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Abstract

Code search aims to quickly locate target
code snippets from databases using natural lan-
guage queries, which promotes code reusabil-
ity. Existing methods can effectively obtain
aligned token-level and query word-level fea-
tures. However, these studies usually represent
the semantics of code and query by averaging
the features of each token and word respec-
tively, which makes it difficult to accurately
capture the code details that are closely related
to the query. To address this issue, we propose
a fine-grained code search model that consists
of a cross-modal encoder, a mapping layer, and
a classification layer. Specifically, we utilize
a pre-trained model, GraphCodeBERT, in the
cross-modal encoder to align features. In the
mapping layer, we introduce a co-attention net-
work to capture the fine-grained interactions
between code and query, ensuring a model can
precisely identify key code segments relevant to
the query. Finally, in the classification layer, we
incorporate instruction learning techniques that
leverage contextual reasoning to improve the
accuracy of query-code matching. Experimen-
tal results show that our proposed model sig-
nificantly outperforms existing methods across
multiple programming language datasets.

1 Introduction

Code search aims to swiftly locating specific code
snippets within extensive repositories, which is a
pivotal task within software engineering (Gu et al.,
2018). With a well-developed code search system,
developers can harness the power of natural lan-
guage to search for code snippets and reuse code
written by others or previously written. This not
only speeds up the software development cycle, but
also helps developers understand various specific
functions of the code, thereby speeding up debug-
ging and problem solving (Sachdev et al., 2018).

Existing research on the code search task can be
categorized into retrieval-based methods and deep

learning-based methods. Retrieval-based methods,
exemplified by Schütze et al. (2008) and Robert-
son et al. (1976), which primarily leverage struc-
tured information and keyword matching for code
search. While adept at handling precise keyword
queries, these methods are limited by their superfi-
cial understanding of code semantics and reliance
on user-provided keywords or structural patterns.
Conversely, deep learning-based approaches, such
as CodeBERT (Feng et al., 2020) and GraphCode-
BERT (Guo et al., 2021), utilize advanced models
to grasp the relationship between code and natural
language queries. These approaches aim to obtain
appropriate fine-grained features for both the token
level of the code and the word level of the query,
effectively generating aligned semantic representa-
tions. However, they often rely on mean pooling
or multi-layer perceptron techniques (Jian et al.,
2021) based on fine-grained features to generate a
vector representation of the entire code and the en-
tire query respectively. However, the code search
task requires models not only to understand the
overall semantics of the code and query but also
to capture the detailed information within both, in
order to more accurately match and retrieve rele-
vant code snippets. As illustrated in Figure 1, for
the query “implement a system that supports user
registration, password encryption, and password
login”, existing approaches typically generate a
single representation vector for the entire query,
treating “user registration”, “password encryption”,
and “password login” as a whole. While these ap-
proaches capture the overall semantics of the query,
they tend to miss finer-grained functional details.
Specifically, a CodeBERT-based model selects Op-
tion D, which lacks the critical detail of password
encryption. To address this issue, it is essential for
models to conduct more fine-grained semantic anal-
ysis across both the query and the code, rather than
relying solely on overall representation matching.

In this paper, we propose a fine-grained code
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Figure 1: A sample of a code search task.

search (FCS) model, which is based on token-level
code features and word-level query features to cal-
culate the relevance between each other. In detail,
our model consists of three modules: cross-modal
encoder, mapping layer, and classification layer.
Since code tokens and query words belong to two
modalities, these features usually have different
distributions and representations. Thus, the Graph-
CodeBERT (Guo et al., 2021) is introduced into
the cross-modal encoder for feature alignment. To
obtain suitable code representation, a co-attention
network (CAN) (Xie et al., 2021) is introduced
in our alignment mapping layer to learn the fine-
grained relationships among code tokens and query
words. It includes the inter-modal correlation be-
tween each token and each word, as well as the
intra-modal connections among tokens and those
among words. Specifically, the CAN model uses
the self-attention of tokens or words, as well as the
guided attention between tokens and words. With
the development of large pre-trained models, we
fully consider these technologies in the prediction
process. In the classification layer, we utilize an in-
structional learning method to replace multi-layer
perceptron techniques or vector similarity calcula-
tions (e.g., cosine) for classification. Specifically,
we innovatively combine the code representation
and original query text into a cohesive prompt. This
synthetic prompt is then used as input to a large
pre-trained model, i.e., RoBERTa (Liu et al., 2019),
to guide the model to select the code snippet that
is most consistent with the user query. More im-

portantly, by understanding the instructions, our
model can be more user-friendly, simplifying the
interaction between the user and the technology.

