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Abstract

There has been a surge of interest regarding
language adaptation of Large Language Mod-
els (LLMs) to enhance the processing of texts
in low-resource languages. While traditional
language models have seen extensive research
on language transfer, modern LLMs still ne-
cessitate further explorations in language adap-
tation. In this paper, we present a systematic
review of the language adaptation process for
LLMs, including vocabulary expansion, con-
tinued pre-training, and instruction fine-tuning,
which focuses on empirical studies conducted
on LLaMA2 and discussions on various set-
tings affecting the model’s capabilities. This
study provides helpful insights covering the en-
tire language adaptation process, and highlights
the compatibility and interactions between dif-
ferent steps, offering researchers a practical
guidebook to facilitate the effective adaptation
of LLMs across different languages.

1 Introduction

The popularity of Large Language Models
(LLMs), such as GPT-4 (OpenAI and et al.,
2024), LLaMA (Touvron et al., 2023a,b; Abhi-
manyu Dubey and et al., 2024), Mistral (Jiang et al.,
2023), and so on (Chowdhery et al., 2023; Jiang
et al., 2024; Li et al., 2023; Yang et al., 2023; Bai
et al., 2023), has witnessed skyrocketing increase
in recent years. It is worth noting that a vast ma-
jority of LLMs are primarily trained on English
corpus data, with only limited allocations to texts
in other languages. For example, in the training
corpus of LLaMA2 (Touvron et al., 2023b), En-
glish constitutes a substantial 89.7%, while other
prevalent languages, such as Chinese and French,
account for less than 0.2%. The dominance of En-
glish in training data can introduce language bias:
LLMs skew the performance towards English texts
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and show diminished effectiveness when process-
ing non-English languages (Navigli et al., 2023).

Training LLMs from scratch with a multilingual
balanced corpus entails several practical challenges.
Firstly, many non-English languages suffer from a
lack of sufficient high-quality data, often requiring
billions or even trillions of tokens across diverse
data types, such as web texts, books, articles, and
so on. Constructing such training data is crucial for
LLMs to achieve satisfactory performance (Shen
et al., 2023), necessitating substantial efforts from
experts in data collection and preprocessing. Sec-
ondly, the computational resources needed to train
LLMs from scratch can be unaffordable for many
organizations and research groups. Last but not
least, the linguistic diversity represented in the
corpus can bring unique complexities in training
LLMs (Conneau et al., 2019). The wide range of
linguistic rules and structures across different lan-
guages makes it much more challenging to develop
LLMs that are truly balanced and effective.

As a result, researchers (Jiang et al., 2023; Cui
et al., 2023) propose to apply language adaptation
techniques on the well-trained LLMs to enhance
their capacity in processing low-source languages.
Previous studies (Gogoulou et al., 2021; Zoph et al.,
2016; Lample and Conneau, 2019; Artetxe and
Schwenk, 2019; Conneau et al., 2019; Xue et al.,
2020) have made remarkable progress in transfer-
ring the ability of traditional language models, such
as BERT (Devlin et al., 2018), across languages
(a.k.a. cross-lingual transfer). However, due to
the differences in model architecture and train-
ing objectives between LLMs and traditional lan-
guage models, it remains an open question whether
these existing studies can be effectively adopted
for LLMs. Specifically, LLMs typically employ
causal language modeling as their training task, fol-
low a pretraining-alignment paradigm, and utilize
in-context learning for application. These tech-
nologies differ from those employed in traditional



7196

language models, which primarily focus on fine-
tuning classifiers for specific tasks.

To fulfill this gap, we systematically outline the
pipeline of language adaptation for LLMs, includ-
ing vocabulary expansion, continued pre-training,
and instruction fine-tuning. We conduct a com-
prehensive experimental study to analyze potential
training techniques and data construction methods
throughout the entire process, investigating the ef-
fects of these factors when performing language
adaptation on LLMs. Specifically, we conduct lan-
guage adaptation experiments on LLaMA2 (Tou-
vron et al., 2023b), focusing on the adaptation from
English to Chinese, and also supplementing our
study with adaptations to other non-English lan-
guages, including Italian, Thai, Portuguese, Ger-
man, French, and Japanese.

We provide helpful insights from the following
three perspectives:

• For vocabulary expansion, we experimentally
analyze the impact of vocabulary size and ini-
tialization methods on model performance,
highlighting the importance of these factors
in improving overall model performance.

• Regarding continued pre-training, we focus
on the constructions of training datasets, in-
vestigating the importance of source language
texts and the effects of translation texts;

• We explore the relationship between contin-
ued pre-training and instruction fine-tuning,
highlighting their compatibility. Besides, we
offer valuable insights on constructing effec-
tive instructions using both source language
instructions and translation instructions.

By conducting such a comprehensive empirical
study, we aim to provide the research community
with a practical guidebook for the language adap-
tation of LLMs, offering valuable insights and rec-
ommendations to assist researchers in effectively
transferring LLMs across various languages for
real-world applications.

