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Abstract

In this paper, we investigate Extractive Ques-
tion Answering (EQA) with Large Language
Models (LLMs) under domain drift, i.e., can
LLMs generalize to domains that require spe-
cific knowledge such as medicine and law in a
zero-shot fashion without additional in-domain
training? To this end, we devise a series of ex-
periments to explain the performance gap em-
pirically. Our findings suggest that: (a) LLMs
struggle with dataset demands of closed do-
mains such as retrieving long answer spans; (b)
Certain LLMs, despite showing strong overall
performance, display weaknesses in meeting
basic requirements as discriminating between
domain-specific senses of words which we link
to pre-processing decisions; (c) Scaling model
parameters is not always effective for cross-
domain generalization; and (d) Closed-domain
datasets are quantitatively much different than
open-domain EQA datasets and current LLMs
struggle to deal with them. Our findings point
out important directions for improving existing
LLMs.

1 Introduction

For all their success in general-domain tasks, LLM
performance in critical (or closed) reasoning do-
mains such as medicine (Ullah et al., 2024; Nazi
and Peng, 2024) and law (Lai et al., 2023) has been
shown to be lacking, even on traditional tasks such
as Natural Language Inference (Wang et al., 2024).
This is the first focus of our paper, i.e., examining
the reasons for the poor performance of language
models in closed domains.

Our examination focuses on Extractive Question
Answering (EQA) (§2), i.e., the task of retrieving a
contiguous span of tokens from a passage of text
to answer a query based on it. In closed domains,
response quality is crucial. Unfortunately, as gen-
erative models are prone to hallucination (Huang
et al., 2023) or sensitive to the location of the an-
swer span (Liu et al., 2024), they cannot be reliably

used (yet) in such domains (Magesh et al., 2024;
Pal et al., 2023). As such, extractive retrieval offers
better trust in the model response. This is because
a model does not need to create new information,
but rather locate gold annotated text spans. This is
the second focus of this paper, i.e., studying EQA
in closed domains.

Self-supervised pre-training on in-domain data
is generally utilized as the strategy for garnering
domain expertise. However, for esoteric subjects,
large-scale training data is seldom available. For
example, the corpus curated by Bhattacharjee et al.
(2024) discussing among others, astrophysics liter-
ature, consists of only 66B tokens, a small fraction
of the 2T token corpus used by Llama 2 (Touvron
et al., 2023b), a general domain model. As such,
it is not always possible to perform in-domain pre-
training. However, after pre-training in the general
domain, a model can be trained to work well for
related EQA (c.f. Fig. 1). This leads us to the
final focus of this paper, i.e., without additional
in-domain fine-tuning, we investigate the extent to
which language models can generalize (zero-shot)
for closed-domain EQA.

Overall, our main contributions are, (i) We moti-
vate the importance of EQA and the challenges as-
sociated with cross-domain generalization by high-
lighting the poor performance of current models,
(ii) Through various experiments, we offer insights
into the limitations of current EQA models and
complexities of closed-domain datasets that need
to be addressed for adaptation across domains, (iii)
Finally, we provide recommendations on model us-
age for EQA in particular, which can be leveraged
for other tasks as well.

2 Problem Formulation

EQA has three components (Liu et al., 2019a) I)
Context (C): The passage on which the question is
based and from which the answer must be drawn;
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II) Question (Q): The query based on the context;
III) Answer (A): The span of context tokens which
answers the question. Formally, EQA is defined as,

Definition 1. Given n tokens, t, as context C =
{t1, . . . tn} and question Q, EQA aims to extract
a continuous subsequence of k tokens from the
context as the answer A, i.e., A = {ti, . . . ti+k}
where 1 ≤ i ≤ (i + k) ≤ n. In other words, the
aim is to learn the function EQA : f(C,Q) → A

Figure 1 explains our problem statement. Usu-
ally, models are trained on EQA datasets that align
with their pre-training data, generally web or open-
domain corpora such as Wikipedia. This leads to
strong performance when the test set is from the
same domain. However, if the domain of the test set
is misaligned with the training data, performance
degrades sharply. We aim to study why this de-
cline takes place. We test models that are trained
on an ID EQA dataset viz., SQuAD (Rajpurkar
et al., 2016) and test them on four OOD datasets,
DuoRC (Saha et al., 2018), CUAD (Hendrycks
et al., 2021), COVID-QA (Möller et al., 2020) and
TechQA (Castelli et al., 2020) without further train-
ing (zero-shot) and explain the performance gap.

2.1 Evaluating EQA models

Metrics used for evaluating an EQA model are EM
(Exact Match) and F1. EM looks for a verbatim
match between the predicted and gold answer and,
is thus a 0/1 measure. F1 calculates the harmonic
mean of the prediction precision (count of shared
words between the prediction and gold span/count
of words in the prediction) and recall (count of
common words/count of words in the gold span).

EM and F1 have a very low tolerance for error
due to relying on token overlap and are thus, strict
measures. Despite that, prior work has primarily
utilized them for reporting scores. This is because
creating better, and more nuanced metrics is a non-
trivial task. While there have been attempts to this
end such as BERTScore (Zhang et al., 2020) and
TigerScore (Jiang et al., 2024), these have not yet
been widely adopted for EQA. Furthermore, there
are active studies (Farea and Emmert-Streib, 2024)
investigating the impact of EM/F1, which shows
the preference of studies to favour a simpler metric
over complex measures.

Assuming we have a better measure, isolating
the correct portion of the model’s generation (as
the answer span) is another challenge. As shown
in Figure 10, LLMs produce answers in a vari-

Open-Domain 
Trained Model 

for EQA

SQuAD 
(Wikipedia)

DuoRC 
(Movies)

CUAD
(Legal)

TechQA
(Technical Support)

COVID-QA
(Medical)

Performance 

Figure 1: We attempt to explain the performance drop
when a model is trained using in-domain (ID) datasets
(SQuAD; pink) and tested on ID data (SQuAD) v/s
OOD (out-of-domain) data (blue).

Zero-Shot Model Per formance Exploration Tests

1.Answer Length Analysis
- Are LMs capable of generating long 

answer spans?

2.Sense Exploration
- How good are LMs at detecting senses 

of key entity terms?

3.Architecture Examination
- Do variations on the same architecture 

(small v/s large v/s distilled, etc.) have 
an impact on perfromance?

- Are bidirectional models better at this 
task than autoregressive models? *

Model Perspective Dataset Perspective

1.(Dis)similar ity between datasets
- How different are the datasets 

quantitatively under the 
Force-Directed Algorithm?

2.Perplexity analysis
- Is model performance correlated 

with dataset perplexity?

3.Text/Task Embedding compar ison
- Does embedding the entire dataset 

reveal major pattern differences?

Figure 2: Proposed Experiments. *We provided a de-
tailed analysis of causal LLMs in Appendix F and dis-
cuss why they are suboptimal for EQA.

ety of formats. Automatically identifying where
the correct (answer) sentence lies is again a non-
trivial task. As a consequence of this, many works
(Labrak et al., 2024; Han et al., 2023; Chen et al.,
2023) focus on multiple-choice QA as the gener-
ated text is easier to parse.

3 Experiments and Results

We classify our experiments (Figure 2) as, Model
Perspective, i.e., looking at limitations in the
model themselves and Dataset Perspective, i.e.,
examining the complexities of the OOD datasets.

Each experiment, under model-perspective1 is
structured to answer the I) Hypothesis (in blue) -
What is the main idea being investigated? II) Mo-
tivation - What is the background/reason for per-
forming this test? III) Experiment Setting - How do
we test the hypothesis? IV) Findings - What are the
results of experiments? V) Key Takeaways - What

1We unify the discussion of the dataset-perspective experi-
ments as they collectively describe a common story.
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are the main lessons learned from the experiment?

3.1 Models and Datasets
We test various architectures for EQA, categorized
as (i) Non-transformer based, BiDAF (Seo et al.,
2017) and QANet (Yu et al., 2018); (i) Transformer-
based further categorized as encoder-based, includ-
ing BERT (and its variants), RoBERTa (Liu et al.,
2019b), and decoder-based, including Falcon (Al-
mazrouei et al., 2023), Platypus (Lee et al., 2023),
Gemma (Team et al., 2024), Mistral (Jiang et al.,
2023) inter alia.

Overall, we use five datasets in this study cover-
ing general knowledge (SQuAD), COVID-related
medical literature (COVID-QA), legal documen-
tation (CUAD), pop-culture and movies (DuoRC)
and technical customer support (TechQA). Addi-
tional details on the models and datasets are pro-
vided in Appendix A.

3.2 Model Perspective
Under this category of experiments, we look at
different aspects of a model to determine poten-
tial architectural limitations that lead to their poor
performance in closed-domain EQA.

