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Abstract

Current rumor detection methods based on
propagation structure learning predominately
treat rumor detection as a class-balanced clas-
sification task on limited labeled data. How-
ever, real-world social media data exhibits an
imbalanced distribution with a minority of ru-
mors among massive regular posts. To ad-
dress the data scarcity and imbalance issues, we
construct two large-scale conversation datasets
from Weibo and Twitter and analyze the do-
main distributions. We find obvious differences
between rumor and non-rumor distributions,
with non-rumors mostly in entertainment do-
mains while rumors concentrate in news, in-
dicating the conformity of rumor detection
to an anomaly detection paradigm. Corre-
spondingly, we propose the Anomaly Detection
framework with Graph Supervised Contrastive
Learning (AD-GSCL). It heuristically treats un-
labeled data as non-rumors and adapts graph
contrastive learning for rumor detection. Ex-
tensive experiments demonstrate AD-GSCL’s
superiority under class-balanced, imbalanced,
and few-shot conditions. Our findings provide
valuable insights for real-world rumor detection
featuring imbalanced data distributions.

1 Introduction

Numerous studies (Bian et al., 2020; Cui and Jia,
2024) highlight the value of propagation structures
in revealing inter-post relations for rumor detection.
Datasets like Weibo (Ma et al., 2016), DRWeibo
(Cui and Jia, 2024), Twitter15, Twitter16 (Ma et al.,
2017), and PHEME (Zubiaga et al., 2017) are uti-
lized, containing source posts and replies. Propaga-
tion structure based methods convert a claim into
a tree structure, with source posts as roots, replies
as nodes, and reply relations as edges (see Ap-
pendix A.1 for examples). Graph Neural Networks
(GNNs) then learn this tree to detect authenticity.

*Corresponding author.

Contemporary rumor detection methods based
on propagation structure learning typically treat
rumor detection as a classification task, predomi-
nantly run on small-scale, class-balanced datasets.
However, these techniques encounter several pre-
vailing challenges: (1) Owing to effective post-
screening measures conducted by social media plat-
forms, numerous rumor posts are promptly iden-
tified and eradicated upon their publication. This
results in difficulties in securing a sufficiently large
corpus of labeled data; (2) Practically, rumor detec-
tion on social media platforms inherently entails
the identification of a relatively minute quantity of
rumor posts within a massive pool of posts, the
vast majority of which are non-rumors. Therefore,
the extant paradigm, founded on class-balanced
classification tasks, lacks alignment with the gen-
uine application scenarios; (3) Posts circulating on
social media platforms traverse multiple diverse
domains, each showcasing unique characteristics.
Consequently, the data cross-domain nature intro-
duces added complexities to the task. Our ambition
is to address these three predominant issues.

In this study, we initially construct two large-
scale unlabeled conversation datasets from Weibo
and Twitter using web crawler, aligning with real-
world data distributions. We then investigate the
domain distribution of data on these platforms. Our
findings lead us to heuristically frame rumor detec-
tion as an anomaly detection task rather than a con-
ventional class-balanced classification task, more
accurately reflecting real-world scenarios. Specif-
ically, we propose the Anomaly Detection frame-
work with Graph Supervised Contrastive Learning
(AD-GSCL). Guided by our findings, AD-GSCL
treats large-scale unlabeled data as non-rumor and
smartly upgrades existing graph contrastive learn-
ing methods (Khosla et al., 2020; Sun et al., 2019)
to adapt to rumor detection’s domain distribution.

In summary, this study contributes as follows:
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• We built two large-scale unlabeled conversa-
tion datasets to mitigate labeled data scarcity.

• We analyze social media’s data domain distri-
bution, highlighting significant discrepancies
between rumor and non-rumor class data.

• We propose AD-GSCL, which employs an
anomaly detection framework to align with
real-world scenarios.

• Experiments demonstrate AD-GSCL’s supe-
rior performance in multiple scenarios.

2 Related Work

In this section, we review the related works on
rumor detection and graph contrastive learning.

2.1 Rumor Detection
Early studies in rumor detection used traditional
classification with hand-crafted features (Castillo
et al., 2011; Zhao et al., 2015; Vicario et al., 2019).
Deep learning’s success has spawned numerous
methods that significantly enhance rumor detection
performance. These methods can be roughly di-
vided into four classes, including time-series based
methods (Yu et al., 2017; Lu and Li, 2020; Bing
et al., 2022) which model text content or user pro-
files as time series, propagation structure learning
methods (Ma et al., 2018; Ma and Gao, 2020; Cui
and Jia, 2024; Qiao et al., 2024) which consider the
propagation structures of source claims and their
replies, multi-source integation methods (Karimi
et al., 2018; Yuan et al., 2019; Huang et al., 2020;
Birunda and Devi, 2021) which combine multiple
resources of rumors including post content, user
profiles, heterogeneous relations between posts and
users, multi-modal fusion methods (Jin et al., 2017;
Zhou et al., 2020; Peng and Xintong, 2022) which
use posts’ content and their related images to de-
bunk rumors.