2 Language Adaptation of LLMs

Drawing from previous studies (Artetxe et al.,
2019; Lample and Conneau, 2019; Zoph et al.,
2016; Zhu et al., 2023; Zhang et al., 2023), the
language adaptation pipeline for LLMs typically
consists of three key steps: vocabulary expansion,

continued pre-training (CPT), and instruction fine-
tuning (IFT), as illustrated in Figure 1. In this sec-
tion, we outline the challenges and open questions
associated with each step and provide correspond-
ing insights and discussions.

2.1 Vocabulary Expansion

The vocabulary maintains the token units used by
the tokenizer within the modern architecture of lan-
guage models, which is one of the critical factors
for the remarkable capability of LLMs to under-
stand and generate human-like text.

In language adaptation of LLMs, the vocabu-
lary of the source model is usually learned from
a dataset sampled from the training corpus, there-
fore it lacks the vocabulary of the target language.
For example, the vocabulary of LLaMA2 contains
32,000 tokens, of which only around 300 are Chi-
nese characters. Without containing enough Chi-
nese characters in the vocabulary, LLaMA2 has to
encode a single out-of-vocabulary Chinese char-
acter with 3-4 Unicodes that have very poor se-
mantic relevance. This phenomenon also exists in
other non-Latin languages, such as Thai, Russian,
Japanese and others. For other Latin languages
such as Italian, German, and French, using a vo-
cabulary trained only in English might also lead to
suboptimal model performance (Petrov et al., 2024;
Ahia et al., 2023).

As a result, vocabulary expansion techniques
are implemented in LLMs’ language adaptation
to enhance the model’s ability in processing the
target language, and to improve the encoding effi-
ciency. Specifically, a target-language vocabulary
is learned and merged with the original vocabulary
to form an expanded one. During the process of vo-
cabulary expansion, two crucial settings are worth
noting and should be carefully determined: the
number of expanded tokens and the initialization
of their token embeddings.

The Number of Expanded Tokens The effec-
tiveness of LLMs on target languages is closely re-
lated to the number of expanded tokens. On the one
hand, a small number of expanded tokens might
result in limited improvement brought by the vocab-
ulary expansion. On the other hand, a large number
of expanded tokens can cause a significant perfor-
mance drop without continued pre-training on the
corpus in target languages, and requires more train-
ing resources to achieve the model convergence.



7197

Pre-trained LLaMA2 Transformer
Layers

Vocabulary Expansion

Chinese Corpus

English Corpus

Translation Corpus

Continued Pre-training

Chinese Pre-trained 
LLaMA2

Chinese Instructions

 

Skilled
Chinese LLaMA

Instruction Fine-tuning

2

1. How to choose 
vocabulary size?

2. How to initialize 
expanded tokens’ 

embeddings?

How to construct 
training corpus?

1.Compatible with 

2.How to construc
continued pre-training?

t 
 instruction dataset?

English Instructions

Figure 1: Overall pipeline and questions of language adaptation (using En-Zh of LLaMA2 as an example) of LLMs.

The Initialization of Token Embeddings Effec-
tively initializing the embeddings of the expanded
tokens helps to capture the relationship between
these expanded tokens and original tokens in vo-
cabulary, providing a suitable starting point for con-
tinued pre-training. The naive approach is applying
random initialization, which indicates learning the
representations of expanded tokens from scratch.

Recently, advanced approaches have been pro-
posed to initialize token embeddings based on the
bilingual model or the overlap tokens between
languages (Minixhofer et al., 2021; Dobler and
de Melo, 2023). To be more specific, a mapping
from the expanded tokens to the original tokens
is built by recognizing related words between the
source and target language. Besides, benefited
from applying the Byte-level BPE (Wang et al.,
2020) tokenizer, LLMs like GPT-2 (Lagler et al.,
2013) and LLaMA2 (Touvron et al., 2023b) are
able to encode out-of-vocabulary words by Uni-
code. When the embeddings of these Unicodes are
trained based on the corpus containing target lan-
guage texts, it is also a feasible solution to initialize
the expanded tokens with the aggregation of the
corresponding Unicode-encoded tokens.

An empirical study of the aforementioned ini-
tialization methods in vocabulary expansion can be
found in Section 3.2 and 3.3.

2.2 Continued Pre-training

Continued pre-training in language adaptation in-
volves loading the parameters of trained LLMs and
conducting pre-training tasks (such as next-word
prediction) using a corpus that includes texts in the
target language. While it is evident that continued
pre-training can lead to significant improvements
in both understanding and generation for the target
language (Zeng et al., 2023; Colossal-AI, 2023),

the construction of a suitable dataset emerges as a
critical problem that needs to be further explored.

For dataset construction in the pre-training of
LLMs, existing studies primarily focus on the qual-
ity and diversity of data (Li et al., 2023; Lee et al.,
2023), both of which are widely recognized as criti-
cal factors in model performance. In this paper, we
provide explorations and discussions on some ad-
ditional important yet under-explored aspects that
are integral to the language adaptation process.

Translation Data One critical factor is the usage
of translation data, which can promote alignment
between source and target languages. Previous
studies (Lample and Conneau, 2019; Zhang et al.,
2023) have pointed out the value of translation data
in the cross-lingual transfer of traditional language
models. However, the effectiveness of such transla-
tion data in language adaptation for modern LLMs,
which employ causal language modeling as their
training task, remains unclear. This gap calls for
further investigations.