The main contributions can be summarized:
• To the best of our knowledge, our work is the

first to propose a code search model that simultane-
ously focuses on multiple key code tokens related
to multiple query words, rather than treating all
tokens as equally important. This innovation ad-
dresses the limitation in existing methods that fail
to recognize the varying significance of tokens, en-
abling the model to more accurately capture the
fine-grained semantic relationships between the
given query and candidate codes.
• We introduce a co-attention network (CAN)

combined with instruction learning to enhance the
performance of the model. The CAN models the
bidirectional interaction between code tokens and
query words while instruction learning helps to bet-
ter parse user queries and improve the model’s in-
terpretability. This design not only strengthens the
model’s understanding of queries but also simpli-
fies user-system interaction, making it particularly
suitable for complex code search tasks.
• We conduct experiments on the CodeSearch-

Net dataset (Husain et al., 2019), which includes
six different programming languages. The results
show that our proposed model significantly outper-
forms existing models in both automated and man-
ual evaluations across all languages, particularly in
handling fine-grained semantics and improving the
precision of query-code matching.

2 Related Work

Early explorations on code search predominantly
utilized direct information retrieval (IR) techniques
(Hill et al., 2011; Huang et al., 2021), which re-
garded code search as the text matching task. These
methods mainly utilize such as Bag of Words
(BOW) (Schütze et al., 2008), TF-IDF (Robertson
and Jones, 1976), and the extended boolean model
(Lv et al., 2015). However, these approaches often
fail to capture semantic information.

To address the limitations of IR-based ap-
proaches, deep learning-based approaches are used
to capture semantic representations of queries and
codes. Early models leverage MLP (Gu et al.,
2018), LSTM (Wan et al., 2019), and Graph Neu-
ral Networks (GNN) (Ling et al., 2021) to obtain
embeddings for queries and codes, which are then
trained by computing similarity scores. Motivated
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by the huge success of pre-trained language mod-
els (PLMs) in the NLP area and other application
(Kuang et al., 2024; Qu et al., 2023), many re-
searchers have introduced PLMs into the field of
software engineering (Dong et al., 2023; Shi et al.,
2023b; Hu et al., 2023). Specifically, CodeBERT
(Feng et al., 2020) is a model pre-trained on un-
labeled source code and comments. GraphCode-
BERT (Guo et al., 2021) introduces the information
of dataflow. Unixcoder (Guo et al., 2022) enhances
code representation through cross-modal content
like AST and code comments. CodeRetriever (Li
et al., 2022) employs both unimodal and bimodal
contrastive learning for pre-training in code search.
Following pre-training, code PLMs can be fine-
tuned on code search, significantly outperforming
previous models. Additionally, CoCoSoDa (Shi
et al., 2023a) effectively utilizes contrastive learn-
ing for code search by focusing on two key factors
in contrastive learning: data augmentation and neg-
ative samples. Most of these methods directly aver-
age the vectors of each code token or query word
to obtain their respective representations. How-
ever, not all code tokens or query words contribute
equally to the matching process. Therefore, this pa-
per focuses on fine-grained similarity calculations
between query words and code tokens, aiming to
better capture the key segments within the code.

3 Model

In the code search task, given a query Q and a set
of candidate codes C = {c1, ..., cN}, our goal is
to select the target code that matches the query.
The overview of our model is shown in Figure 2,
which consists of three modules: i) Cross-modal
encoder, which aims to obtain the token-level of
code and the word-level of query representations in
the same vector space based on pre-trained models.
ii) Mapping layer, which aims to obtain an entire
code representation containing query information
based on the attention mechanism. iii) Classifi-
cation layer, which aims to input query and code
representation into the language model for con-
textual reasoning and then classification through
instructional learning. Details of each part of our
framework are presented in the following sections.