3.2.1 Predicted Answer Length Analysis
Motivation We hypothesize that current EQA
models are weak in generating long answer spans
matching the distribution of the gold data answer
spans. Closed-domain datasets have longer ques-
tions, contexts and answers than SQuAD (c.f. 8).
Thus, to answer their questions, a model needs
to produce longer spans of text typically not re-
quired for simple factoid-based questions found in
SQuAD. This leads to our hypothesis that model
performance is impacted due to the inability to
produce long answer spans. In other words, we
test whether EQA models overfit the average gold
answer length in the training data.

Experiment Setting We examine if architectures
specifically trained for EQA still suffer from the
same-length generalization drawback. We test if
the issue persists for both non-transformer (BiDAF,
QANet) and Transformer-based Masked Language
Models (MLM) (BERT, RoBERTa). Causal LMs
(CLM) are not used here as during inference, we
can control generation till the window limit, giving
them the flexibility to produce shorter or longer
spans.

To test our hypothesis, we determine the average
number of characters in the predicted answer spans

Domain Model
Avg. Val. #chars

EM F1
True Predicted ∆

SQuAD (Open/General)

BiDAF

18.73

25.31 6.58 65.73 75.98
QANet 23.74 5.01 26.3 36.81
BERT 18.18 -0.55 80.95 88.25
RoBERTa 18.03 -0.7 82.73 90.04

COVID-QA (BioMedical)

BiDAF

93.42

986.73 893.31 17.43 38.3
QANet 460.81 367.39 0.99 5.76
BERT 28.81 -64.61 22.39 42.11
RoBERTa 25.81 -67.61 21.89 40.2

CUAD (Law)

BiDAF

120.07

5261.19 5141.12 5.06 16.81
QANet 277.32 157.25 0.8 7.01
BERT 33.55 -86.52 7.72 15
RoBERTa 19.55 -100.52 4.02 7.7

DuoRC (Movie Plots)

BiDAF

14.27

66.23 51.96 43.99 56.53
QANet 155.32 141.05 19.03 27.56
BERT 14.72 0.45 55.59 69.25
RoBERTa 14.03 -0.24 60.6 74.43

TechQA (Technical QA)

BiDAF

156.79

4302.93 4146.14 0.625 14.56
QANet 387.2 230.41 0 7.65
BERT 18.42 -138.37 0 9.19
RoBERTa 26.89 -129.9 0.625 5.94

Table 1: Zero-Shot Performance in Different Domains.
∆ = Average (Predicted - Gold) Answer Span Length

and calculate the difference between it and the av-
erage gold span for the given datasets2. We use
characters instead of tokens to have a consistent
scheme across models, as each model uses their
own tokenization. A non-negative difference in-
dicates that a model produces spans matching or
exceeding the expected gold length and vice versa.

Findings From Table 1, we see how well BERT
and RoBERTa approximate the average gold an-
swer length of SQuAD. However, on the OOD
datasets, both consistently produce shorter spans
leading to negative ∆. BERT breaks the 30-length
mark only once (for CUAD) while RoBERTa can
barely go beyond 25 characters. Interestingly, we
see that BERT produces longer spans for all of the
datasets except TechQA. We know that RoBERTa
is trained on a much larger corpus and for a longer
number of epochs than BERT. Producing consis-
tently smaller spans indicates overfitting on the
training corpus. Building on this analysis, we
see that apart from SQuAD and DuoRC, BERT
performs much better than RoBERTa on COVID-
QA, CUAD and TechQA. Although BERT is also
trained on Wikipedia, it is considered undertrained
w.r.t RoBERTa and hence shows inferior perfor-
mance on those two datasets but better performance
in more complex domains.

For the non-transformer models, the clear win-
ner among the two is BiDAF which produces much
longer spans than QANet. BiDAF, despite be-
ing much smaller than RoBERTa, outperforms it
on CUAD and TechQA and comes close to it on
COVID-QA (in terms of F1). This shows that

2We also look at the distribution of lengths in Appendix B.
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larger models do not necessarily equate to better
cross-domain generalization.

BiDAF generates much longer answer spans
compared to other models. These longer spans
cover more context, which helps improve the F1
score as it accounts for overlapping tokens. In
domains requiring detailed answers, such as law
(CUAD) and technical customer support (TechQA),
longer spans are beneficial because complex ques-
tions benefit from more thorough responses.

Key Takeaways Here, we observe: (i) Smaller
models like BiDAF display competitive perfor-
mance in zero-shot EQA over larger and more
capable models. Thus, it is not guaranteed that
scale equates with domain requirements such as
generating longer predictions; and (ii) When us-
ing Transformers, we should start with BERT as it
displays a better tendency to learn new domains.

3.2.2 Examining Polysemy of Domain Terms
Motivation We hypothesize that LLMs are weak
in detecting senses of relevant domain terms. Poly-
semy is a linguistic phenomenon to describe words
that take on multiple meanings or senses, e.g., bank
can mean either a financial institution or the por-
tion of land beside a river. For closed-domains
datasets, we reason that words with multiple mean-
ings will, on average, show only their expected
usage for the domain. E.g. we would expect that
a term such as Party would only take on the group
meaning rather than the occasion meaning for a
legal QA dataset (CUAD). Additionally, consider-
ing the small number of samples in closed-domain
datasets, as opposed to their open-domain coun-
terparts, it would be difficult to expect a dataset
on technical customer support (TechQA) to have
many/any instances of the coffee sense for Java.
Taking this into account, we test whether LLMs
can discriminate between ID and OOD senses of
polysemous domain terms.

Experiment Setting To test this hypothesis, we
create a small dataset of polysemous domain terms
that appear in the vocabulary of various contex-
tualized (MLM/CLM) models and the respective
datasets along with their associated contexts. We
start by tokenizing the contexts of the training split
for each dataset and filter out tokens absent from
the model’s vocabulary, stop words, numbers and
punctuation. Sorting the filtered list by frequency,
we randomly select five polysemous terms relevant
to the domain and retrieve their contexts.

As expected, the datasets usually show only a
single sense of a word, and as such we had to rely
on external resources to obtain contexts for the
other senses. To this end, we manually scrape a
well-known website for reliable word definitions
and usages, i.e. vocabulary.com. In total, we
had ten contexts per sense of a given word.

We run each context through the frozen models
and extract contextualized embeddings for the pol-
ysemous words in our dataset. Using these embed-
dings, we compute the average cosine similarity
between the target word from the same and dif-
ferent sense groups. The overall logic here is that
intra/same-group similarity is expected to be higher,
while inter/different-group would be lower. If not,
this can indicate that the models are incapable, to
an extent, of discriminating between domain and
non-domain senses of words, which in turn con-
tributes to their poor generalization.

Findings Firstly, from Table 2 we see an inter-
esting connection between RoBERTa and Falcon.
While both are different styles of models, each re-
ports consistently high scores across all words and
senses. Intra/inter-sense similarity scores for Fal-
con never falls below 0.97 for any dataset. This is
concerning as it indicates that it fails to recognize
differences in word usage across domains. While
RoBERTa also shows higher similarity scores, it
discriminates senses to a better extent (lower inter-
sense scores).

We question if there is a common link between
the two to explain the high similarity scores and
find that both models rely on the same tokenization
scheme, i.e., byte-level BPE (Byte-Pair Encoding)
an algorithm which treats individual bytes as to-
kens (Sennrich et al., 2016). On the other hand,
Platypus, Mistral, and Gemma use better Senten-
cePiece BPE (Kudo and Richardson, 2018) which
does not assume that words are space-separated.

The impact of tokenization on performance is
a non-trivial issue particularly when dealing with
out-of-vocabulary words as shown in Soler et al.
(2024) which extends to OOD senses. In fact, as
shown by Bostrom and Durrett (2020), straight
BPE schemes are inferior to Unigram tokenization
(Kudo, 2018) which in turn is not used in isola-
tion, but coupled with SentencePiece to form the
basis for tokenizers for newer models. Addition-
ally, it is shown by Bostrom and Durrett (2020)
that the latter mode of tokenization leads to better
performance for QA tasks. All of this explains why
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Dataset Word Cell Expression Study Treatment Host
C

O
V

ID
-Q

A
Model bio (s1) room (s2) phone (s3) (s1, s2) (s1, s3) (s2, s3) bio (s1) non-verbal (s2) (s1, s2) experiment (s1) room (s2) (s1, s2) medical care (s1) behavior (s2) (s1, s2) organism (s1) organizer (s2) (s1, s2)
BERT 0.75 0.73 0.6 0.37 0.4 0.38 0.83 0.65 0.37 0.8 0.66 0.41 0.73 0.59 0.39 0.81 0.61 0.42

RoBERTa 0.96 0.95 0.91 0.89 0.87 0.89 0.97 0.93 0.87 0.96 0.96 0.89 0.95 0.92 0.87 0.96 0.94 0.88
BioBERT 0.81 0.83 0.85 0.71 0.74 0.77 0.88 0.82 0.74 0.85 0.88 0.76 0.84 0.92 0.78 0.87 0.84 0.76
SciBERT 0.73 0.77 0.76 0.57 0.62 0.66 0.8 0.76 0.59 0.77 0.82 0.65 0.76 0.85 0.64 0.77 0.81 0.61