Texts in Source Language Inspired by previous
studies (Wang et al., 2024; Ye et al., 2023), multi-
lingual pre-trained language models can implicitly
align different languages even without the need for
multilingual parallel data. It is also recommended
to incorporate a mixture of texts in both the source
and target languages within the dataset to mitigate
catastrophic forgetting (Kirkpatrick et al., 2017).
These phenomena suggest that source language
texts may significantly impact language adaptation,
and the quality of these source texts is an important
yet under-explored issue.

We provide experimental results and analysis of
these two factors in Section 3.4 and 3.5.
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2.3 Instruction Fine-tuning

Instruction fine-tuning (Wei et al., 2021) is a
promising approach for aligning pre-trained LLMs
with their downstream applications based on var-
ious instruction data. In the context of language
adaptation on LLMs, we propose to investigate
two questions that are general and highly impact-
ful: the compatibility of instruction fine-tuning and
continued pre-training, and the construction of in-
struction datasets.

Compatibility of Instruction Fine-tuning and
Continued Pre-training Previous studies (Zhu
et al., 2023; Zhang et al., 2023) have demon-
strated that direct conducting instruction fine-
tuning on pre-trained LLMs (e.g., LLaMA) with
target language instructions can effectively endow
the model with target language abilities, it is ques-
tionable whether conducting continued pre-training
on general-purpose data before instruction fine-
tuning would provide additional benefits, especially
when training resources are limited.

Meanwhile, Ye et al. (2023) shows that lan-
guages that LLaMA has limited exposure to during
pre-training exhibit better language adaptation po-
tential during instruction fine-tuning. This inspires
us to investigate whether continued pre-training
provides this benefit for instruction fine-tuning.

Construction of Instruction Dataset Previous
studies (Pires et al., 2019; Wu and Dredze, 2019)
demonstrate that Multilingual-BERT, a multilin-
gual variant of BERT (Devlin et al., 2018), can
be fine-tuned for a specific task in one language
and successfully perform the same task in another
language. Meanwhile, a recent study (Ye et al.,
2023) shows that generative pre-trained LLMs can
enhance their downstream performance in one lan-
guage by utilizing instruction fine-tuning on an-
other language. Drawing inspiration from these
findings, we consider that the model’s ability to
process the target language may benefit from in-
structions provided in the source language. There-
fore, an empirical study and further discussions are
provided in Section 3.7 to show the model perfor-
mance when varying the ratio of different language
texts in the instruction data.

Furthermore, recent studies (Zhang et al., 2023;
Zhu et al., 2023) propose to use translation instruc-
tions between the source and target languages dur-
ing instruction fine-tuning to assist the model in
aligning instructions from both languages. How-

ever, they do not explore whether this approach
is beneficial for tasks beyond translation, which
remains a valuable area for further research.

The aforementioned experimental results and
discussions can be found in Section 3.6 and 3.7.

3 Experiments

3.1 Settings

Model & Language In the experiments, we use
LLaMA2-7B (hereinafter referred to as LLaMA2)
as the initial model, English as the source language,
and Chinese as the main target language. We con-
duct supplementary experiments using Italian, Thai,
Japanese, Portuguese, German, and French. The
related details can be found in Appendix A. We
use the same hyperparameters as those in the pre-
training of LLaMA2, except for reducing the learn-
ing rate to half of its original value. More imple-
mentation details can be found in Appendix B.

Datasets For continued pre-training, we con-
struct a general-purpose corpus consisting of Chi-
nese and English texts in a ratio of 3:1. Unless
otherwise specified, we use CCI corpora (BAAI,
2023) as the source of Chinese corpus, and RedPa-
jama (TogetherComputer, 2023) as that of English
corpus. For instruction fine-tuning, we select the
English QA dataset provided by FLAN (Wei et al.,
2021) and the subset of Chinese in the multi-lingual
QA dataset provided by XP3 (Muennighoff et al.,
2022) as the instruction dataset. The details of
datasets we use for other languages are introduced
in Appendix A.

Evaluation Comparisons are conducted mainly
on C-Eval (Huang et al., 2023) evaluation set,
which contains 13,948 Chinese multiple-choice
questions covering 52 different subjects and is a
widely used benchmark dataset to comprehensively
evaluate the model’s ability to process Chinese
texts. The models are evaluated in a 5-shot manner
with the officially recommended prompts, as shown
in Appendix C. For languages other than Chinese,
we employed two testing metrics, M3Exam and
MGSM, more detailes are provided in Appendix A.

To alleviate the uncertainty caused by the 5-shot
in-context learning evaluation mode on the exper-
imental results, we generate different contexts by
adjusting the order of example questions in the
prompt. Each result is tested three times, and the
average value is reported as the final score.
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Figure 2: The change of training loss and C-EVAL score
during continued pre-training w.r.t. extending different
numbers of Chinese words in the vocabulary. Numerical
results are in Table 5 in Appendix G.

3.2 The Number of Expanded Tokens

We implement the Byte-level BPE algorithm via
SentencePiece package (Kudo and Richardson,
2018) to train a Chinese vocabulary on CCI dataset,
and select (following the order generated by BPE)
2k/5k/30k to expand the original vocabulary from
LLaMA2. Therefore, the sizes of the expanded
vocabulary become 34k/37k/62k, respectively. We
initialize these expanded tokens with Unicode ini-
tialization (please ref Section 3.3) The corpus for
continued pre-training, as introduced in Section 3.1,
consists of a mixture of Chinese and English texts
amounting to 15 billion tokens.