Propagation information’s role is increasingly
acknowledged. Numerous state-of-the-art (SOTA)
models (Lin et al., 2021; Sun et al., 2022b) bank
on learning the representations of rumor propaga-
tion trees utilizing GNNs. Traditional approaches
treat rumor detection as a class-balanced task, di-
verging from real-world scenarios. Recent studies
recognize the inherent data imbalance in practical
settings and use large volumes of unlabeled data
through anomaly detection or Positive-Unlabeled
(P-U) learning frameworks. For example, Tam et al.
(2019) unveiled a multi-modal approach that was

capable of incrementally processing platform data
streams. Nguyen et al. (2021) formulated a detec-
tion schema predicated on anomaly signal scoring.
de Souza et al. (2021, 2022) leveraged P-U learn-
ing on heterogeneous networks. Moreover, Nguyen
et al. (2023) introduced an efficacious streaming
framework to comply with the latency bounds in-
herent in the real-time processing of large-scale
social media data streams. Nonetheless, these meth-
ods neglected to effectively employ the propaga-
tion structure from user feedback (i.e., comments).
In light of the above considerations, AD-GSCL
tackles imbalanced data distribution with anomaly
detection paradigm, learning from claim propaga-
tion structure information via GNNs, and adapting
SOTA graph contrastive learning for rumor detec-
tion.

2.2 Graph Contrastive Learning

Deep learning advancements have led to progress
in neural message passing algorithms (Gilmer et al.,
2017), which set new SOTA benchmarks in vari-
ous tasks (Kipf et al., 2018; Xie and Grossman,
2018; Chen et al., 2019) through supervised learn-
ing of graph representations. However, the chal-
lenge of acquiring labeled data has shifted focus
to graph self-supervised learning methods (Has-
sani and Khasahmadi, 2020; Zhu et al., 2021; Hou
et al., 2022), which utilize unlabeled data to learn
robust node or graph representations. Most of them
are graph contrastive learning methods including
methods based on mutual information (MI) maxi-
mization (Velickovic et al., 2019; Sun et al., 2019)
and graph augmentation (You et al., 2020, 2021).
The former are usually trained by maximizing the
MI between local representations and global rep-
resentation. The latter firstly use different graph
augmentation strategies to obtain different views of
a given graph, and then construct positive and neg-
ative samples. Finally, graph representations are
learned by minimizing the contrastive loss. These
methods provide powerful ways to extract the dis-
criminative features from rumor propagation trees.
In order to adapt to different types of graph datasets,
there are also some researches on adaptive graph
augmentation (Zhu et al., 2021; You et al., 2021;
Yin et al., 2022), which are able to automatically
select optimal augmentation strategies for different
datasets. AD-GSCL does not necessitate the design
of intricate network architectures. Rather, it com-
bines the existing supervised contrastive learning
(Khosla et al., 2020) and unsupervised contrastive
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learning (Sun et al., 2019) paradigms, and inno-
vates upon these frameworks in alignment with the
domain distribution of the datasets.

3 Analysis on Domain Distribution

Social media platforms, striving for a healthy net-
work environment, regulate posts via automated
and manual methods. The prompt removal of de-
tected rumors results in a scarcity of rumor data,
reflecting in the limited size of labeled datasets
(Table 1). In our study, we reviewed the most re-
cent 500 user-reported rumors displayed on Weibo
rumor-refutation platform1 from July 29, 2023, to
April 5, 2024. Out of these, only 84 corresponding
source posts remained undeleted. This indicates
that social platforms like Weibo are very stringent
in the control of rumors and misinformation.

For the issue of scarce labeled data, unsuper-
vised or semi-supervised methods serve as apt so-
lutions, as they harness massive unlabeled data to
learn unsupervised representations. Several stud-
ies have embarked on rumor detection leveraging
large-scale data streams from social media plat-
forms for semi-supervised rumor detection (Tam
et al., 2019; Nguyen et al., 2021, 2023), how-
ever, such streams typically do not include the
propagation structure information. We utilized
web crawlers to create two large-scale unlabeled
datasets from Weibo and Twitter, termed Unlabeled
Weibo (UWeibo) and Unlabeled Twitter (UTwit-
ter). These datasets, derived from trending posts
on both platforms, include complete claim propa-
gation structures. Dataset construction details are
in Appendix A.2, and Table 1 presents the statistics
of the datasets harnessed in our study.

The intricate nature of the real world ensures
that social posts cross multiple domains (like sport,
science, culture, etc.), with substantial disparity in
attributes and content structures among these do-
mains (Lin et al., 2022; Ran and Jia, 2023). The
inability of rumor detection models to efficaciously
adapt to these domain-specific differences will
markedly influence their performance. We utilize
two unlabeled datasets and several labeled datasets
to investigate the domain distributions of social
media data and varying data classes. Specifically,
we further divide major social media domains into
three sections: (1) Entertainment Section: This
includes domains unlikely to propagate misinfor-
mation or rumors, like personal life sharing, sports.

1https://service.account.weibo.com/?type=5

Most social media domains reside within this sec-
tion. These domains typically contain less sensi-
tive content with minimal public opinion impact.
Their authenticity is usually non-controversial. (2)
Knowledge Section: This covers domains dissemi-
nating knowledge across various fields like popular
science, healthcare. Posts here often share specific
knowledge, sometimes containing misinformation
or falsified details. (3) News Section: This includes
domains focusing on news content (e.g., social, fi-
nancial news). These posts are often news-oriented,
occasionally containing rumors.

For Weibo platform data, we ran web scraping
to extract domain labels, enabling us to statistically
analyze the domain and section distribution. Our
statistical analysis of the domain and section distri-
bution of UWeibo dataset is presented in Figure 1,
providing an insight into the typical content struc-
ture of trending posts on Weibo platform. We also
scrutinize the section distribution of non-rumor and
rumor classes within Weibo dataset, as depicted in
Figure 2. From this analysis, we discern that: (1)
A significant majority of posts in UWeibo reside
in Entertainment section (82.41%), with a substan-
tial proportion of these being personal life sharing
content (57.79%), which is also consistent with
the main purpose of social media platforms; (2) A
marked discrepancy is observed in the section dis-
tribution between the non-rumor and rumor classes
in Weibo dataset, with the non-rumor class predom-
inantly in Entertainment section (85.26%), whereas
the Rumor class primarily features in News section
(66.67%); (3) The section distribution of unlabeled
data in UWeibo is very similar to the non-rumor
in Weibo, i.e. most posts belong to Entertainment
section that is less likely to generate rumors.

