammatical sense in the sentence.
D) Yell at: This isn’t plausible because it’s not feasible to yell at the efforts themselves. E) Avoid: This
is less likely as sanctions are not capable of avoiding anything. In summary, looking at the context and
analyzing the answers, the most plausible answer is (A) Ignore. Final Answer = (A)
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D Tests for Statistical Significance

To evaluate the statistical significance of accuracy for a given prompting method, we conduct a Two
Proportion Z-Test between the two highest-performing methods on each dataset. Similarly, to assess the
statistical significance of cost, we use a Paired t-Test between the two most expensive methods on each
dataset. For each dataset, significance tests are performed on the samples from each of the ten models;
a result is reported as significant only if it is significant on all models. All tests are conducted at a 95%
confidence interval (p < 0.05).

E Model-Agnostic Figures
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Figure 9: MMLU ECONOMICAL PROMPT INDEXES
for each prompt method by cost concern taxonomy.
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Figure 10: Disambiguation QA ECONOMICAL PROMPT
INDEXES for each prompt method.
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Figure 11: Common Sense QA ECONOMICAL PROMPT
INDEXES for each prompt method.
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F Model-Specific Figures

No Cost Slight Moderate Elevated Major
0.2

0.4

0.6

0.8

Chain-of-Thought Self-Consistency
Tree of Thoughts Thread of Thought

Standard System 2 Attention

Figure 12: ECONOMICAL PROMPT INDEXES for each
prompt method tested on GPT-3.5-Turbo.
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Figure 13: EPI across different prompting methods
tested on GPT-4.
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Figure 14: ECONOMICAL PROMPT INDEXES for each
prompt method tested on Mixtral 8-7B.
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Figure 15: ECONOMICAL PROMPT INDEXES for each
prompt method tested on Mixtral 8-22B.
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Figure 16: ECONOMICAL PROMPT INDEXES for each
prompt method tested on Claude 3 Haiku.
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Figure 17: ECONOMICAL PROMPT INDEXES for each
prompt method tested on Gemini 1.5 Pro.
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Figure 18: ECONOMICAL PROMPT INDEXES for each
prompt method tested on Gemini 1.0 Pro.
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Figure 19: ECONOMICAL PROMPT INDEXES for each
prompt method tested on Llama 3-70B.
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Figure 20: ECONOMICAL PROMPT INDEXES for each
prompt method tested on Llama 3-8B.
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