SenseBERT 0.88 0.89 0.82 0.75 0.73 0.73 0.92 0.86 0.75 0.9 0.89 0.79 0.87 0.88 0.76 0.92 0.86 0.76
Falcon 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.99 0.97 0.97

Platypus 0.55 0.53 0.67 0.32 0.31 0.46 0.56 0.5 0.33 0.63 0.48 0.4 0.6 0.54 0.42 0.58 0.41 0.23
Gemma 0.7 0.86 0.86 0.66 0.71 0.83 0.87 0.86 0.83 0.92 0.77 0.79 0.85 0.93 0.83 0.82 0.88 0.77
Mistral 0.43 0.53 0.52 0.2 0.25 0.42 0.54 0.53 0.22 0.53 0.4 0.25 0.45 0.51 0.27 0.5 0.45 0.14

Dataset Word Party Agreement Company Product Notice

C
U

A
D

Model group (s1) occasion (s2) (s1, s2) contract (s1) understanding (s2) (s1, s2) organization (s1) companionship (s2) (s1, s2) goods (s1) consequence (s2) (s1, s2) announcement (s1) observation (s2) (s1, s2)
BERT 0.69 0.67 0.34 0.83 0.56 0.52 0.73 0.58 0.36 0.68 0.67 0.41 0.72 0.67 0.38

RoBERTa 0.9 0.95 0.84 0.98 0.91 0.84 0.95 0.91 0.82 0.91 0.94 0.82 0.91 0.93 0.84
FinBERT 0.75 0.65 0.37 0.84 0.6 0.52 0.79 0.47 0.39 0.59 0.71 0.42 0.75 0.7 0.4

LegalBERT 0.66 0.78 0.56 0.83 0.71 0.62 0.84 0.73 0.69 0.78 0.79 0.64 0.78 0.8 0.64
SenseBERT 0.86 0.8 0.7 0.95 0.82 0.83 0.9 0.73 0.71 0.8 0.9 0.75 0.89 0.9 0.77

Falcon 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.99 0.97
Platypus 0.57 0.62 0.4 0.67 0.63 0.56 0.54 0.58 0.17 0.47 0.57 0.36 0.7 0.61 0.38
Gemma 0.83 0.94 0.84 0.88 0.96 0.9 0.84 0.96 0.85 0.64 0.85 0.72 0.92 0.9 0.89
Mistral 0.41 0.55 0.17 0.52 0.55 0.35 0.41 0.56 0.26 0.34 0.53 0.24 0.56 0.62 0.2

Dataset Word Server Application Following Java Windows

Te
ch

Q
A

Model host (s1) waiter (s2) (s1, s2) program (s1) request (s2) use (s3) (s1, s2) (s1, s3) (s2, s3) reference (s1) pursue (s2) (s1, s2) software (s1) coffee (s2) (s1, s2) software (s1) framework (s2) (s1, s2)
BERT 0.78 0.8 0.48 0.71 0.72 0.53 0.4 0.35 0.41 0.61 0.58 0.31 0.84 0.67 0.48 0.77 0.71 0.33

RoBERTa 0.94 0.95 0.89 0.93 0.95 0.92 0.87 0.86 0.89 0.91 0.92 0.84 0.94 0.91 0.84 0.93 0.94 0.79
SciBERT 0.79 0.82 0.71 0.75 0.76 0.74 0.62 0.59 0.66 0.67 0.69 0.55 0.79 0.65 0.59 0.71 0.85 0.62

SenseBERT 0.88 0.89 0.75 0.86 0.85 0.81 0.74 0.71 0.73 0.72 0.81 0.52 0.9 0.69 0.53 0.83 0.92 0.76
Falcon 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.97 0.98 0.99 0.98 0.97 0.99 0.98 0.98 0.99 0.98 0.98

Platypus 0.63 0.4 0.32 0.52 0.55 0.46 0.16 0.16 0.45 0.6 0.45 0.22 0.77 0.35 0.17 0.73 0.42 0.16
Gemma 0.79 0.71 0.72 0.61 0.85 0.91 0.61 0.63 0.86 0.55 0.83 0.59 0.8 0.83 0.79 0.93 0.78 0.8
Mistral 0.5 0.41 0.26 0.44 0.5 0.43 0.25 0.19 0.35 0.66 0.58 0.32 0.59 0.34 0.28 0.57 0.45 0.23

Dataset Word Film Shoot Hand Couple Past

D
uo

R
C

Model movie (s1) verb (s2) (s1, s2) bullet (s1) record (s2) (s1, s2) anatomy (s1) situation (s2) (s1, s2) pair (s1) few (s2) (s1, s2) time (s1) pass (s2) (s1, s2)
BERT 0.73 0.65 0.5 0.64 0.59 0.5 0.52 0.5 0.41 0.57 0.56 0.32 0.6 0.48 0.36

RoBERTa 0.97 0.93 0.9 0.95 0.93 0.92 0.92 0.85 0.85 0.94 0.94 0.87 0.93 0.89 0.86
SenseBERT 0.91 0.84 0.76 0.81 0.72 0.68 0.7 0.63 0.59 0.84 0.87 0.73 0.73 0.65 0.51

Falcon 0.98 0.99 0.97 0.98 0.97 0.97 0.98 0.98 0.98 0.98 0.97 0.97 0.99 0.99 0.98
Platypus 0.59 0.53 0.36 0.45 0.33 0.36 0.61 0.67 0.6 0.69 0.53 0.41 0.5 0.37 0.32
Gemma 0.87 0.68 0.73 0.79 0.76 0.75 0.96 0.97 0.96 0.79 0.85 0.75 0.97 0.76 0.73
Mistral 0.69 0.55 0.4 0.48 0.41 0.38 0.4 0.53 0.34 0.64 0.55 0.4 0.45 0.45 0.28

Table 2: Semantic Similarity Results. s(i) indicates sense number and intra-group sense similarity. s(i,j) indicates
inter-group sense similarity. ↑ s(i) + ↓ s(i,j) indicates a stronger model.

Platypus, Gemma and Mistral show greater seman-
tic awareness than Falcon and RoBERTa and by
extension why Platypus, on average, outperforms
Falcon across all datasets (c.f. Table 9). Finally,
while encoders show higher similarity scores than
decoders it does not imply that they are worse at
sense discrimination. BERT consistently shows
high intra-sense and low inter-sense similarity indi-
cating a greater degree of sense separation.

Key Takeaways The main findings here are: (i)
Tokenization matters - Models employing Sentence-
Piece + Unigram tokenization demonstrate overall
better performance and sense discrimination; (ii)
Despite their overall poor performance (c.f. Ap-
pendix F), CLMs exhibit a strong degree of sense
awareness in closed domains; (iii) BERT should be
used as a starting point for linguistically challeng-
ing datasets, as it shows strong sense discrimina-
tion in closed domains occasionally beating Sense-
BERT, specifically trained to be better at such tasks.

3.2.3 Architecture Examination
Motivation As discussed previously (sec. 1),
scaling LLMs does not always lead to SOTA perfor-
mance on every task. Accordingly, we test whether
scaling LMs is a definitive solution for zero-shot
generalization or not. We also look at how pre-
processing decisions impact generalization.

Experiment Setting Here, we study how varia-
tions in the model architecture impact EQA per-

formance. This includes analysis across varying
attention heads, hidden dimensions and number of
layers. Also, we look at how tokenization decisions
including word masking and text normalization
contribute to the performance drop.

As it is computationally intractable to analyze
every LLM, we perform a deep dive on one par-
ticular model BERT to glean an understanding of
the performance drop. Additionally, we use BERT
due to the availability of a variety of pre-trained
configurations as released by Turc et al. (2019).

For each pre-trained variant3 with a given com-
bination of layers (L), attention heads/hidden layer
size (A|H), we first fine-tune them on SQuAD (Fig.
1) and then zero-shot test on the OOD datasets to
gauge the impact of model size on performance.

We also investigate how pre-processing deci-
sions impact performance. Under this bracket, we
test whether whole-word-masking (WWM), i.e.,
masking ALL of the tokens associated with a word
makes any difference over word-piece-masking
(WPM), i.e., masking some or none of the tokens
of a word randomly. It can be reasonably expected
that closed-domain datasets will contain informa-
tion on entities typically not observed in the general
domain. Thus, we also test whether case preserving
models perform better than case-independent ones
since it has been established that models exploit
casing to identify entities (Das and Paik, 2022).