3.1 Cross-Modal Encoder

Directly computing the relationship between query
and code is a challenging task, which is due to
the features of the two modalities (code and query

text representation) usually have different vec-
tor space distributions. Therefore, a pre-trained
code-language model GraphCodeBERT (Guo et al.,
2021) is introduced into our cross-modal encoder
to obtain the joint representation of text and code,
i.e.,

(hci , h
q) = GraphCodeBERT (ci, Q), (1)

where hci = {hci,0, ..., hci,L} represents the token-
level feature of the i-th code content, L and rep-
resents the i-th code consisting of L tokens; hq =
{hc0, ..., hcM} represents the word-level feature of
the query, M and represents the query consisting
of M words;

3.2 Mapping Layer
Since code snippets are typically long, directly av-
eraging the representations of code tokens (i.e., hci )
tends to overlook the segments that are most rel-
evant to the query. Therefore, it is essential to
identify the relevance between each code token and
each query term, allowing the model to accurately
capture the key code fragments that are closely
related to the query.

A co-attention network (CAN) is introduced to
capture both the inter-modal relationships between
code tokens and query words, and the intra-modal
connections among tokens and among words. The
CAN is designed to model self-attention within
each token and query word, while also learning
guided attention between code tokens and query
terms. This process results in a multimodal rep-
resentation that effectively integrates the knowl-
edge from both the code and query, enhancing the
model’s ability to understand their relationship.

In detail, our CAN is based on a deep modular at-
tention network (Xie et al., 2021; Chen et al., 2023,
2024a), which includes self-attention (SA) units
and guided attention (GA) units. SA and GA are
based on the scaled dot-product attention (Vaswani
et al., 2017), which includes queries Q, keys K,
and values V . For simplicity, we set their dimen-
sions to the same value as the dimension d of the
query Q, i.e., d = dquery = dkey = dvalue. The atten-
tion feature F is obtained by weighted summation
of all values V with respect to the attention learning
form Q and K. The calculation is as follows:

F = A(Q,K, V ) = softmax(
QKT

√
d

)V. (2)

The SA and GA units have the same architecture,
which consists of the scaled dot-product attention
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Figure 2: Overview of our fine-grained code search model.

and feed-forward layer. In the attention layer, SA
utilizes one group input features X as queries, keys,
and values. And GA has two groups of input fea-
tures X and Y , where X is input as queries and Y
is input as the keys and values. Then, the output
feature of the attention layer is transformed through
two fully-connected layers with a ReLU activation.
In detail, we take the query word representation hq

and the token-level of i-th code representation hci
as input features X into independent SA units to
capture the inner connection of the tokens or words,
respectively. Then, the output feature of the i-th
code SA (i.e., hcSA,i) is input to GA as queries, and
the output feature of the query SA (i.e., hqSA) is
input to GA as keys and values. The GA unit mod-
els the pairwise relationship between each paired
code token and query word to obtain the i-th code
representation that contains the query information:

hcSA,i = SA(hci , h
c
i , h

c
i ), (3)

hqSA = SA(hq, hq, hq), (4)

hcGA,i = SA(hcSA,i, h
q
SA, h

q
SA), (5)

where hcGA,i =
{
hcGA,i,j

}L

j=0
, and SA(·) and GA(·)

correspond to A(·) in the equation (2).

3.3 Classification Layer
In our classification layer, we aim to leverage pop-
ular pre-trained model techniques to replace the
existing simple vector similarity measures (e.g.,
cosine similarity) and improve the accuracy of
query-code matching. Inspired by large-scale mod-
els’ success in instruction learning, we integrate

the generated representations of code and original
query into a context reasoning module for cross-
modal inference. Specifically, we utilize a pre-
trained large language model (i.e., RoBERTa) as
the context reasoning module. During the instruc-
tion learning process, we populate a pre-defined
instruction template with the query text and the
candidate code representations. The template is
formatted as: “<cls> Is the query and code con-
sistent based on this condition? Conditions: The
query is <T> and the code representation is <C>.
<sep>” Here, <T> represents the original query
text, and <C> represents the code representation.