The evaluation results on the C-Eval benchmark,
shown in Figure 2, demonstrate the effectiveness
of vocabulary expansion. Specifically, appropri-
ately expanding the vocabulary (denoted as “2k
exp. token number” in the figure) before training
can achieve better performance improvements com-
pared to training without expanding the vocabulary.
It can also be found that massively expanding the
vocabulary can significantly harm model perfor-
mance, especially when the training data is lim-
ited (less than 10 billion tokens). Therefore, for
low-resource languages, it is crucial to expand the
vocabulary carefully. In settings similar to ours,
we empirically recommend 2k tokens as the scale
for vocabulary expansion. We also recommend
conducting a preliminary experiment to determine
the scale of vocabulary expansion before executing
large-scale CPT.

3.3 Initialization of Token Embeddings

We conduct experiments with three different ap-
proaches to initialize the embeddings of the ex-
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Figure 3: The training loss and C-EVAL score during
continued pre-training w.r.t. different initialization of
the embeddings of expanded words. Numerical results
are in Table 6 in Appendix G.

panded tokens, and then perform continued pertain-
ing with the same settings for a fair comparison.
Specifically, the training dataset consists of 5 bil-
lion tokens and the size of the expanded tokens is
2k. For more details on initialization approaches:
(i) Random Initialization: The embeddings of
the expanded tokens are drawn from a normal dis-
tribution; (ii) Unicode Initialization: Benefited
from BPE algorithm, LLaMA2 can encode out-of-
vocabulary token as several Unicodes accordingly.
Thus we can initialize the expanded tokens using
the mean of embedding vectors corresponding to
Unicode-encoded tokens. (iii) Translation Initial-
ization: Inspired by previous studies (Minixhofer
et al., 2021), we use the average of the embedding
vectors corresponding to the English translations
of Chinese words.

We show the training loss curve and the eval-
uation results on C-Eval benchmark in Figure 3.
Based on C-Eval scores, translation initialization
can endow the model with certain Chinese profi-
ciency even without training, and it may hold an
advantage when training data is extremely scarce
(less than 1B tokens). This aligns with the perfor-
mance of loss curves during model training and
is consistent with research in traditional language
models (Dobler and de Melo, 2023; Minixhofer
et al., 2021). However, unlike traditional language
models, as the training data adopted for LLMs in-
creases, the performance differences between dif-
ferent initializations become very small.

For further investigation, for models utilizing
different initialization methods, we calculate the
average cosine similarity of the embedding layers
of the expanded tokens, respectively. The experi-
mental results shown in Table 1 indicate that, dur-
ing the training process, the text representations
across different models tend to be similar. This
phenomenon suggests that, although different ini-
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#Tokens Uni.-Rand. Uni.-Trans. Rand.-Trans.

0B 5e-5 0.11 2e-5
2B 0.08 0.29 0.02
5B 0.13 0.37 0.10

Table 1: Cosine similarity between expanded tokens’
embeddings of different models. Uni. refers to models
whose token embeddings are initialized with Unicode,
Rand. refers to models whose token embeddings are ini-
tialized randomly while Trans. refers to models whose
token embeddings are initialized by translation.
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Figure 4: The C-Eval scores of the model w.r.t. adding
different translation corpora during the continued pre-
training process. Numerical results are in Table 7 in
Appendix G.

tialization methods bring differences in textual rep-
resentations, extensive training on the same dataset
guides the models toward learning in similar direc-
tions. We believe that after extensive training, the
inherent characteristics of the training data itself
become the primary factor affecting the model’s
capabilities and therefore, the impact of different
initialization methods on the model would gradu-
ally diminish.

3.4 Translation Data in Continued
Pre-training

Inspired by previous studies (Lample and Conneau,
2019; Yudong Li et al., 2023), we propose to add
some translation data when performing continued
pre-training. We conduct experiments with the
following open-source Translation Data: (i) TD-
Raw: Chinese-English translation data collected
from CCMatrix (Schwenk et al., 2019b) and Wiki-
Matrix (Schwenk et al., 2019a). We filter out data
with garbled characters and formatting errors and
produce 1 billion tokens; (ii) TD-GPT: We use
GPT-3.5-turbo provided by OpenAI to translate a
portion of CCI dataset, generating approximately
0.1 billion tokens of translation data.

Due to the fact that CCMatrix and WikiMatrix

are primarily composed of short sentences col-
lected from the internet, which differs significantly
from the commonly used LLM pre-training cor-
pora (TogetherComputer, 2023), we consider their
data quality to be lower. On the other hand, CCI is
a large corpus prepared for LLM training, consist-
ing of many high-quality articles, thus we believe
that the quality of the data translated from it is
higher. To be more specific, the average length of
data in TD-Raw is 141.6 tokens while is 3105.4 in
TD-GPT. We use TD-Raw to represent translation
data collected from the internet which is rich in
quantity but poor in quality, and use TD-GPT to
represent expert-level translation data which is rich
in quality but relatively poor in quantity.