3See Appendix C.1 for each configuration tested.
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Dataset (EM | F1)

Model SQuAD COVID-QA DuoRC TechQA CUAD

BERTBase[L=12 | A=12 | H=768] 81.30 | 88.58 20.8 | 39.3 54.16 | 66.82 2.93 | 6.58 2.44 | 5.26
BERTLarge[L=24 | A=16 | H=1024] 84.03 | 91.1 22.29 | 40.26 53.99 | 67.52 2.58 | 7.08 2.34 | 4.84

Table 3: Impact of using Cased Models with WPM.
Model Dataset (EM|F1)

BERTLarge SQuAD COVID-QA DuoRC TechQA CUAD

Uncased 86.7 | 92.8 22.39 | 38.61 58.2 | 71.47 2.59 | 8.97 2.2 | 4.1
Cased 86.7 | 92.9 21.25 | 37.74 57.29 | 70.49 3.23 | 7.6 0.43 | 1.66

Table 4: Impact of text normalization with WWM.

Findings A: (Word-Piece Masking) (WPM) Ta-
ble 5 provide the results of our zero-shot EQA trials
for BERT models trained with word-piece masking
and using uncased text. As can be seen, BERT fol-
lows a consistent trend for ID SQuAD with perfor-
mance improving across all axes of model size, i.e.,
A, H and L. Additionally, it benefits from training
on cased-text as both BERTBASE and BERTLARGE
report the best scores on SQuAD in Table 3.

Curiously, we find that results from DuoRC fol-
low a very similar trend with SQuAD. We explain
this by the fact that as DuoRC samples are drawn
from Wikipedia, they align more with BERT’s train-
ing data which in turn allows performance to scale
across each axis of model size. Unfortunately, a
similar trend is not observed for the other closed-
domain datasets, i.e., scaling A, H and L does not
always lead to improvements when the datasets dif-
fer widely as highlighted in Table 5. We reason that
this behaviour is caused by ID fine-tuning strongly
aligning the base model with the domain to the
extent that any architectural modifications do not
yield appreciable gains on OOD datasets.

L A | H EM | F1
(SQuAD)

EM | F1
(OOD)

8 80.68 | 88.38 21.3 | 38.02
10 12 | 768 81.33 | 88.66 19.47 | 35.45

8 | 512 79.74 | 87.41 1.61 | 6.8612 12 | 768 80.9 | 88.2 1.61 | 6.36
12 12 | 768 80.9 | 88.2 2.46 | 4.63
24 16 | 1024 83.49 | 90.6 0.78 | 3.56

Table 5: Impact of scaling L for COVID-QA (top),
A|H for TechQA (middle), both for CUAD (bottom);
SQuAD scores are in the third column. See Figure 8 for
scores from all configurations.

Findings B: Whole Word Masking (WWM)
There are only two models to examine under this
masking strategy, i.e., BERTLARGE trained with and
without cased text. Comparing scores from Table 3
and 4 we see that cased-text in combination with
whole-word masking leads to improved scores for
SQuAD, DuoRC and TechQA. This makes sense

as closed domains discuss various entities and have
a processing scheme recognizing that is beneficial.

Overall, we find that WWM tends to outperform
WPM. Such an observation was also made by Joshi
et al. (2020) who found that span (in our case whole
words) prediction as opposed to individual tokens
is a more challenging task and leads to stronger
models. Finally, we see that the uncased variants of
this scheme display the best performance overall.
We reason that this is because the models are more
sensitive to the choice of masking than text normal-
ization, e.g., irrespective of capitalization, terms
such as new york will convey the same information.

Key Takeaways The key insights here are: (i)
Although Bi-directional models as BERT are more
suitable for EQA, it is not guaranteed to see im-
provements in closed-domains simply by increas-
ing model scale; (ii) WWM models should be pre-
ferred over WPM models for cross-domain EQA;
(iii) If a WWM variant is unavailable, consider
using uncased models as they tend to display bet-
ter performance across domains; (iv) When deal-
ing with long-context datasets, consider using Bi-
directional models over CLMs (c.f. Appendix F) as
they do not face similar issues as the latter.

3.3 Dataset Perspective

While architecture and training decisions impact
cross-domain performance, they cannot be solely
accountable for the ID-OOD performance discrep-
ancy. As evidenced by the closed-domain datasets
used in this study (§Appendix A), the number of
samples, along with their average answer/context
length, provide initial clues for the disparity as ID
models are unaccustomed to such instances. There-
fore, we compare OOD datasets with their ID coun-
terpart to see exactly how different they are. We
do this through established quantitative measures
that capture insights from the entire dataset by giv-
ing global feedback rather than a per-sample basis
qualitative examination.

3.3.1 Impact of Dataset Similarity on
Transferability

Here, we quantify the disparity between ID SQuAD
and OOD datasets using two techniques viz., Force-
Directed Algorithm (FDA) (Fruchterman and Rein-
gold, 1991) and dataset embeddings (Vu et al.,
2020). Through these measures, we gauge how dif-
ferent OOD datasets are w.r.t SQuAD which aids
us in understanding the performance drop better.
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Figure 3: FDA Plot. Each bar represents FDA similarity
between SQuAD and the corresponding OOD dataset.

FDA Su et al. (2019) and Talmor and Berant
(2019) study Multi-Task QA and use FDA, a graph
construction method, to determine dataset related-
ness. According to it, the similarity of a dataset
with an OOD one is given as 2Pij

Pj
, where Di is a

dataset, Pj is the F1 when training and evaluating
on Dj and Pij is the F1 when training on Di and
testing on Dj . We visualize dataset similarity in
Figure 3.

Analysis Figure 3 ranks the OOD datasets in or-
der of similarity with SQuAD as,

DuoRC > COVID-QA > TechQA > CUAD

This makes sense seeing as DuoRC is sampled
from Wikipedia, i.e., the same as SQuAD and deals
with overall “simpler” topics (movie plots) as com-
pared to the other datasets. Dataset characteristics
such as longer sample lengths and complex subject
matter explain the relative ranking of TechQA and
CUAD while COVID-QA strikes a middle ground
between the two. This ranking is further reinforced
by the overall performance (F1) of the models, i.e.,
DuoRC > COVID-QA > TechQA > CUAD (BERT)

DuoRC > COVID-QA > CUAD > TechQA (RoBERTa)

Although there are slight deviations in rank, the
overall trend places DuoRC and COVID-QA at the
higher end of the similarity spectrum to SQuAD
and TechQA/CUAD at the lower end, explained by
the models’ poor performance.

TEXT/TASK Embedding Vu et al. (2020) pro-
pose two embedding methods to capture task
(dataset) semantics, i.e., TEXT and TASK embed-
ding (c.f Appendix G for details). TEXT embed-
ding captures semantics about the entire dataset
while TASK embeddings determine the correlation
between different tasks. If the domains/tasks of the
two datasets are similar, their TEXT/TASK embed-
dings will be similar.

We investigate how well each embedding cap-
tures dataset semantics. For each dataset, we learn
TASK and TEXT embeddings and compute co-
sine similarity using them between SQuAD and its
OOD counterparts. The idea here is to quantify how
much ID and OOD datasets differ with the hypoth-
esis being that the two will have, on average, low
cosine similarity scores (greater dissimilarity). Fol-
lowing Vu et al. (2020) we use uncased BERTBASE
to extract TEXT and TASK embeddings.

Following Turc et al. (2019), we also establish
a non-dense embedding baseline by representing
each dataset pair as frequency vectors of the top
100 common unigrams and computing Spearman
correlation between them.

Target Dataset

Embedding Type COVID-QA TechQA DuoRC CUAD

Common-Term Frequencies (Sparse) -0.23 -0.27 -0.67 -0.5

TEXT Embedding (Dense) 0.9 0.82 0.92 0.86
TASK Embedding (Dense) 0.77 0.64 0.86 0.63

Table 6: Cosine similarity and Spearman Correlation
scores. Each entry indicates the corresponding category
score between SQuAD and each OOD dataset. Higher
scores indicate greater relatedness.

Target Dataset
Layer COVID-QA TechQA DuoRC CUAD

1 0.9 0.72 0.97 0.74
2 0.92 0.75 0.97 0.73
3 0.9 0.71 0.96 0.78
4 0.92 0.69 0.97 0.74
5 0.91 0.7 0.96 0.73
6 0.88 0.74 0.95 0.76
7 0.88 0.69 0.94 0.72
8 0.89 0.7 0.91 0.72
9 0.83 0.64 0.92 0.68

10 0.85 0.7 0.94 0.68
11 0.37 0.69 0.84 0.22
12 8.16E-12 1.88E-09 3.91E-11 7.61E-11

Avg. 0.77 0.64 0.86 0.63

Table 7: Layerwise TASK Embedding similarity against
SQuAD. We observe that domain divergence takes place
mostly in the last 2 layers.