In detail, the current code representations we
obtained from the mapping layer are expressed in
vector form, but to adapt them to RoBERTa’s input
format, we need to map them through a prefixed
mapping layer (Chen et al., 2024b), i.e., a fully con-
nected layer. We set the prefix length of the code
representation to P , i.e., using P input tokens for
RoBERTa to represent the code information. Each
of these tokens has a vector length that matches
the hidden layer dimension D of RoBERTa, en-
suring that the code representation can seamlessly
integrate into RoBERTa’s context encoding pro-
cess. Thus, the mapped code indicates that the size
of <C> is [P ×D]. By using this approach, we
can harness the contextual learning capabilities of
pre-trained language models to more effectively
address the code search task.

Then, the sequence representation is fed into the
context reasoner to infer the final result. In this
way, we can leverage the contextual learning ca-
pabilities of pre-trained language models to solve
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Training Test Candidates code N

Python 251,820 1200 43,827
PHP 241,241 1200 52,660
Go 167,288 1200 28,120
Java 164,923 1200 40,347
JavaScript 58,025 1200 13,981
Ruby 24,927 1,261 4,360

Table 1: Distribution of the number of different pro-
gramming languages in the dataset.

multi-modal reasoning problems. We obtain the
inference results for each candidate answer by ap-
plying a two-layer perceptron with ReLU activation
function on the output hidden state hcls,i of the top
layer of RoBERTa. The whole training objective
of our model can be defined as,

pi = Linear(hcls,i), (6)

ℓ =

N∑
1

logPi(pi = y), (7)

where pi is the output probability on i-th candidate
code, y is the label and N represents the number
of candidate codes.

3.4 Inference Stage
In the inference stage, the model for the code search
task needs to retrieve the target code closest to the
query from multiple candidate codes. Thus, we
compute the results for each candidate code and
query separately, i.e.,

scorei = Linear(hcls,i), (8)

where i ranges from 1 to N , and N is the number
of candidate codes. By sorting the scores, we use
the code at the position corresponding to the value
mv with the highest score as the target result. The
calculation of mv is as follows,

mv = Max([score1, ..., scoreN ]). (9)

4 EXPERIMENTs

4.1 Dataset
In this paper, we evaluate the code search mod-
els on the CodeSearchNet dataset (Husain et al.,
2019). The dataset originates from public projects
on GitHub and covers six popular languages, i.e.,
Python, Java, JavaScript, PHP, Ruby, and Go. No-
tably, due to computational resource considerations,

except for the Ruby dataset, the test sets of the
other five datasets contained a large number of
samples. Therefore, we randomly selected 1200
samples from the test sets for each of the five pro-
gramming languages to conduct our evaluation.

To ensure the simulation of real retrieval sce-
narios and thoroughly test the performance of our
proposed method, we retained all code snippets
in the original data as the candidate codes. The
distribution of the dataset is shown in Table 1.

4.2 Baseline Methods and Settings
To evaluate the effectiveness of our framework, we
compare our model with the following methods.
• CodeBERT (Feng et al., 2020) is a bi-encoder

Transformer-based model pre-trained to bridge the
gap between programming and natural language.
It leverages the Transformer architecture to align
code and text. We use the official implementation
to ensure fidelity.
• GraphCodeBERT (Guo et al., 2021), an im-

proved version of CodeBERT, adds dataflow aware-
ness to capture both syntactic structure and data
flow in code, improving the model’s ability to un-
derstand complex programming relationships. We
applied the official implementation.
• UniXcoder (Guo et al., 2022) is a language

model that uses a multi-encoder approach to handle
various programming languages simultaneously,
excelling at cross-language pattern recognition. We
used the official repository’s implementation.
• mAdapter (Wang et al., 2023) explores the

use of adapter fine-tuning to address performance
degradation in multi-language fine-tuning, proving
effective in cross-language, multi-language, and
low-resource scenarios through empirical evidence.
• CoCoSoDa (Shi et al., 2023a) leverages mul-

timodal momentum contrastive learning and soft
data augmentation for code search.