The evaluation results on C-Eval benchmark are
shown in Figure 4. From the experimental results,
it can be observed that different translation cor-
pora provided a boost to the model’s Chinese profi-
ciency in the early stages of training (within 1-3B
tokens). Additionally, the ranking of the max gain
effect is TD-GPT > TD-Raw, which aligns with the
ranking based on data quality rather than quantity.
However, as training progresses, the model’s per-
formance fluctuates and ultimately converges to a
performance similar to that achieved without the
addition of translation corpora.

Therefore, for languages with extremely scarce
training data (less than 3B tokens), adding high-
quality expert-level translation data (even though
the scale might be smaller) during continued pre-
training is a better choice.

3.5 The Quality of English Texts
The dataset used for continued pre-training is a
mixture of texts in both source languages and target
languages. While previous studies mainly focus
on the data quality of the target language texts,
which is proven to be critical for the model ability
in processing the target language texts, we conduct
an empirical study to show that the data quality of
the source language texts is also important.

Specifically, we prepare two datasets for con-
tinued pre-training, with the only difference be-
tween these two datasets being the English part of
the training corpus: one is collected from CCMa-
trix (Schwenk et al., 2019b), and another is col-
lected from RedPajama (TogetherComputer, 2023).
CCMatrix is a multi-lingual translation corpora,
containing relatively short bilingual parallel sen-
tences. In contrast, Redpajama is a high-quality
English corpus prepared for LLM pre-training with
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Models
M3Exam MGSM C-Eval MMLU

it th pt de fr ja zh en

High En 42.5±0.6 27.3±0.8 31.8±0.4 12.7±1.7 9.2±0.7 6.4±1.0 34.1±0.1 41.2±0.1

Low En 40.4±0.2 22.3±0.9 26.9±1.1 12.1±0.8 5.6±0.3 2.7±0.2 31.9±0.1 37.8±0.1

Vanilla 37.7±0.1 21.8±0.3 96.9±0.9 11.2±1.4 8.9±0.8 4.0±1.7 31.1±0.2 42.5±0.2

Table 2: The evaluation score of models trained with different quality of English texts and vanilla LLaMA2. Due to
varying differences of the target language from English, it/pt/de/fr models are trained with 2B tokens, while zh/th/ja
models are trained with 5B tokens.

Lang. IFT1B CPTX+1B CPTX + IFT1B

zh 31.2±0.2 33.0±0.1 34.1±0.1

it 42.0±0.6 42.5±0.6 43.3±1.2

th 26.5±0.3 26.2±0.5 32.1±0.3

pt 35.4±1.1 31.8±0.4 40.9±0.1

Table 3: The model’s evaluation scores under different
settings. The subscript indicates the number of con-
sumed tokens. X is 5B for Chinese/Thai and 1B for
Italian/Portuguese.

carefully collected documents from books, articles,
and the internet. Therefore, we believe that Redpa-
jama has better data quality.

We perform continued pre-training on these two
datasets with the same settings, and we test the
model’s English proficiency using the English eval-
uation metric MMLU. These results shown in Ta-
ble 2 indicate that using the Redpajama corpus as
English data better maintains the model’s English
performance. Meanwhile, we perform experiments
on six languages respectively, and notice that the
quality of English text significantly impacts the
model’s performance in the target language, both
for Latin languages (it/pt/de/fr) and non-Latin lan-
guages (zh/th). Therefore, ensuring the quality of
the source language corpus is crucial when per-
forming language adaptation on LLMs.

3.6 Compatibility of Continued Pre-training
and Instruction Fine-tuning

Instruction fine-tuning involves training pre-trained
LLMs with supervised data that consists of instruc-
tions or demonstrations, which aims to improve
the model’s ability to understand and generate re-
sponses that align with the given instructions for
specific tasks. In this section, we provide some
experimental results to study the compatibility of
continued pre-training and instruction fine-tuning
in the language adaptation of LLMs.

We conduct instruction fine-tuning on two kinds

of models, one of which has already been continued
pre-training on a mixture of target language and
English texts with a ratio of 3:1, while the other one
has not. Here we construct the instruction datasets
based on the XP3x (using the instructions in the tar-
get language) and FLAN (consisting of instructions
in English), with a ratio of 1:1 to produce 1 billion
tokens. An empirical study on the construction of
the instruction datasets can be found in Section 3.7.

The experimental results are shown in Table 3.
From these results, we observe that the model’s
performance improves significantly when instruc-
tion fine-tuning is following continued pre-training,
compared to directly performing instruction fine-
tuning or only conducting continued pre-training
without instruction fine-tuning. Therefore, for the
language adaptation of LLMs, the pretrain-then-
finetune paradigm should be still considered as one
of the suitable approaches, which can be particu-
larly important for low-resource languages where
instruction data is limited.

3.7 Instruction Dataset Construction

We investigate how to construct useful instruc-
tion datasets for instruction fine-tuning in language
adaptation from two aspects: (i) The ratio of the
instructions in English (the source language) and
the target languages; (ii) Adding some translation
instructions for explicitly cross-lingual alignment.