Informed by the aforementioned survey and
some intuitive considerations, we determined a
pivotal configuration in AD-GSCL, namely, the
heuristic treating of unlabeled data from UWeibo
and UTwitter as the non-rumor class. We justify
this decision based on: (1) Intuitively, social media
platforms monitor and regulate posts from users,
so rumor posts can be deleted after being detected,
thus rarely appearing among trending posts; (2)
A considerable portion of trending platform posts
often come from high-follower-count users, thus
their credibility is ensured to some extent; (3) The
majority of UWeibo belongs to Entertainment sec-
tion that is less likely to generate rumors, and its
section distribution is highly consistent with the
non-rumor class. Moreover, data may be classified

https://service.account.weibo.com/?type=5
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Statistic Weibo DRWeibo Twitter15 Twitter16 PHEME UWeibo UTwitter
language zh zh en en en zh en
labeled True True True True True False False
# claims 4664 6037 1490 818 6425 209549 204922

# non-rumors 2351 3185 374 205 4023 - -
# false rumors 2313 2852 370 205 638 - -
# true rumors - - 372 207 1067 - -

# unverified rumors - - 374 201 697 - -
# avg reply 803.5 61.8 50.2 49.1 15.4 45.0 83.9

# avg shallow (≤ 2) reply 692.2(86%) 59.1(95%) 41.4(83%) 37.6(76%) 10.8(70%) 46.6(92%) 70.0(85%)
# avg deep (> 2) reply 111.2(14%) 2.7(5%) 8.7(17%) 11.5(24%) 4.6(30%) 4.0(8%) 12.5(15%)

Table 1: Statistics on the distribution of dataset classes and node depth.

in a more fine-grained manner, such as Non-Rumor,
True Rumor, False Rumor, and Unverified Rumor.
To substantiate whether unlabeled data can be as-
signed to classes other than non-rumor, we also
examined the data distribution of UTwitter and the
section distributions of different classes in Twit-
ter15 and Twitter16 (see Appendix A.3). This anal-
ysis reveals a similar section distribution in UTwit-
ter to UWeibo (with Entertainment section posts
being predominant), and that the section distribu-
tion of the non-rumor class significantly diverges
from the other three rumor classes in Twitter15
and Twitter16, while being highly consistent with
the UTwitter section distribution. These auxiliary
findings underscore the broader applicability of our
survey results across diverse platforms and support
the rationale of designating unlabeled data as non-
rumor. By adopting this configuration, AD-GSCL
frames rumor detection within an anomaly detec-
tion paradigm—identifying the minority of rumor
data (anomalous samples) within the majority of
non-rumor data (normal samples).

4 Method

In this section, we present the design of AD-GSCL.

4.1 Notation

Rumor detection is a graph classification task
whose goal is to predict the class of labeled claims
with conversation context. Specifically, we denote
the labeled claim set as CL = {c1, c2, · · · , cNL

}.
Each claim c = (y,G) consists of its ground truth
label y ∈ {N,R} (i.e., Non-Rumor or Rumor)
or fine-grained label y ∈ {N,F, T, U} (i.e., Non-
Rumor, False Rumor, True Rumor, Unverified Ru-
mor) and its conversation context modeling as a
propagation graph G = (V,E), where V and E
represent the set of nodes and edges, respectively.
The set of propagation graphs corresponding to la-

beled claims is GL = {G1, G2, · · · , GNL
}. The

initial feature matrix corresponding to V is X ∈
R|V |×dx , and dx is the feature vector dimension.
The initial feature of node can be selected widely
such as Word2vec (Mikolov et al., 2013), tf-idf
features, or vectors extracted from pre-trained lan-
guage models (Liu et al., 2019; Clark et al., 2020).
In addition, we denote the unlabeled claims set
as CU = {cNL+1, cNL+2, · · · , cNL+NU

}. There is
no corresponding y for unlabeled claims, but only
the propagation structure G for each claim. The
propagation graph set corresponding to unlabeled
claims is GU = {GNL+1, GNL+2, · · · , GNL+NU

}.
Our goal is to learn high-quality representations
of graphs in GL and GU , simultaneously train a
classifier to predict the class of claims in CL.

4.2 Framework

AD-GSCL solely requires modification and integra-
tions of existing contrastive losses, bypassing the
need for intricate architectural designs. All claims
within the unlabeled dataset are treated as non-
rumor instances. Given the cross-domain nature
of non-rumor claims, we refrain from constructing
positive samples between non-rumor claims within
the supervised contrastive loss. Hence, to secure
a good representation of non-rumor instances, we
employ unsupervised contrastive loss to learn the
non-rumor samples within our unlabeled dataset.
The framework of AD-GSCL is shown in Figure 3.

4.3 Supervised Contrastive Learning

In AD-GSCL, rumor data is sourced from labeled
benchmark datasets, whereas non-rumor data de-
rives from both labeled and unlabeled datasets. AD-
GSCL employs supervised contrastive learning to
enhance the inter-class representation dissimilarity
and intra-class representation similarity of different
class claims in the feature space. Specifically, we
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(a) Domain (b) Section

Figure 1: Domain and section distribution of posts on UWeibo dataset. E, K, and N represent the three sections.