4.3 Evaluation
In the evaluation of the code search model, we im-
plemented two widely recognized evaluation met-
rics on the test set: MRR (Mean Reciprocal Rank)
and R@K. These metrics have been established
as standards in previous code search research (Li
et al., 2022). Higher values of MRR and R@K
indicate superior code search performance.

In detail, MRR quantifies the effectiveness of
a search algorithm by scoring it and then ranking
search results in descending order based on their
relevance to the search query. For the J test query,
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Model
Java Python Go

R@1 R@5 MRR R@1 R@5 MRR R@1 R@5 MRR

CodeBERT 0.515 0.675 0.583 0.505 0.685 0.595 0.825 0.955 0.879
GraphCodeBERT 0.625 0.835 0.722 0.590 0.830 0.705 0.860 0.965 0.907

UniXcoder 0.630 0.840 0.719 0.600 0.845 0.711 0.900 0.975 0.920
mAdapter-CodeBERT 0.580 0.805 0.681 0.585 0.815 0.860 0.686 0.840 0.888

mAdapter-GraphCodeBERT 0.600 0.825 0.701 0.590 0.820 0.885 0.695 0.820 0.885
mAdapter-UniXcoder 0.625 0.835 0.719 0.585 0.850 0.789 0.704 0.870 0.917

CoCoSoDa 0.650 0.875 0.747 0.635 0.880 0.740 0.875 0.995 0.916
Ours 0.665 0.895 0.752 0.700 0.905 0.887 0.880 0.975 0.921

Model
Javascript PHP Ruby

R@1 R@5 MRR R@1 R@5 MRR R@1 R@5 MRR

CodeBERT 0.415 0.645 0.515 0.425 0.630 0.518 0.555 0.739 0.642
GraphCodeBERT 0.515 0.745 0.625 0.510 0.705 0.605 0.610 0.820 0.707

UniXcoder 0.575 0.775 0.669 0.495 0.750 0.610 0.647 0.859 0.739
mAdapter-CodeBERT 0.515 0.775 0.627 0.470 0.680 0.574 0.614 0.835 0.715

mAdapter-GraphCodeBERT 0.510 0.755 0.617 0.530 0.730 0.623 0.636 0.845 0.733
mAdapter-UniXcoder 0.535 0.770 0.644 0.540 0.740 0.634 0.648 0.860 0.745

CoCoSoDa 0.580 0.805 0.678 0.520 0.760 0.626 0.649 0.872 0.749
Ours 0.615 0.815 0.702 0.590 0.760 0.671 0.671 0.886 0.759

Table 2: Main automatic metrics results of baselines and our model on six programming languages.

the MRR is calculated as follows:

MRR =
1

J

J∑
i=1

1

Resulti
. (10)

R@K evaluates the relevance of the top K re-
sults to the query, reflecting the user’s actual expec-
tation to prefer the top most relevant results. We
calculate R@K with K = 1, 5, and 10, respectively.

4.4 Implementation Details

We implement our approach based on PyTorch.
During the training stage, we use the Adam op-
timizer to train our model and baselines on a single
3090 GPU. Its basic learning rate is 1e-6 and the
weight decay is 0.01. The hidden layer dimension
D is 768, and the dropout rate is 0.1. The prefix
length of the code P is set to 5.

4.5 Results and Analysis

4.5.1 Automatic Evaluation Result
Table 2 presents the results in six programming
languages. We find that: (i) Across all six pro-
gramming languages, our model consistently out-
performs baseline models. For example, in Java,
our model achieves an R@1 of 0.665 and an R@5
of 0.895, which are both higher than the top-
performing baseline, CoCoSoDa (0.650 and 0.875

Method R@1 R@5 R@10 MRR

CodeBERT 0.555 0.739 0.805 0.642
Ours w CB 0.663 0.851 0.890 0.747

GraphCodeBERT 0.610 0.820 0.872 0.707
Ours w GCB 0.671 0.866 0.904 0.759

Table 3: Compare the performance of using different
code pre-trained models (i.e., CodeBERT and Graph-
CodeBERT) as encoders in our model. “Ours w CB”
represents “Ours model with CodeBERT”; and “Ours w
GCB” represents “Ours model with GraphCodeBERT”.

respectively). This demonstrates the overall supe-
riority of our approach in capturing relevant code
snippets in multi-language settings.