Analysis Spearman correlation scores from Table
6 show a completely different order than FDA as,

DuoRC > CUAD > TechQA > COVID-QA

This is due to count-based vectors failing to cap-
ture deeper dataset semantics. For example, CUAD,
while drastically different from SQuAD in sub-
ject matter, use wording typically found in open-
domain documents. As such, relying on unigrams
alone is bound to pick up on these characteristics
reflected in the overall ranking as above.
TEXT and TASK embeddings reveal a similar

pattern as FDA as,



7113

DuoRC > COVID-QA > CUAD > TechQA (TEXT)

DuoRC > COVID-QA > TechQA > CUAD (TASK)

Although there exists a slight difference in order,
the overall sequence indicates a strong degree of
agreement with BERT and RoBERTa’s F1 scores
and in turn provides further explanation for the
performance discrepancy.
TASK embeddings produce layer-by-layer rep-

resentations. This allows us to investigate fine-
grained changes during learning. Table 7 shows the
similarity scores between each layer’s TASK em-
bedding for each OOD dataset w.r.t SQuAD. Sim-
ilarity scores indicate that the models learn EQA
well till layer 10 across each domain. However, in
the last layers is where domain divergence man-
ifests. In other words, we reason that in the last
layers, the signal from the domain/dataset becomes
so strong as to overpower what the model learned
overall about the task which in turn leads to their
observed poor performance.

3.3.2 Model Perplexity v/s Performance
While typically used for evaluating language mod-
els, perplexity (PPL) can be extended to evaluate
any dataset by converting the samples into a unified
representation akin to any unstructured training cor-
pora (§Appendix I). We convert each QA dataset
into a corpus by combining all the training contexts
and questions into a list of unlabeled samples. Us-
ing this converted dataset, we compute a model’s
PPL on it and correlate it with its performance.
The logic here is straightforward; higher perplexity
should correspond to lower performance. As text
in closed domains is qualitatively more complex,
it is expected that a model will face difficulty in
reasoning over them, leading to higher PPL.

We choose BERT and RoBERTa and two au-
toregressive LLMs (Platypus and Falcon) for this
test. To keep the comparison fair between the two
classes of models, we use only the answerable ques-
tions from DuoRC, TechQA and CUAD.

Analysis As explained before, our hypothesis
is that model perplexity on a dataset is inversely
proportional to its performance. In other words,
higher the PPL. lower is its performance. This
makes sense since a model’s performance is linked
with its ability to comprehend the text. Trend lines
for all four models (Figure 4) affirm our hypothe-
sis. For example, BERT and RoBERTa report the
highest PPL. and corresponding lowest scores for
TechQA. A similar observation holds for Falcon
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Figure 4: Scatter plot with trend line between model per-
plexity and performance (F1). Pearson correlation be-
tween F1 and PPL. (clockwise from top left) for BERT:
-0.17, RoBERTa: -0.48, Falcon: -0.77, Platypus: -0.9.

and Platypus for CUAD. Although there exist out-
liers, overall, we see that for datasets with lower
PPL. each model shows strong performance. This
observation is displayed sharply by the LLMs, as
they are overall much better at language modelling,
as we can see from the location of SQuAD and
DuoRC in the plots for Falcon and Platypus.

4 Related Work

Generalization in LLMs. LLMs performance on
unseen domains (Ramponi and Plank, 2020) re-
mains an active area of study. Recently, Yang et al.
(2024) and Leng and Xiong (2024) examined the
effects of fine-tuning on generalization. The is-
sue here is that they examine generalization after
training, which is not always possible due to data
scarcity. Mai et al. (2024) study LLM general-
ization on a synthetic domain of “gibberish” lan-
guage. Although novel, their finding’s impact on
real-world domains remains unclear.
QA Analysis Recent studies by Pezeshkpour and
Hruschka (2024) and Khatun and Brown (2024) ex-
amine the limitations of LLMs for Multiple Choice
QA. Although they do not consider EQA, they pro-
vide interesting insights such as LLMs being sen-
sitive to the location of answer choices, etc. The
work done by Kamalloo et al. (2023) is in a similar
direction as ours, focusing on the limitations of
existing metrics for evaluating extractive or gener-
ative QA systems. We find that the closest study
to ours is by Miller et al. (2020) who create new
test sets to determine if models trained on SQuAD
overfit to it. However, with a reported maximum
drop in F1 of 17.4 their datasets are far less chal-
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lenging to stress test LLMs. Also, they overlook
architecture issues to explain the performance gap.
Related Experiments. Varis and Bojar (2021) ex-
amine how Transformers struggle with length gen-
eralization if they are trained solely on samples of
a given length, potentially indicating overfitting.
However, they do not examine other neural archi-
tectures as us (c.f. 3.2.1) thus limiting the scope
of their claims. Yenicelik et al. (2020) study how
BERT organizes polysemous words in embedding
space. However, i) they neglect OOD senses and, ii)
while their findings explain how BERT views con-
texts, they do not provide any actionable insights
to using models in such settings as ours.

5 Conclusion

In this paper, we examine why LMs perform poorly
on zero-shot EQA in closed-domains. We consider
reasons from both dataset and model perspective.
Our findings reveal inadequacies in the current gen-
eration of models that need to be addressed to re-
alize true domain generalization. Additionally, we
also examine the complexities of OOD datasets
which a model needs to be made aware of apriori
before they can learn to generalize.

Limitations

For our polysemy tests, a point of concern might
be the number of samples in our dataset. While
we would have liked to use more instances, we are
limited by the size of the domain dataset and con-
sequently the number of samples we can collect for
each polysemous term. That said, we believe that
our findings are overall still valid as we prioritize
sample quality over quantity. Additionally, for the
model scale test, while it would be ideal to test even
more models, as explained before, it is intractable
to test all configurations for every possible model.
As such, we decided to thoroughly examine one
particular architecture.
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As our study does not deal with sensitive infor-
mation or involve multiple GPUs for training, we
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A Datasets and Models

Here, we describe all the resources used in this
paper, i.e. the models as well as the datasets.

A.1 Datasets/Domains Studied
For this study, we utilize five datasets covering a di-
verse set of domains, as described below. Statistics
of the dataset are summarized in Table 8.

• SQuAD (Stanford Question Answering Dataset),
generally regarded as a benchmark for EQA, is
a high-quality open-domain dataset consisting
of contexts from Wikipedia and crowdsourced
questions-answer pairs based on them.

• DuoRC (Saha et al., 2018) is a dataset based on
movie plots based on text from Wikipedia and
IMDB. In terms of domain closeness, DuoRC is
the closest to SQuAD as it includes data from
Wikipedia. However, the challenge introduced
by DuoRC is its requirement for deeper content
understanding since the question and answer are
based on different versions of a plot (Wikipedia
v/s IMDB) ensuring a lower lexical overlap be-
tween the two.

• CUAD (Hendrycks et al., 2021) represents the
legal domain. Having the longest context length,
CUAD is a collection of commercial contracts
for legal document understanding.

• COVID-QA (Möller et al., 2020) was developed
to enable question answering for COVID-related
queries. It is a collection of answerable questions
only based on research articles sourced from the
CORD-19 dataset (Wang et al., 2020).
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• TechQA (Castelli et al., 2020) is a dataset de-
veloped by IBM for question answering in the
technical customer support domain. Its subject
is not only much different than SQuAD, but the
overall language, style and number of samples
make this a very challenging dataset.

A.2 Models Tested

We test various neural architectures categorized as
Non-Transformer and Transformer-based.
Non-Transformer: We examine two models based
on either recurrent or convolution networks.
• BiDAF (Bi-Directional Attention Flow) (Seo

et al., 2017) is a hierarchical recurrent model
(LSTM) that captures fine-grained context and
question semantics through word/character em-
beddings and left-to-right/right-to-left attention.

• QANet (Yu et al., 2018) uses unidirectional atten-
tion and enables parallelism/scale through several
layers of convolution.

Transformers-Based (Vaswani et al., 2017): We
look at popular models built using the encoder or
decoder part of the transformer.
• Encoders: Architectures that fall in this category

perform Masked Language Modelling (MLM).
This means that during training, the model has
access to the entire input sequence, at each step
of processing, and is tasked with predicting ran-
domly replaced (masked) tokens in the input. In
this paper, we explore the following MLM style
models,

– BERT (Devlin et al., 2019) is one of
the first language models built upon the
Transformer-encoder, which showed strong
performance across a range of tasks on the
GLUE benchmark (Wang et al., 2018). Var-
ious domain-specific checkpoints of BERT
are also tested in this paper to evaluate the
impact of further ID pre-training. For the
biomedical and technical domain, these in-
clude, BioBERT (Lee et al., 2020) (medi-
cal domain) and SciBERT (both domains)
(Beltagy et al., 2019); for the legal domain,
these include, FinBERT (Araci, 2019) and
LegalBERT (Chalkidis et al., 2020).

– SenseBERT (Levine et al., 2020) is pre-
trained to predict word senses derived from
the English WordNet (Fellbaum, 1998). We
use this model during our semantic similar-
ity trials (c.f. 3.2.2) to determine the impact

of this training objective on closed-domain
sense discrimination.

– RoBERTa (Liu et al., 2019b) optimizes
BERT by removing its Next Sentence Pre-
diction objective, adding dynamic masking
and training over a larger corpus of data for
more number of epochs.