(a) Non-Rumor (b) Rumor

Figure 2: Post section distribution on Weibo dataset.

designate the claims within each class, excluding
those from non-rumor classes, as positive samples
for each other, whereas claims spanning different
classes are treated as negative samples. Notably,
non-rumor class claims are not deemed as positive
samples. The rationale behind this methodology of
positive sample construction is backed by our sur-
vey findings depicted in Figure 1. The UWeibo data
mainly belongs to Entertainment section. The vast
majority of domains in social media belong to this
section, indicating that the UWeibo data has very
broad cross-domain characteristics. Consequently,
it would be unreasonable to pull these data with
severe cross-domain issues closer together as posi-
tive samples in the feature space. In contrast, rumor
claims tend to mainly fall under News section and
to a lesser extent, Knowledge section. These sec-
tions typically feature a smaller number of domains,
thus implying a lesser degree of cross-domain char-
acteristics. Moreover, user replies to rumor claims
frequently exhibit stronger stances and emotional
expressions (Ma et al., 2018; Wei et al., 2021), thus
yielding more prominent domain invariant features.
Consequently, the construction of positive samples
for the supervised contrastive loss in AD-GSCL

relies solely on these rumor claims.
Specifically, for labeled dataset CL and unla-

beled dataset CU , the graph representation of a
propagation graph G ∈ GL∪GU obtained by GCN
encoder (Kipf and Welling, 2016) is denoted as hG.
The supervised contrastive loss is

Lscl(CL ∪ CU ) =

− 1

|GL
R|

∑
G∈GL

R

log

{
1

|P (G)|

∑
Gp

exp(sim(hG, hGp)τ)∑
Gn

exp(sim(hG, hGn)τ)

}
,

(1)

where GL
R is the set of rumor class claim propa-

gation graphs in dataset CL; p ∈ P (G) and n ∈
N(G) are indices of positive and negative samples
respectively; P (G) ≡

{
p : Gp ∈ GL, yGp = yG

}
and N(G) ≡

{
n : Gn ∈ GL ∪GU , yGn ̸= yG

}
are the sets of positive and negative sample in-
dices respectively; sim(·) is the cosine similarity;
τ ∈ R+ is a scalar temperature parameter.

4.4 Anchor Representation Learning
Supervised contrastive learning primarily aims to
use massive non-rumor claims (normal samples) as
anchor samples, reducing the similarity between
the representations of rumor claims (anomalous
samples) and anchor samples in feature space,
thereby aiding rumor classification. Consequently,
learning robust representations for anchor samples
is crucial. We previously asserted that increas-
ing the representation similarity among non-rumor
claims by considering them as mutual positive sam-
ples in supervised contrastive learning may not be
logical, given the diverse domains these claims may
originate from. Consequently, we resort to unsuper-
vised contrastive learning in AD-GSCL to learn the
representations of anchor samples. In particular, a
graph contrastive learning approach based on MI
maximization (Sun et al., 2019) has been employed.
The positive samples of unsupervised contrastive
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Figure 3: The framework of AD-GSCL.

learning are derived from both global and local rep-
resentations of an individual instance, ensuring the
absence of amplified representation similarity be-
tween claims of divergent domains. As reported in
Table 1, most nodes are located at shallow positions
in the propagation tree of claims in social media,
i.e., they are very close to the root node. During the
forward propagation in GNN, nodes aggregate their
k-hop neighborhood nodes features (Gilmer et al.,
2017; Kipf and Welling, 2016). In AD-GSCL, we
employ the bottom-up propagation tree, so the root
node can aggregate the features of most nodes in
the graph. Therefore, we directly use the root rep-
resentation as the global representation to compute
the MI maximization contrastive loss with node
representations, which is another specific design in
AD-GSCL. Since it is crucial for rumor detection
to model the interaction between source posts and
replies (Bian et al., 2020; Sun et al., 2022b), this
design that emphasizes the importance of the root
node is more suitable for this task.

Specifically, for a claim in CU with propagation
tree G = (V,E), the node representations and the
corresponding root representation obtained from
the encoder are denoted as hv (v ∈ V ) and hr. We
use Jensen-Shannon MI estimator (Nowozin et al.,
2016) to calculate the MI as below.

I(hv(G);hG) := EP[−sp(−T (hv(G), hr(G))]

−EP×P̃[sp(T (hv(G
′
), hr(G)))],

(2)

where P is the distribution followed by GU ; G is
an input graph sampled from P; G

′
is a negative

sample sampled from P̃ = P; T is a discrimina-
tor; sp(z) = log(1 + ez) is the softplus function.
In practice, we use all combinations of root rep-
resentations and node representations of all graph
instances within a batch to generate negative sam-
ples. The unsupervised contrastive loss on CU is

Lucl(CU ) = − 1

NU

∑
G∈GU

∑
v∈V

I(hv(G);hr(G)). (3)

Algorithm 1 Pre-training Strategy Optimization

Input: initial model parameter θ(0), pre-training
step N , fine-tuning step M .

Output: optimized model parameter θ(N+M).
1: // Pre-training on CU .
2: for n = 1 to N do
3: Minimize Lpre to update θ(n).
4: end for
5: // Fine-tuning on CL and CU .
6: for m = 1 to M do
7: Minimize Lft to update θ(N+m).
8: end for
9: return θ(N+M).

4.5 Training Strategy

AD-GSCL can be trained with pre-training strategy
and semi-supervised strategy. Different training
strategies will minimize Lsup(CL), Lscl(CL∪CU )
and Lucl(CU ) in different ways.