We generate a series of instruction datasets by
adjusting the ratio of target language instructions
to English instructions. We follow the settings in
Section 3.6 to conduct continued pre-training on
LLaMA2, and then perform instruction fine-tuning
on the resulting models, using these instruction
datasets. For comparisons, we also perform instruc-
tion fine-tuning on the model without continued
pre-training.

The experimental results are shown in Figure 5,
from which we can observe that for most languages,
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Figure 5: The evaluation score of models’ performance
after instruction fine-tuning with different English to
target language ratio in training data. Numerical results
can be found in Table 8 in Appendix G.

Settings w/o Trans. Data w/ Trans. Data

w/o CPT 31.2±0.2 30.9±0.1

w/ CPT 34.1±0.1 34.8±0.1

Table 4: The evaluation results (C-Eval score) on the
usage of translation instructions during the instruction
fine-tuning, with or without prior continued pre-training.

the models can benefit from English instructions
and the best ratio between the target language and
English is around 1:1 to 1:3. We also find that
models have undergone CPT can get more bene-
fits from English instructions(ref Appendix E for
further discussion).

Besides, we propose to add translation instruc-
tions for explicitly cross-lingual alignment. As a
result, we collect 0.1 billion tokens of high-quality
translation instructions between English and Chi-
nese (shown in Appendix D) generated by GPT-
3.5-turbo, and add these data into the dataset for
instruction fine-tuning. The experimental results
shown in Table 4 indicate that the usage of high-
quality translation data can greatly enhance the
model’s performance during the instruction fine-
tuning process in the target language, only when
the instruction fine-tuning following a continued
pre-training process.

In summary, in order to effectively apply instruc-
tion data for cross-lingual alignment in specific
tasks, it is crucial for the models to possess fun-
damental capabilities in understanding the target
languages, which can be acquired through contin-
ued pre-training. Note that these observations are
consistent with the findings in Section 3.6.

4 Related Works

Cross-Lingual Transfer of language models
Researchers (Zoph et al., 2016) focus on transfer-
ring the capabilities of traditional language models,
such as BERT, in downstream tasks across different
languages. For example, Artetxe et al. (2019) trains
a multi-language BERT model by only replacing
the tokenizer and freezing the transformer param-
eters except for the embedding layer. Meanwhile,
Dobler and de Melo (2023) and Minixhofer et al.
(2021) guide the initialization of the target language
embedding layer utilizing existing target language
tokens in original models or additional bilingual
embeddings of source and target languages.

Further, Lample and Conneau (2019) achieves
outstanding performance by using translation cor-
pora during continued pre-training. Recently, (Wu
et al., 2023) have studied the difficulties of cross-
language transfer, and found that compared to the
grammatical differences between languages, the vo-
cabulary differences brought by embedding layers
have the greatest impact on cross-language transfer.
It has also been found that non-Latin languages that
cannot share words with English have greater diffi-
culty performing cross-language transfer than Latin
languages that can share part of their vocabulary
with English(Choenni et al., 2023).

These studies provide some insights for language
adaptation of LLMs, but their efficiency on LLMs
remains to be studied.

Language Adaptation of LLMs Recently, re-
searchers (Cui et al., 2023; Zhang et al., 2023;
Colossal-AI, 2023) have attempted to conduct lan-
guage adaptation for LLMs, but are limited to
exploring a single implementation approach and
lack comparative research on different training fac-
tors. Some studies have provided empirical re-
search during the instruct fine-tuning process. Ye
et al. (2023) reveals the different potentials of dif-
ferent pre-trained models in language adaptation.
Zhu et al. (2023) and Shaham et al. (2024) uti-
lize translation data and multilingual instructions
to enhance the language adaptation process. Other
studies (LLaMA2-ChineseTeam, 2023; Yudong Li
et al., 2023) investigated the effect of continued
pre-training. However, they do not consider other
processes of language adaptation or the impact of
the compatibility between different processes on
experimental outcomes.
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5 Conclusions

The limited ability of LLMs to process low-
resource language texts motivates the development
of language adaptation, particularly for adapting
English-based LLMs to other languages. In this
study, we provide a comprehensive review of the
language adaptation pipeline for LLMs, focusing
on empirical investigations using LLaMA2, and of-
fering valuable insights and practical strategies for
various processes, including vocabulary expansion,
continued pre-training, and instruction fine-tuning.

Specifically, our observations can be summa-
rized as follows:

• Vocabulary expansion is beneficial, but the
number of expanded tokens should be deter-
mined carefully. We empirically show that an
expansion size of 2,000 words is appropriate
for LLaMA2.

• High-quality source language data is crucial
for CPT, and high-quality translation data can
make improvements in CPT, especially when
training data is scarce.

• The combined use of both CPT and IFT results
in more effective language adaptation, even
with limited CPT data. We recommend em-
ploying English instructions alongside trans-
lated instruction data during IFT, particularly
after prior CPT.

Such an empirical study serves as a guide for re-
searchers seeking to effectively adapt LLMs to tar-
get languages, while also inspiring further research
aimed at expanding the applicability of LLMs.