• Decoders (c.f. 9): Models that perform
causal language modelling (CLM) are termed as
decoder-based or autoregressive language mod-
els. Such models predict future word(s) based on
the preceding context. Here, the attention head
allows the model to look only at prior tokens
(unidirectional), unlike MLM models.

– We use four of the latest CLMs for our ex-
periments, i.e., Falcon (Almazrouei et al.,
2023), Platypus (Lee et al., 2023), Gemma
(Team et al., 2024) and Mistral (Jiang
et al., 2023). Each model uses various ad-
vancements in LLM technology such as
Grouped-Query Attention (Ainslie et al.,
2023), Low-Rank Adaptation (Hu et al.,
2022), etc. The most important factor for
these models, however, is their training data
which undergoes meticulous filtration to
ensure high quality, such as the Refined-
Web corpus (Penedo et al., 2023) for Falcon.
As above, we use various domain-specific
checkpoints, as applicable. For the medi-
cal domain, this includes, MedAlpaca (Han
et al., 2023) and BioMistral (Labrak et al.,
2024); AdaptLLM (Cheng et al., 2024) for
the legal domain and Phi-2 4 for the techni-
cal domain.

B Categorical Answer Length Analysis

Additionally, we look at how the predicted answer
length distributions align with the gold span distri-
bution for two datasets, SQuAD and TechQA for
BiDAF and RoBERTa. We chose SQuAD as it is
the main dataset on which the models are trained,
TechQA as it has the longest average gold span,
RoBERTa as it is a better model overall than BERT
and BiDAF as observed to be the better of the two
non-transformer models. We plot histograms for
this test, which are shown in Figure 5. The x-axis
shows the length ranges of the gold spans for either
dataset, and the y-axis shows how many answers

4https://huggingface.co/microsoft/
phi-2

https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-2
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Dataset

Train Validation Test

Average
Question
Length

Average
Context
Length

Average
Answer
Length

Number
of

Records

Average
Question
Length

Average
Context
Length

Average
Answer
Length

Number
of

Records

Average
Question
Length

Average
Context
Length

Average
Answer
Length

Number
of

Records

SQuAD 59.57 754.36 20.15 87,599 60.01 778.98 18.73 10,570 - - - -
DuoRC 40.14 3,801.48 14.32 60,721 (26,633) 39.97 3,837.77 14.38 12,961 (5,780) 39.88 3,763.95 14.27 12,559 (3603)
COVID-QA 58.54 32,082.28 93.42 2,019 - - - - - - -
CUAD 254.96 64,684.51 131.48 22,450 - - - - 260 46,848.19 120.07 4,182
TechQA 270.88 51,452.02 269.85 600 286.77 92,629.53 156.79 310 (9) - - - -

Table 8: Dataset Statistics. Apart from number of records, all entries are text lengths in terms of average number of
characters. ‘-’ indicates unavailable dataset split. Numbers in parentheses for TechQA and DuoRC indicate the
number of samples for which the answer span is not present exactly in the context for reasons such as inconsistent
spaces, capitalization, word inflection (form) variation, etc.

fall within each range bucket. We use the same
x-axis for all plots for a given dataset to determine
the number of predictions falling within the corre-
sponding gold range buckets.

Looking at the fine-grained answer length distri-
bution in Figure 5 we get a better understanding of
why there is poor generalization in MLM style mod-
els. For SQuAD, we see that both RoBERTa and
BiDAF approximately mimic the gold span answer
length distribution. RoBERTa of course performs
better than BiDAF owing to its superior architec-
ture and being trained on much more aligned data.
However, for TechQA, RoBERTa does not show
the same distribution. It is completely left-skewed,
with all the predictions falling under 115 characters.
On the other hand, BiDAF, despite also being left-
skewed, shows a more spread-out distribution. Two
of its answers fall in the 918-1033 character range,
the same as that in the gold distribution. While
RoBERTa cannot break the 30-character length
mark for TechQA, BiDAF manages an average of
4k characters 5 (Table 1).

C Benefits of encoder models (BERT)

Despite falling out of favour 6 instead of newer
autoregressive models, BERT and its variants have
the following advantages,

1. Shorter training times, e.x. Pre-training GPT-
1 (Radford et al., 2018) took 1 month across
8 GPUs 7 v/s BERTBASE took 4 days on 16
TPU’s (Devlin et al., 2019).

2. Smaller model size e.g. BERTBASE has 110M
5Longer spans cannot be shown in the plot since they

exceed the gold limit (only 278 out of 310 samples are shown
in the plot).

6https://www.deepset.ai/blog/
the-definitive-guide-to-bertmodels

7https://openai.com/research/
language-unsupervised

parameters (Devlin et al., 2019) v/s GPT-1 has
117M parameters (Radford et al., 2018).

3. Being more suitable for information extrac-
tion tasks such as Named Entity Recogni-
tion (Deußer et al., 2023) (although not al-
ways as shown in (Sarrouti et al., 2022) for
biomedical relation extraction, where encoder-
decoder models can occasionally top encoder-
only models) and span detection (EQA) (Xu
et al., 2021; Mallick et al., 2023).

4. We still find instances of bidirectional lan-
guage modelling being used in innovative
ways, such as (Li et al., 2023) who propose
an encoder-only model to link text modality
with geospatial content.

C.1 BERT configurations tested
Figures 6 and 7 provide an overview of all BERT
variations that were tested. Figure 8 provides the
range of scores for all configurations of uncased
BERT models with word-piece masking.

D Testing ChatGPT

We were curious to see how well ChatGPT with
either GPT-4 or GPT-3.5 was able to perform zero-
shot EQA. We select a random sample from a
biomedical dataset, BioASQ (Tsatsaronis et al.,
2015) as it has shorter contexts, to test ChatGPT.
In Figure 9, for the given question, against the true
answer of zfPanx1 was identified on the surface
of horizontal cell dendrites invaginating deeply
into the cone pedicle near the glutamate release
sites of the cones, providing in vivo evidence for
hemichannel formation at that location., GPT-4 al-
most identifies the correct span while introducing
minimal new text (period instead of comma). GPT-
3.5 introduces/patches together even more text with
the answer, The protein Pannexin1 (zfPanx1) is lo-
cated on the surface of horizontal cell dendrites

https://www.deepset.ai/blog/the-definitive-guide-to-bertmodels
https://www.deepset.ai/blog/the-definitive-guide-to-bertmodels
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
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Figure 5: Answer length distribution for BiDAF and RoBERTa on SQuAD (top) and TechQA (bottom).
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Text 
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Figure 6: Classification of all BERT models tested for
zero-shot EQA based on pre-processing choices. Over-
all, this gives us 25 (Fig. 7)+2+2=29 variations to test.

SQuAD FineTuned
BERT checkpoint

FineTune

CDQA Datasets
Zero-Shot

EQA

SQuAD
(Open-Domain)

Figure 7: Testing various configurations of BERT to
see how they impact zero-shot EQA performance. Note,
A|H = 16|1024 is only available for L = 24.

invaginating deeply into the cone pedicle near the
glutamate release sites of the cones in the zebrafish
retina. Changing the prompts did not seem to im-
prove performance. Although this is a single ex-
ample, it goes to show that even the most capable
LLMs struggle with span extraction due to their
generative nature and tendency to hallucinate.

E Instruction Templates and
autoregressive LLM testing setup

We use the following prompt template across all
models, as described in Han et al. (2023).

Context: {context text}
Question: {question text}
Answer: <generated text>

The models were prompted in this manner for
the following reasons,

• Initially, we attempted to format the samples
using the instruction tags 8 for each corre-
sponding model. However, we found that
for certain models such as Gemma (Team
et al., 2024), even when using the appropriate
tags/prompt template, they produce answers
in inconsistent formats9.

8https://huggingface.co/docs/
transformers/main/en/chat_templating

9Figure 10

https://huggingface.co/docs/transformers/main/en/chat_templating
https://huggingface.co/docs/transformers/main/en/chat_templating


7122

Figure 8: Impact of scaling number of layers (L), attention heads (A) and layer dimension size (H) on EQA
generalization for uncased BERT with word-piece masking. EM scores (top) | F1 scores (bottom).

Context

Question

Answer

Figure 9: Testing ChatGPT (with GPT-4) on a “simple” Biomedical EQA question.
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• It allows us to hold each tested model to a
common standard of evaluation, and also pro-
vides us with the ease to extract the generated
answer automatically by clipping the prompt
at a common point (Answer:).

In our experiments, the autoregressive models
were given the following advantages,

1. Retaining answerable questions only - By
the very nature of causal training, autoregres-
sive models generate text based on the input
prompt. Thus, if the provided context does
not contain the answer to the question, they
will be penalized for producing an incorrect
answer. Thus, we only consider answerable
samples for a fair evaluation.