4.5.1 Pre-Training Strategy
AD-GSCL can be pretrained on unlabeled dataset
CU to minimize Lucl(CU ). The process is aimed at
learning more robust representations of non-rumor
claims so that they can better serve as anchors:

Lpre = Lucl(CU ). (4)

AD-GSCL will continue to minimize Lscl(CL ∪
CU ) after pre-training to learn discriminative fea-
tures of different class claims, and also mini-
mize cross-entropy classification loss Lsup(CL),
in which Lscl(CL ∪ CU ) is a regularization term.
This process is similar to fine-tuning, whose loss is

Lft = Lsup(CL) + λ · Lscl(CL ∪ CU ), (5)

where λ is an adjustable hyperparameter. The
whole process is shown in Algorithm 1.
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4.5.2 Semi-Supervised Strategy
AD-GSCL uses the combination of all the loss func-
tions for semi-supervised learning. In this case,
Lsup(CL) is the main loss, Lscl(CL ∪ CU ) and
Lucl(CU ) are regularization terms, then the loss
function of semi-supervised training strategy is

Ltotal = Lsup(CL) + α · Lscl(CL ∪ CU )

+β · Lucl(CU ),
(6)

where α and β are adjustable hyperparameters.

5 Experiments

We present main experiments in this section. See
Appendix C for further Evaluations.

5.1 Experimental Settings
We conducted experiments on datasets Weibo, DR-
Weibo, Twitter15, Twitter16, and PHEME. Table 1
shows the statistics of all the datasets. UWeibo and
UTwitter are available at https://github.com/
CcQunResearch/UWeibo and https://github.
com/CcQunResearch/UTwitter.

We compare with the following baselines:
PLAN (Khoo et al., 2020) uses Transformer ar-

chitecture to detect rumors.
BiGCN (Bian et al., 2020) leverages two bidi-

rectional GCN encoders and root node feature en-
hancement strategy.

GACL (Sun et al., 2022b) utilizes contrastive
learning and adversarial training to classify rumor.

DDGCN (Sun et al., 2022a) can model multiple
types of information in one unified framework.

RAGCL (Cui and Jia, 2024) uses contrastive
learning with adaptive data augmentation.

Experiment setting details are in Appendix B.
Weibo and DRWeibo datasets are used alongside
UWeibo, and Twitter15, Twitter16, and PHEME
are paired with UTwitter. The code is at https:
//github.com/CcQunResearch/AD-GSCL.

5.2 Class-Balanced Classification
We conducted classification experiments on class-
balanced datasets of Weibo, DRWeibo, Twitter15,
and Twitter16, maintaining class-balanced test sets.
Average results from 10 random splits of labeled
datasets are reported in Table 2 and 3. We evalu-
ated AD-GSCL’s performance under two training
strategies: pre-training (‘p’) and semi-supervised
training (‘s’). AD-GSCL outperformed the com-
pared baseline methods across all datasets, achiev-
ing an accuracy improvement of 1.2-2.8%. PLAN,

using the Transformer architecture, underperform
and consume significant GPU resources, highlight-
ing the need for GNN architecture. While GACL,
utilizing BERT (Devlin et al., 2018) for initial fea-
ture extraction, exhibits negligible improvement
over other baselines. This observation suggests
that the mechanism of initial feature extraction
might be less critical to rumor detection models
compared to the high-level model’s capacity to
learn node interactions. Traditional methods us-
ing GNNs and contrastive learning face issues like
overfitting, over-smoothing, and cross-domain dis-
crepancies on limited-scale datasets. In stark con-
trast, AD-GSCL utilizes large-scale unlabeled data
to mitigate the limitations of small data scale, ad-
justs the data distribution to align with real-world
scenarios, and addresses cross-domain discrepan-
cies, thus contributing to improved performance.

5.3 Class-Imbalanced Classification

To validate the efficacy of AD-GSCL in practical
applications, we ran class-imbalanced experiments.
The class-imbalanced PHEME was selected for the
tests. Moreover, to construct class-imbalanced test
sets for Weibo and DRWeibo, we expanded the non-
rumor class scale by incorporating 3% of UWeibo
data (which is excluded from training) into these
two dataset’s test sets. The results are shown in Ta-
ble 4, including the Area Under the Curve (AUC)
and macro F1 score. AD-GSCL outperformed base-
line methods, showing enhanced adaptability to
real-world scenarios due to our design catering to
real-world data domain distribution. AD-GSCL
shows a larger improvement over baseline methods
in class-imbalanced scenarios compared to class-
balanced scenarios. We posit that rumor detection
research should utilize datasets reflecting actual
data distributions, as it’s essential for developing
effective models that perform efficiently in real-
world environments. From our experiments, we
noted that the semi-supervised strategy performs
better under class-balanced conditions, while the
pre-training strategy proves more effective under
class-imbalanced conditions. Therefore, the class
distribution within a dataset can significantly guide
the selection of the training strategy.

5.4 Ablation Study

Some ablation studies have been performed to ex-
amine the role of various loss components and un-
labeled data, as shown in Table 5. Experiments
were conducted under class-balanced condition and

https://github.com/CcQunResearch/UWeibo
https://github.com/CcQunResearch/UWeibo
https://github.com/CcQunResearch/UTwitter
https://github.com/CcQunResearch/UTwitter
https://github.com/CcQunResearch/AD-GSCL
https://github.com/CcQunResearch/AD-GSCL
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Method Class Weibo DRWeibo
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

PLAN
R

91.5±0.7
90.8 92.3 91.5

78.8±0.5
78.6 76.0 77.1

N 92.3 90.7 91.4 79.3 81.3 80.2

BiGCN
R

94.2±0.8
91.9 96.8 94.2

86.6±1.0
86.9 84.9 85.8

N 96.7 91.8 94.2 86.3 88.2 87.2

GACL
R

93.8±0.6
93.6 94.0 93.8

87.0±0.9
86.5 85.6 86.0

N 94.0 93.6 93.8 87.4 88.2 87.8

DDGCN
R

94.8±0.4
92.4 97.9 95.1

87.8±0.5
87.2 86.4 86.8

N 97.6 91.7 94.6 88.3 89.1 88.7

RAGCL
R

95.9±0.4
95.3 96.5 95.9

89.4±0.4
89.4 87.7 88.5

N 96.6 95.4 96.0 89.5 90.9 90.2

AD-GSCL(p) R 97.1±0.2
96.9 97.1 97.0

91.3±0.4
91.6 89.6 90.6

N 97.2 97.0 97.1 91.2 92.9 92.0

AD-GSCL(s) R
97.0±0.3

96.7 97.1 96.9 92.2±0.3
92.3 90.7 91.5

N 97.2 96.8 97.0 92.1 93.5 92.8

Table 2: Weibo and DRWeibo experimental results on class-balanced test sets.