Limitations

Due to limitations in (high-quality) training data
and computational resources, our experiments pri-
marily concentrated on adapting the language from
English to Chinese. Although we have supple-
mented our key findings with experiments on other
languages, where possible, we attempt to conduct
more validation across a wider range of languages
and utilize more training tokens in future work.
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A Settings of experiments with more
languages

To further validate the critical conclusions of our
experiments, which may vary due to language dif-
ferences, we conduct additional experiments using
four Latin languages (Italian, Portuguese, German,
French) and two non-Latin languages, Thai and
Japanese (noting that Chinese is a non-Latin lan-
guage).

Datasets For continued pre-training, we utilize
the CC100 (Lin et al., 2022) dataset as the cor-
pus source for the target language and the Red-
Pajama (TogetherComputer, 2023) dataset as the
corpus source for English. The CC100 dataset
is a large-scale multilingual corpus. However, it
is not specifically prepared for pre-training mod-
ern LLMs, which may lack in quality and quan-
tity. Therefore, we impose certain limitations on
the scale of our experiments. For instruction fine-
tuning, we use the XP3x (Muennighoff et al., 2022)
multilingual QA dataset as the source of instruction
data for the target language.

Evaluation Due to the lack of comprehensive
evaluation metrics for multilingual assessments, we
use M3Exam (Zhang et al., 2024) and MGSM (Shi
et al., 2022) as our evaluation benchmarks for
the model’s capabilities in the target languages.
M3Exam is a multilingual dataset comprised of
local human examination questions. Its format is
similar to C-Eval and covers multiple subjects, pro-
viding a relatively comprehensive evaluation of
LLMs. MGSM is a multilingual math problem
dataset derived from the translation of GSM8K,
focusing on assessing the model’s mathematical
abilities across different languages. Since these
datasets do not support all languages, we use the
M3Exam benchmark for Italian and Thai, and use
the MGSM benchmark for German, Japanese, and
French.

B Hyper parameters of continued
pre-training and instruction finetuning

Hyper param Value
seq. length 4096
batch size 2048
maxLR 1.5e-4
minLR 1.5e-5
weight decay 0.1
β1 0.9
β2 0.95

C Prompt of C-Eval testing

以下是中国关于科目考试的单项选择题，
请选出其中的正确答案。
{Question 1}
A. {Choice A}
B. {Choice B}
C. {Choice C}
D. {Choice D}
答案:{Correct Answer}
[k-shot demo, k is 0 in the zero-shot case]
{Test Question}
A. {Choice A}
B. {Choice B}
C. {Choice C}
D. {Choice D}
答案:

D Prompt of transforming bilingual data
into translation instructions

Type Prompt

Zh-En
Translation

请将下面的中文句子翻译成
英文:\n
中文:{Chinese Document}\n
English:{English Document}

En-Zh
Translation

Please translate this English
sentence into Chinese:\n
English:{English Document}\n
中文:{Chinese Document}

Zh
example

以下是含义相同的中英文
例句:\n
中文:{Chinese Document}\n
English:{English Document}

En
example

The following are example
sentences in English and Chinese
with the same meaning:\n
English:{English Document}\n
中文:{Chinese Document}

Naive
combine

中文:{Chinese Documenr}\n
English:{English Document}

E The effect of CPT on English
instructions

The experimental results in Table 8 indicate that
CPT plays an important role in the utilization of
English instructions for target language capability.

We take the ratio of the target language:English
= 5:1 as the baseline. For Chinese, the model can
get almost no benefit from a higher English ratio
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Figure 6: Existing studies on En-Zh cross-lingual transfer for LLaMA or LLaMA2.

without prior CPT. However, with prior CPT con-
ducted, the model’s performance gets significant
gain with a ratio of 1:1 and 1:3. For Italian and Por-
tuguese, the model gets higher performance gain
with CPT (3.5 and 5.3) than without CPT (2.3 and
3.2). For Thai, the performance gain with or with-
out CPT is close, but the best performance occurs
in a higher English ratio (Thai:English=1:5) with
CPT.

F Existing "Chinese LLaMA" studies

In recent years, several studies have been con-
ducted on the cross-lingual transfer of LLaMA or
LLaMA2 into Chinese (as summarized in Figure 6).
These studies employ diverse strategies, yielding
varying performance outcomes. For example, x-
LLaMA (Zhu et al., 2023) and Bayling (Zhang
et al., 2023) use bilingual translation corpora in
Chinese and English when conducting instruction
tuning on LLaMA to enhance LLaMA’s ability to
follow Chinese instructions. Chinese-LLaMA (Cui
et al., 2023), Chinese-LLaMA2 and LLaMA2-
Chinese (LLaMA2-ChineseTeam, 2023) expand
the vocabulary of LLaMA and LLaMA2 with mas-
sive Chinese words (more than 20k tokens) and
utilize LoRA (Hu et al., 2021) for continued pre-
training and fine-tuning on Chinese corpora to in-
ject Chinese knowledge into the model. Linly-
LLaMA2 (Yudong Li et al., 2023) conduct re-
strained vocabulary expansion (around 8000 to-
kens) for LLaMA2 and combine unsupervised Chi-
nese corpus, unsupervised English corpus, trans-
lation corpus, English instruction data, and Chi-
nese instruction data as its training corpus con-
ducting full-parameter continued pre-training on
LLaMA2. Colossal-LLaMA2 (Colossal-AI, 2023)
also conducts full-parameter continued pre-training
on LLaMA2 with carefully selected Chinese Cor-
pus and achieves impressive results.