2. Reduced context length - As it has been es-
tablished that LLMs struggle with processing
long contexts (Liu et al., 2024; Li et al., 2024),
we truncate the samples from the long con-
text datasets COVID-QA, TechQA and CUAD
such that each context chunk is guaranteed to
contain the answer while being smaller than
the models’ maximum input window. SQuAD
and DuoRC do not need to be truncated as
they have shorter contexts.

F Limitations of autoregressive LLMs for
EQA

The true power of zero-shot learning came into the
picture with the release of GPT-3 (Brown et al.,
2020) a massive 175B autoregressive (or causal)
model (trained to predict the next word conditioned
only on preceding words) capable of remarkable
zero-shot and few-shot learning, i.e., supplied with
zero/a few test samples it can perform the target
task directly without need of further training. The
success of GPT-3 propelled NLP into the LLM era
(Zhao et al., 2023) where models are essentially
used off-the-shelf for a range of real-world tasks
simply by explaining the problem in natural lan-
guage, a process called prompting (Liu et al., 2023).
Harnessing the power of this new feature, we test
the generalization capabilities of several state-of-
the-art (SOTA) causal models by benchmarking
them on our datasets in zero-shot fashion, i.e. di-
rectly asking them to answer the question based on
the context without further training.

In addition to gauging their raw performance
we test two hypotheses to explain their behaviour,

Model Dataset EM F1 Predictions in Full Context
MedAlpaca 6.79 39.59 384

Falcon 4.06 32.2 117
Platypus 5.25 34.25 380
Gemma 2.77 18.04 687

BioMistral

COVID-QA

3.41 32.94 203
Falcon 13.29 28.4 931

Platypus 23.6 40.14 3098
Gemma 10.78 17.45 7364
Mistral

SQuAD

1.2 22.25 136
AdaptLLM 0 7.38 13

Falcon 0 8.63 3
Platypus 0 5.64 194
Gemma 0 1.45 798
Mistral

CUAD

0 11.6 1
Falcon 0 9.26 0

Platypus 0 6.86 0
Gemma 0.66 5.11 23
Mistral 0 8.76 0
phi-2

TechQA

0 7.6 2
Falcon 11.29 22.92 682

Platypus 10.1 30.01 1707
Gemma 6 10.61 8339
Mistral

DuoRC

4.4 29.97 517

Table 9: Zero-Shot Decoder Evaluation on all five
datasets. Contexts of COVID-QA, TechQA and DuoRC
are truncated such that each context chunk always con-
tains the answer. Blue indicates ID models while bold
is the best performing model.

the first of which is linked to their core operating
objective. Causal models treat EQA as a standard
language modelling problem (e.q. (1) (Radford
et al., 2018)) where the model (with parameters θ)
predicts the future word (ui) given the preceding
context (u<i) by maximizing the log-probability of
the generated sequence.∑

i

logP (ui|u<i; θ) (1)

Contrary to this, bidirectional models, are
trained by adding a linear layer on top of the base
model and predicting the start and end tokens of the
answer span by minimizing the loss (Jurafsky and
Martin, 2019) as shown in e.q. (2) where Pstarti is
the probability of the ith context token being the
start token and similar for the end token 10.

− logPstarti − logPendi (2)

Contrasting the language modelling with the
start/end token prediction objective, we consider
two hypotheses to potentially explain shortcomings
in the former for EQA. First, with bidirectional
models, we can constrict them to use only con-
text tokens for answer prediction since the linear
layer is trained to process only those tokens which
means the answer span will always come from the

10For details on how the probabilities are calculated, we
refer the reader to chapter 14 of (Jurafsky and Martin, 2019)
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<bos><start_of_turn>user
Select the most appropriate context span which answers the given question without any explanation. 

Context: Beyoncé Giselle Knowles-Carter (/biːˈjɒnseɪ/ bee-YON-say) (born September 4, 1981) is an American singer, songwriter, record producer and actress.
Born and raised in Houston, Texas, she performed in various singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer

of R&B girl-group Destiny's Child. Managed by her father, Mathew Knowles, the group became one of the world's best-selling girl groups of all time. Their

hiatus saw the release of Beyoncé's debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned five Grammy Awards and
featured the Billboard Hot 100 number-one singles "Crazy in Love" and "Baby Boy".

Question: When did Beyonce start becoming popular?

<end_of_turn>
<start_of_turn>model
The answer is: in the late 1990s as lead singer of R&B girl-group Destiny's Child.

<end_of_turn>
<eos>
------------------------------------------------------------------------------------------------------------------------------------------------------------
<bos><start_of_turn>user
Select the most appropriate context span which answers the given question without any explanation.

Context: Beyoncé Giselle Knowles-Carter (/biːˈjɒnseɪ/ bee-YON-say) (born September 4, 1981) is an American singer, songwriter, record producer and actress.
Born and raised in Houston, Texas, she performed in various singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer

of R&B girl-group Destiny's Child. Managed by her father, Mathew Knowles, the group became one of the world's best-selling girl groups of all time. Their

hiatus saw the release of Beyoncé's debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned five Grammy Awards and
featured the Billboard Hot 100 number-one singles "Crazy in Love" and "Baby Boy".

Question: What areas did Beyonce compete in when she was growing up?

<end_of_turn>
<start_of_turn>model
The most appropriate context span for this question is:

**Context:** Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter, record producer and actress. Born and raised in

Houston, Texas, she **performed in various singing and dancing competitions** as a child, and rose to fame in the late 1990s as lead singer of R&B girl-

group Destiny's Child.

This context span answers the question of "what areas did Beyonce compete in when she was growing up" by mentioning "singing and dancing competitions."

<end_of_turn>
<eos>
------------------------------------------------------------------------------------------------------------------------------------------------------------
<bos><start_of_turn>user
Select the most appropriate context span which answers the given question without any explanation. 

Context: Beyoncé Giselle Knowles-Carter (/biːˈjɒnseɪ/ bee-YON-say) (born September 4, 1981) is an American singer, songwriter, record producer and actress.
Born and raised in Houston, Texas, she performed in various singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer

of R&B girl-group Destiny's Child. Managed by her father, Mathew Knowles, the group became one of the world's best-selling girl groups of all time. Their
hiatus saw the release of Beyoncé's debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned five Grammy Awards and

featured the Billboard Hot 100 number-one singles "Crazy in Love" and "Baby Boy".

Question: When did Beyonce leave Destiny's Child and become a solo singer?

<end_of_turn>
<start_of_turn>model
The text states that Beyoncé left Destiny's Child and became a solo singer in the late 1990s. Therefore, the most appropriate context span is "the late

1990s."

<end_of_turn>
<eos>

Figure 10: Testing chat template for Gemma. As can be seen, for the recommended template, the model is
inconsistent in producing its answer.

context (Jurafsky and Martin, 2019). However,
with decoder-based models, there is no such con-
straint, which means that they are free to predict
the most likely word(s) from their vocabulary con-
ditioned on the starting text (Q + C). Although
there have been attempts to remedy this via libraries
such as lm-format-enforcer11 and through
additional training on instruction-data (Zhou et al.,
2023), there is no such requirement baked into the
makeup of these models. This leads us to test how
many times the generated answer is present in the
context. If the model generates new text rather than
using only context tokens, the EM (Exact Match)
will decrease considerably, which in turn will lead
to its overall poor performance.

The second relates to how the models pro-
cess the input. Bidirectional models are trained
to distinguish between question and context (or
any two separate sequences) by using a special
[SEP ] token. Q + C is then processed as
[CLS][Qn

i=1][SEP ][Cm
j=1] where [CLS] is a spe-

cial token used for classification tasks and Qi/Cj

11https://github.com/noamgat/
lm-format-enforcer

are question/context tokens respectively. However,
causal models view the entire input as a single se-
quence without any special separator in between.
This leads us to question whether they can identify
the question and context correctly, which should
be considered a basic ability. If they are not able
to do so, it could be another explanation for their
poor performance. We test this idea by simply ask-
ing the models to repeat the context and questions
verbatim by prompting them as,

Write the context and question
exactly.
Context: {context text}
Question: {question text}

We also test whether the models are sensitive to
the location of either component by reversing the
order of the context and question. It should be men-
tioned here that we provide an instruction for this
task and use each model’s prompt template as they
were seen to perform better than in their absence as
opposed to the zero-shot setting described before.
We explain this behaviour by observing that copy-
ing text is qualitatively easier for the model than
extraction based on a condition (question). As such,

https://github.com/noamgat/lm-format-enforcer
https://github.com/noamgat/lm-format-enforcer
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Normal Order Reverse Order

Model Dataset CIC CIQ CIB CIC CIQ CIB

Falcon 0.26 0.31 0.2 0.12 0.18 0.09
Platypus 0.03 0.01 0.01 0.17 0.13 0.11
Gemma 0.22 0.82 0.2 0.01 0.75 0.01
Mistral

SQuAD
0 0 0 0 0.14 0

Avg. 0.13 0.29 0.1 0.08 0.3 0.05

Falcon 0.07 0.07 0.04 0.08 0.65 0.05
Platypus 0.02 0 0 0 0.08 0
Gemma 0 0.59 0 0 0.4 0
Mistral

DuoRC
0 0 0 0 0.1 0

Avg. 0.02 0.17 0.01 0.02 0.31 0.01

MedAlpaca 0 0.14 0 0 0.15 0
Falcon 0.05 0.28 0.02 0 0.26 0

Platypus 0 0.02 0 0 0.01 0
Gemma 0 0.66 0 0 0.48 0

BioMistral

COVID-QA

0 0 0 0 0.04 0
Avg. 0.01 0.22 0 0 0.19 0

Table 10: Testing instruction following capabilities of
each decoder model. Normal Order = Context followed
by Question | Reverse Order = Question followed by
Context. CIC/CIQ/CIB = Correctly Identified Con-
text/Question/Both. Each score represents the fraction
out of 100 randomly selected samples for which the
model positively identifies/repeats each component.

they can follow the instructions much better here.
Overall, this will test not only their instruction-
following abilities but also reveal a potential flaw
in their design, i.e., the inability to identify what
portion of the input corresponds to which segment.