Method
Twitter15 Twitter16

Acc. N F T U Acc. N F T U
F1 F1 F1 F1 F1 F1 F1 F1

PLAN 81.9±0.4 83.9 85.4 81.7 75.9 84.3±0.5 85.5 85.1 85.8 80.5
BiGCN 84.4±0.5 85.6 84.4 86.3 80.9 88.0±0.9 79.3 91.2 94.7 84.9
GACL 84.6±0.7 85.9 84.5 86.6 81.2 89.1±0.4 80.2 92.9 94.5 87.2

DDGCN 83.5±0.6 84.0 85.0 85.6 79.1 89.3±0.4 80.7 93.1 94.6 87.1
RAGCL 85.9±0.5 88.3 85.9 85.1 83.7 90.0±0.3 83.1 91.8 95.8 87.7

AD-GSCL(p) 86.7±0.5 90.2 88.3 84.6 83.1 90.8±0.3 82.8 93.5 95.6 89.7
AD-GSCL(s) 87.4±0.4 88.6 89.1 88.1 83.6 91.3±0.3 84.5 92.6 97.9 89.3

Table 3: Twitter15 and Twitter16 experimental results on class-balanced test sets.

Method Weibo DRWeibo PHEME
AUC F1 AUC F1 AUC F1

PLAN 84.5 86.6 79.0 83.2 64.5 67.1
BiGCN 93.5 93.0 80.5 87.1 76.5 78.5
GACL 89.6 91.7 82.0 86.8 74.0 78.2

DDGCN 90.4 93.6 79.6 86.5 77.5 79.1
RAGCL 91.8 92.2 79.4 83.6 74.4 78.5

AD-GSCL(p) 96.7 95.6 90.6 92.1 78.1 82.3
AD-GSCL(s) 96.2 96.0 89.6 91.7 78.0 81.8

Table 4: Results on class-imbalanced test sets.

semi-supervised strategy. The results show that the
supervised contrastive loss and unlabeled data can
improve the performance of GNNs. The unsuper-
vised contrastive loss can further improve perfor-
mance by making massive non-rumor class claims
serve as better anchors. These results demonstrate
that the modifications made to existing graph con-
trastive losses in AD-GSCL make it better suited
for the domain distribution in rumor detection.

Lscl Lucl Unlabeled Data Dataset
Weibo DRWeibo

93.2±0.6 86.5±0.7

✓ 95.2±0.7 89.8±0.6

✓ ✓ 96.1±0.5 91.1±0.4

✓ ✓ ✓ 97.0±0.3 92.2±0.3

Table 5: The influence of loss and unlabeled data.

5.5 Few-shot Rumor Detection

In a class-balanced setting, we tested BiGCN,
GACL, and AD-GSCL on Weibo dataset for few-
shot learning (Figure 4). As rumors are typically
removed once detected, the accumulation of a large-
scale labeled dataset becomes challenging, thereby
rendering the exploration of rumor detection in few-
shot settings as highly significant. Our experiments
were conducted with varying numbers of labeled
samples, denoted as k, including 10, 20, 40, 80,
100, 200, 300, and 500. An initial pre-training
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Figure 4: Results of few-shot experiments.

phase was conducted on UWeibo, followed by fine-
tuning on the labeled samples. The results suggest
that, even with a few labeled samples, AD-GSCL
can effectively utilize unlabeled data to learn supe-
rior claim representations. This leads to apprecia-
ble performance, reinforcing the potential utility of
AD-GSCL in practical, data-scarce scenarios.

6 Conclusion

In this study, we analyzed the distribution charac-
teristics of rumor detection datasets and real scenar-
ios. We introduced AD-GSCL, adapting graph con-
trastive learning for rumor detection. Our extensive
experiments demonstrated AD-GSCL’s superiority
over baselines. The proposed paradigm provides
an impactful approach and modeling strategies for
handling imbalanced distributions.

Ethical Statement

In this research, we place a high emphasis on ethi-
cal considerations. We utilized web crawling tools
to collect data from publicly posted content by
users on the Weibo and Twitter platforms, which is
visible to any user of these platforms. We will pro-
cess the final public data by removing personally
identifiable information to ensure that no individual
can be identified from our dataset. We explicitly
state that the sole purpose of collecting and ana-
lyzing data is for academic research, aimed at im-
proving the quality of information on social media
and reducing the spread of rumors. By employing
semi-supervised learning methods, we are able to
enhance the performance of models under condi-
tions of scarce labeled data, which holds significant
academic and social value for rumor detection re-
search. We commit to adhering to ethical principles
throughout the research process, ensuring that the
conduct of the research complies with legal require-
ments and moral standards, and treating our data,

participants, and society with responsibility.