These Chinese LLaMA models exhibit signifi-

cant strategy differences during the training process
and do not use a unified data source (some projects
utilize large-scale non-public private datasets).
Therefore, a fair comparison and study of the im-
pact of various factors on the cross-lingual transfer
process with a limited training corpus are hindered.

G Numerical results in the experiments

In this section, we provide the detailed numerical
experimental results.

Table 5 shows the Chinese performance of the
model during the continued pre-training process af-
ter expanding the vocabulary with different scales.
The results indicate the effectiveness of vocabulary
expansion and show that an expansion scale of 2k
words is appropriate for LLaMA2.

Table 6 illustrates how the model performance
varies during the CPT process after different em-
bedding initializations. Although there are signifi-
cant differences in initial model performance, the
performance of the different models converges as
training progresses.

Table 7 shows the model performance after
adding different translation corpora during the CPT
process. In the early stages of training, the trans-
lation corpora provided significant assistance, but
as training progressed, the model’s performance
became unstable, ultimately approaching the per-
formance of the model without the translation cor-
pora.

Table 8 displays the performance of the model
in IFT when experiencing or not experiencing CPT,
using different ratios of the target language to En-
glish. As discussed in Appendix E, the model is
able to benefit more from English instructions after
undergoing CPT.
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0 exp. 2k exp. 10k exp. 30k exp.

1B 32.0±0.1 32.7±0.1 31.2±0.1 30.5±0.2

2B 30.4±0.1 32.8±0.1 33.7±0.2 30.4±0.5

3B 32.0±0.2 32.8±0.1 33.1±0.1 31.2±0.2

4B 31.2±0.2 33.6±0.1 32.7±0.1 31.7±0.3

5B 33.6±0.1 34.1±0.1 33.3±0.1 31.6±0.2

6B 32.8±0.2 33.7±0.2 33.7±0.1 29.7±0.3

7B 33.3±0.1 33.8±0.2 32.6±0.2 31.8±0.1

8B 33.5±0.3 33.5±0.2 33.4±0.2 32.4±0.1

9B 33.9±0.2 33.9±0.2 33.0±0.2 33.6±0.4

10B 32.7±0.2 33.3±0.1 33.0±0.1 32.1±0.1

11B 34.1±0.1 33.9±0.2 33.1±0.1 33.3±0.2

12B 32.8±0.2 33.8±0.2 33.8±0.1 33.4±0.2

13B 34.0±0.1 34.3±0.1 33.9±0.4 33.3±0.1

14B 33.8±0.2 34.1±0.1 33.8±0.1 33.2±0.1

15B 33.2±0.2 33.9±0.1 33.7±0.1 33.2±0.1

Table 5: Detailed C-Eval Scores(main/std error) in Figure 2

Training tokens 0B 1B 2B 3B 4B 5B

Random init. 26.5±0.2 31.7±0.0 33.2±0.0 33.0±0.2 33.5±0.1 33.4±0.0

Unicode init. 27.4±0.2 32.7±0.1 32.8±0.1 32.8±0.1 33.6±0.1 34.1±0.1

Translation init. 29.3±0.3 32.2±0.2 32.9±0.1 32.6±0.2 33.5±0.3 33.6±0.1

Table 6: Detailed C-Eval Scores(main/std error) in Figure 3

Training tokens 1B 2B 3B 4B 5B 6B 7B 8B

No trans. data 32.7±0.1 32.8±0.1 32.8±0.1 33.6±0.1 34.1±0.1 33.7±0.2 33.8±0.2 33.5±0.2

TD-Raw 33.6±0.1 33.0±0.1 32.5±0.1 32.9±0.2 33.8±0.1 33.7±0.1 32.2±0.1 33.7±0.1

TD-GPT 32.6±0.3 34.2±0.1 32.0±0.1 32.8±0.1 33.0±0.2 34.0±0.1 33.5±0.1 33.7±0.2

Table 7: Detailed C-Eval Scores(main/std error) in Figure 4

Language CPT 5:1 3:1 1:1 1:3 1:5

zh
w/o 31.1±0.1 31.4±0.1 31.2±0.2 31.5±0.1 31.4±0.1

w/ 32.6±0.1 33.6±0.2 34.1±0.1 34.3±0.1 33.6±0.3

it
w/o 40.4±0.6 37.0±0.9 42.0±0.6 42.7±0.3 40.9±0.2

w/ 41.3±0.9 42.3±0.1 43.3±1.2 44.8±0.5 44.0±0.8

th
w/o 23.8±0.3 24.1±0.7 26.5±0.3 24.6±0.2 26.2±0.7

w/ 29.6±0.3 29.4±0.2 32.1±0.3 31.1±0.1 32.1±0.1

pt
w/o 36.9±0.1 35.2±0.5 35.4±1.1 40.1±1.3 35.7±1.2

w/ 40.3±0.4 39.8±0.8 40.9±0.1 45.6±0.7 41.3±0.0

Table 8: Numerical results in figure 5, the evaluation results w.r.t. using different ratios of the target language to
English instructions during the instruction fine-tuning, with or without prior continued pre-training.
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