For these experiments, we use only SQuAD,
DuoRC and the truncated samples from COVID-
QA. This is because repeating the examples from
CUAD and TechQA would exceed the model’s
maximum context window, even if they are trun-
cated. We randomly sample 100 examples from
the selected datasets to run our trials and report the
fraction of samples that were correctly identified.

We first analyze their cross-domain performance
in Table 9 to investigate the first hypothesis i.e.
whether their answers are an exact match with the
associated context, since the requirement for EQA
is that the answer span must match the context
verbatim. Despite having to process less context,
poor EM and prediction hit rate (number of times
the answer matches the context exactly) indicate
that this is a major bottleneck for these models.
As discussed previously, this is unsurprising since
generation is unconstrained, i.e., conditioned on
the seed text, the models are free to predict the
next word based on the most probable token in
its vocabulary. Overall, we see how serious this
issue is since the models reporting the highest hit
rates for the more challenging COVID-QA, CUAD

and TechQA datasets, could barely break the 40%
mark (percentage of predictions in full context/total
number of samples).

Although it is natural to expect that at least the
ID models would display the best performance,
we find that for COVID-QA, CUAD and TechQA,
only MedAlpaca (for COVID-QA) performs the
best. For TechQA, this makes sense since phi-2
is a much smaller model (2.7B params) than the
others. In the case of CUAD, although AdaptLLM
was trained on legal knowledge, it uses LLaMA-1
(Touvron et al., 2023a) as the backbone whereas the
best-performing model, Mistral, is a much stronger
model capable of outperforming the more powerful
LLaMA-2 (Touvron et al., 2023b).

Results from the context and question identi-
fication trials are presented in Table 10. First,
model-wise, Gemma displays the most impressive
instruction-following abilities as, on average, it
reports the most identified samples in either con-
figuration and across domains. This also aligns
with the fact that it reported the most number of
exact answer predictions for each dataset (c.f. Ta-
ble 9). Second, from the results, it is evident that
the location of each component plays an important
part, i.e., Normal order or, Context followed by
the Question, appears to be the preferred way of
formatting samples for EQA. Finally, as expected,
each model recognizes the most number of samples
for SQuAD displaying again a weakness in general-
izing to OOD datasets. Surprisingly, MedAlpaca
and BioMistralwhile being biomedical models
are outperformed by Gemma, perhaps owing to its
superior instruction tuning. Overall, the takeaways
are,

1. Although nowhere near good enough for EM,
LLMs display better performance than
Bi-directional models for extremely chal-
lenging OOD datasets such as CUAD and
TechQA in terms of F1. Thus, if the dataset
can be constrained to only answerable ques-
tions, LLMs in zero-shot could potentially be
a good option.

2. LLMs are sensitive to the location of the
context and question in the prompt. Thus,
care should be taken when formatting the
samples as it can impact cross-domain per-
formance.
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G TEXT/TASK Embedding Background

TEXT Embedding Each sample is processed by
the frozen base model, i.e., without any additional
training, and the average of the pooled represen-
tation from each input sequence stands as the
datasets’ TEXT embedding. This vector is used to
compare datasets across different domains. Here,
the specific task is not important, i.e., as long as two
datasets belong to the same domain, their TEXT
embeddings will be similar.

TASK Embedding We provide an intuitive un-
derstanding of TASK embeddings and direct inter-
ested readers to Achille et al. (2019) and Vu et al.
(2020) for a deeper understanding of related con-
cepts. First, TASK embeddings view the entire
model as a real-valued vector with the total num-
ber of dimensions equal to the number of model
parameters. During training, each dimension of
this vector reflects how much a parameter changes
or, is affected during backpropagation. In other
words, each dimension tracks the gradient of the
loss function w.r.t. each parameter. However, for
extremely large models, the TASK embedding can
become unmanageably high dimensional. Thus, to
compress the feature space, they employ the Fisher
information matrix (Ly et al., 2017) to retain the
top-N parameters which have the most impact on
model performance and by extension the task it-
self. For TASK embeddings, the dataset semantics
are secondary to the actual task itself, i.e., as long
as the two tasks are similar, their corresponding
embeddings will be similar even if they deal with
different domains.

H Note on Force-Directed Algorithm

FDA is used to build graphs. However, since we
only have a single focal point (SQuAD) and all
other datasets are evaluated w.r.t it, it does not make
sense to have a graph with just four outgoing edges
from a single node. Thus, we use a bar chart for
clarity. Also, it should be noted that we kept the
values as is without normalization too [0, 1], for
better visualization.

I Dataset Perplexity Background

When training a language model, PPL is used to
gauge how well it understands unseen corpora. Per-
plexity can be understood from various points. In-
tuitively, it indicates how perplexed or confused
the model is by the test data. In other words, given

a sequence of tokens, PPL measures how likely
(probable) the model believes it is grammatically
and semantically. Lower PPL on a corpus indicates
a well-trained model.

Typically, PPL has been used to describe the per-
formance of causal language models (predicting
future tokens given the preceding context). How-
ever, the definition can just as easily be extended to
MLM (BERT) style models12. Formally, perplexity
of a sequence of tokens X = (x0 . . . xt) is given
in eq. (3). Accordingly, it computes the average
log probability over the entire sequence of tokens.
This value is negated to shift the score to a positive
scale and exponentiated for better readability of
very small values.

PPL(X) = exp

{
−1

t

t∑
i=0

log pθ(xi|x<i)

}
(3)

J Software

All of our code and datasets are available
at https://github.com/saptarshi059/
generalization-hypothesis.

K Why aren’t Causal LMs evaluated in
section 3.2.1?

This point was raised by a reviewer during the re-
view process. We provide our clarification as fol-
lows,

This is a fair question. We can certainly evaluate
them. However, the focus was on models that were
already trained to predict a certain answer length.
Thus, we investigate whether they overfit it or are
capable of generalizing to longer spans. As the
generation length of autoregressive LLMs can be
controlled, we felt their inclusion here was against
the point. That said, we do test their other aspects
in later sections (App. E/F).

12The HuggingFace library (Wolf et al., 2020) computes the
PPL of both model types in the same way: https:
//huggingface.co/docs/transformers/
en/perplexity, https://huggingface.
co/learn/nlp-course/en/chapter7/3#
fine-tuning-distilbert-with-accelerate

https://github.com/saptarshi059/generalization-hypothesis
https://github.com/saptarshi059/generalization-hypothesis
https://huggingface.co/docs/transformers/en/perplexity
https://huggingface.co/docs/transformers/en/perplexity
https://huggingface.co/docs/transformers/en/perplexity
https://huggingface.co/learn/nlp-course/en/chapter7/3#fine-tuning-distilbert-with-accelerate
https://huggingface.co/learn/nlp-course/en/chapter7/3#fine-tuning-distilbert-with-accelerate
https://huggingface.co/learn/nlp-course/en/chapter7/3#fine-tuning-distilbert-with-accelerate

	Introduction
	Problem Formulation
	Evaluating EQA models

	Experiments and Results
	Models and Datasets
	Model Perspective
	Predicted Answer Length Analysis
	Examining Polysemy of Domain Terms
	Architecture Examination

	Dataset Perspective
	Impact of Dataset Similarity on Transferability
	Model Perplexity v/s Performance


	Related Work
	Conclusion
	Datasets and Models
	Datasets/Domains Studied
	Models Tested

	Categorical Answer Length Analysis
	Benefits of encoder models (BERT)
	BERT configurations tested

	Testing ChatGPT
	Instruction Templates and autoregressive LLM testing setup
	Limitations of autoregressive LLMs for EQA
	TEXT/TASK Embedding Background
	Note on Force-Directed Algorithm
	Dataset Perplexity Background
	Software
	Why aren't Causal LMs evaluated in section 3.2.1?