Limitations

AD-GSCL is a semi-supervised method that applies
large-scale unlabeled datasets. Compared with the
existing methods based on propagation structure
learning, it needs to process more large-scale data,
so it will occupy more computing resources. Fur-
thermore, our research only investigated the dis-
tribution of data on social media platforms during
typical periods. However, in certain countries or
regions during special circumstances (such as pan-
demics, elections, or wars), the distribution of data
may change.
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A Dataset Construction and Statistics

In this section, we will elaborate on the construc-
tion of large-scale unlabeled datasets from the
Weibo and Twitter platforms, as well as the method-
ology employed for the statistical analysis of do-
main distributions within the datasets. Addition-
ally, we will supplement the domain distribution
statistics for UTwitter, Twitter15, and Twitter16
datasets.

A.1 Claim Propagation Trees

Figure 5 illustrates two examples of claim prop-
agation trees sourced from the Twitter platform.
In these examples, the responses to rumor claims
and non-rumor claims reveal notable differences in
both stance and sentiment. These characteristics
are crucial for effective rumor identification.

(a) Rumor (b) Non-rumor

Figure 5: Examples of propagation trees. Comments un-
der rumor thread typically express more heated stances.

A.2 Unlabeled Dataset Construction

For the UWeibo dataset, we employed web crawler
techniques to randomly collect trending posts and
their complete propagation structures from the
homepage of popular Weibo posts2. To ensure
the dataset’s integrity and independence from
platform recommendation algorithms, we utilized
multiple newly created accounts to extract data.
This approach aimed to mitigate potential biases
that might arise from the platform’s algorithms
and to reflect the genuine domain distribution
of social media content. Regarding UTwitter
dataset, we initially utilized multiple newly created
accounts to randomly follow high-follower count
influencers. Subsequently, we conducted random
crawling of posts and their propagation structures
from the Twitter homepage3. Due to the fact
that UTwitter dataset is exclusively sourced from
users with a substantial number of followers,

2https://weibo.com/hot/weibo/102803
3https://twitter.com/home

the authenticity of the posts is more likely to be
ensured. The data in the UTwitter dataset spans
from October 2022 to April 2023, while the data
in the UWeibo dataset covers from March 2022
to April 2023. The data is uniformly distributed
over time. The code for the web scraping
program can be found at https://github.com/
CcQunResearch/WeiboPostAndCommentCrawl
and https://github.com/CcQunResearch/
TwitterPostAndCommnetCrawl.

Due to the stringent regulation imposed by plat-
forms on the dissemination of rumors, acquiring
a sufficiently large-scale labeled dataset for rumor
detection proves to be exceptionally challenging.
Conversely, obtaining extensive amounts of unla-
beled data is relatively simpler, especially with the
availability of platform data APIs offered by certain
mainstream social media platforms (e.g., Twitter
API). Consequently, we posit that future research
should place greater emphasis on semi-supervised
rumor detection methods.

A.3 Domain Statistical Methodology
For the Twitter platform data, we manually per-
formed the statistical analysis of its distribution.
For UTwitter dataset, we specifically examined the
domain distribution of a subset comprising 1000
data instances. Additionally, we analyzed the sec-
tion distribution of the union of Twitter15 and Twit-
ter16 datasets. Given that these two datasets op-
erate at the event level(Wu and Hooi, 2022), with
multiple claims associated with the same event,
we implemented a deduplication process based on
overlapping claims and events found within the two
datasets.

The domain and section distributions for the
UTwitter dataset, as well as the section distribution
for the union of Twitter15 and Twitter16 datasets,
are illustrated in Figure 6 and Figure 7, respectively.
Specifically, similar to the domain distribution ob-
served on Weibo platform, the following trends
were identified: (1) As for UTwitter Dataset, the
majority of posts on the Twitter platform belong to
Entertainment section (79.11%), with a substantial
portion consisting of personal life-sharing content
(46.91%). (2) The section distribution between non-
rumor and rumor data in the labeled Twitter15 and
Twitter16 datasets shows significant differences.
Specifically, the posts in all three Rumor classes
are predominantly associated with News section
(77.78%, 77.05%, 86.84%). (3) The section distri-
bution of the unlabeled data in UTwitter exhibits

https://weibo.com/hot/weibo/102803
https://twitter.com/home
https://github.com/CcQunResearch/WeiboPostAndCommentCrawl
https://github.com/CcQunResearch/WeiboPostAndCommentCrawl
https://github.com/CcQunResearch/TwitterPostAndCommnetCrawl
https://github.com/CcQunResearch/TwitterPostAndCommnetCrawl
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striking similarity to the section distribution of non-
rumor data in Twitter15 and Twitter16. In other
words, the majority of posts in both cases belong
to Entertainment section that is less likely to gen-
erate rumors or misinformation. These statistical
findings further validate the rationale behind utiliz-
ing large-scale unlabeled data as non-rumor class
instances and provide an explanation for why it
is unreasonable to classify them as other Rumor
classes.

Indeed, the analysis of unlabeled data from
both Weibo and Twitter platforms reveals some
subtle differences. For instance, the presence of
sports-related posts is relatively lower on the Weibo
platform compared to the Twitter platform, while
history-related posts are more prevalent on Weibo
but less so on Twitter. These disparities could po-
tentially be attributed to cultural differences be-
tween the Eastern and Western regions. Cultural
variations play a significant role in shaping the con-
tent and user preferences on different social media
platforms. The observed differences in content
themes might reflect the diverse interests and pri-
orities of the respective user bases. Factors such
as language, geographic location, historical back-
ground, and societal norms can influence the types
of content shared and engaged with on social media
platforms.

B Experiment Details

In this section, we mainly introduce some specific
settings in our experiments, including the way of
data preprocessing and the hyperparameter config-
uration when training the model.

B.1 Data Preprocessing

For the texts in all datasets, we first standardize
the different fonts present in the texts, then iden-
tify user mentions and web/url links as special to-
kens, <@user> and <url>. Next, we use the Tweet-
Tokenizer from the NLTK toolkit and jieba word
segmentation engine to tokenize the raw texts in
English and Chinese datasets, respectively. Addi-
tionally, we use the emoji package4 to translate the
emojis in the texts into text string tokens.

B.2 Hyperparameter Configuration

All models are implemented by PyTorch and the
baseline methods are re-implemented. GACL uses
BERT (Devlin et al., 2018) to extract the initial

4https://pypi.org/project/emoji

feature vector of each post in the propagation
tree. In addition to GACL, other models use 200-
dimensional word2vec word embeddings (Mikolov
et al., 2013) as initial feature vectors.

We set the controlling hyperparameters for the
loss functions λ, α, and β uniformly to a small
value of 1e-3. The τ of supervised contrastive
loss is set to 0.3, while the batch size is set to
32, and the learning rate is set to 1e-3. The GCN
encoder consists of 3 layers, and we employ sum-
pooling for node representations to obtain graph
representation. We optimize the loss function using
the Adam optimizer (Kingma and Ba, 2014). The
entire training process for all models is conducted
on a single Nvidia GeForce RTX 3090 GPU.

Note that BiGCN and GACL employ early stop-
ping to observe the performance attainable by the
models. However, due to oscillations during the
early stages of model training, the observed model
performance becomes unstable. To ensure a fairer
comparison of different models’ performance, we
conduct experiments using the same dataset on
AD-GSCL and multiple baseline methods. Further-
more, all models are trained for 100 epochs until
convergence. We consider the average results of the
last 10 epochs among these 100 epochs as the sta-
ble results achievable by the models. This approach
helps mitigate the effects of training fluctuations
and provides a more reliable basis for comparing
the performance of the models.

C Supplementary Experiments

We conducted a series of additional ablation experi-
ments to delve into the impact of different modules
in AD-GSCL more comprehensively. Additionally,
we extended the few-shot experiments on DRWeibo
dataset.

C.1 Extended Ablation Study
We conducted a series of extended ablation exper-
iments to verify the influence of different factors
on the model performance. Experiments were con-
ducted under class-balanced condition and semi-
supervised training strategy.

C.1.1 Adaptation Measures
In order to enable the supervised contrastive learn-
ing method and the unsupervised contrastive learn-
ing method of MI maximization adopted by AD-
GSCL to adapt to the distribution and structural
characteristics of social media data, we have made
the following designs respectively: (1) Modified

https://pypi.org/project/emoji
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(a) Domain (b) Section

Figure 6: Distribution of post counts by domain and section on UTwitter dataset. E, K and N represent the three
sections Entertainment, Knowledge and News respectively.

(a) Non-Rumor (b) True Rumor (c) False Rumor (d) Unverified Rumor

Figure 7: Post section distribution on Twitter15 and Twitter16 dataset.

Weibo DRWeibo
AD-GSCL 97.0±0.3 92.2±0.3

w/ Standard SCL 95.4±0.6 89.4±0.5

w/ Standard MI Max. 95.9±0.4 90.5±0.4

Table 6: The influence of adaptation measures.

the process of constructing positive and negative
samples in standard supervised contrastive learning
(Khosla et al., 2020), restricting non-rumor data
from participating in positive sample construction;
(2) Changed the standard MI maximization con-
trastive loss (maximizing MI between node repre-
sentations and graph representations) to maximiz-
ing the MI between node representations and root
node representations. We explored the effects of
these two designs in Table 6. Experimental results
on Weibo and DRWeibo showed that both designs
improved model performance to some extent. This
indicates that for existing contrastive learning meth-
ods, adapting them according to the characteristics
of social media data when applying them to rumor
detection tasks is very important.

(a) Weibo (b) DRWeibo

Figure 8: The influence of information flow direction.

C.1.2 Graph Directionality

In Figure 8, we explored the effects of different
graph directionality on performance on Weibo and
DRWeibo datasets. The results show that undi-
rected graphs lead to performance degradation.
This may be because in the forward propagation of
GNNs, nodes densely connected at the root node
can see each other in their neighborhood views,
aggregating each other’s information and eventu-
ally losing the uniqueness of node features, caus-
ing over-smoothing. In contrast, top-down and
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Measures Weibo DRWeibo
JS 97.0±0.3 92.2±0.3

KL 96.6±0.6 92.0±0.4

DV 97.1±0.3 91.6±0.5

Table 7: The influence of MI estimators.

Figure 9: Results of few-shot experiments.

bottom-up directed graphs can effectively block
excessive information flow between nodes at the
root. For AD-GSCL, since we use the root node
representation as the global representation in unsu-
pervised training, we adopt a bottom-up directed
graph, which allows the root node to aggregate
features from most nodes in the graph.

C.1.3 Mutual Information Estimators
We investigated the effects of MI measures in unsu-
pervised training on Weibo and DRWeibo datasets,
with experimental results shown in Table 7. The
results demonstrate that AD-GSCL is relatively
robust to the choice of MI estimator. We select
the Jensen-Shannon MI estimator (Nowozin et al.,
2016) which gives the most stable performance.

C.2 Extended Few-shot Experiments
We conducted few-shot experiments on DRWeibo
dataset with the same settings as the Weibo dataset.
The experimental results are shown in Figure 9.
Similar results are observed on DRWeibo as on
Weibo dataset, that is, the fewer labeled samples,
the more significant improvement of AD-GSCL
over baselines. This demonstrates the superiority
of semi-supervised methods under few-shot condi-
tions.
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