(ii) Results for mAdapter variants (e.g.,
mAdapter-CodeBERT, mAdapter-UniXcoder)
show improved performance when fine-tuning
on multiple languages. For example, mAdapter-
GraphCodeBERT in Ruby achieves better R@1
(0.636) compared to GraphCodeBERT (0.610),
showing that adapter tuning helps in cross-
language fine-tuning scenarios. This suggests
that adapter-based fine-tuning can be effective in
reducing the negative impact of multi-language
fine-tuning.

(iii) While models like UniXcoder perform rea-
sonably well in individual languages (e.g., in
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Model R@1 R@5 R@10 MRR

CS_rCAN 0.546 0.751 0.839 0.706
CS_T 0.632 0.827 0.891 0.724
CS_rIn 0.649 0.860 0.900 0.746
Ours 0.671 0.866 0.904 0.759

Table 4: Comparison results of ablation studies in Ruby.
Bold: the best performance in the column.

Python with an R@5 of 0.845), they struggle to
maintain consistent performance across all lan-
guages. This highlights the importance of advanced
fine-tuning strategies, such as adapter-based tun-
ing, to handle multi-language tasks where resource
availability and language characteristics vary.

4.5.2 Comparison of Different Encoders
To evaluate the applicability of our proposed
method, we used two pre-trained code models (i.e.,
CodeBERT and GraphCodeBERT) as cross-modal
encoders for our model and conducted comprehen-
sive experiments on the Ruby dataset, with the
results shown in Table 3.

Specifically, our model with CodeBERT shows
notable improvements across all metrics, with R@1
increasing from 0.555 to 0.663, and MRR improv-
ing from 0.642 to 0.747. Similarly, in experiments
with GraphCodeBERT, our model demonstrates ex-
cellent performance, with R@1 rising from 0.610
to 0.671, and MRR increasing from 0.707 to 0.759.
These results indicate that our approach not only en-
hances the performance of models based on Graph-
CodeBERT but also improves those based on Code-
BERT. Thus, the experimental results fully demon-
strate the broad applicability of our method across
various pre-trained code models and its strong gen-
eralizability in cross-modal reasoning and code
search tasks.

4.6 Ablation Studies

We conduct a comprehensive ablation study to de-
termine the impact of different components in our
method, and the results are detailed in Table 4.
Specifically, CS_rCAN means removing the CAN
mechanism and using a direct averaging method to
obtain code representation; CS_T means that the
query text is also used in the form of an average
vector for instructions. CS_rIn involves eliminating
instruction templates and directly concatenating all
information. We find that:

(i) In the CS_rCAN experiment, we remove

Length R@1 R@5 R@10 MRR

1 0.662 0.847 0.896 0.750
2 0.660 0.843 0.895 0.749
3 0.668 0.857 0.902 0.758
4 0.670 0.863 0.904 0.760
5 0.671 0.866 0.904 0.759
6 0.664 0.862 0.901 0.756

Table 5: Comparison results of different lengths in
Ruby. Bold: the best performance in the column.

the CAN mechanism and use a direct averaging
method to obtain the code representation. The re-
sults show that R@1 is only 0.546, R@5 is 0.751,
R@10 is 0.839, and MRR is 0.706. Compared
to the full model, the performance dropped sig-
nificantly, indicating the importance of the CAN
mechanism in capturing code representations and
effectively aligning the code with the query.

(ii) In the CS_T setting, we treat the query text
as an average vector. The results show an improve-
ment, with R@1 reaching 0.632, R@5 at 0.827,
R@10 at 0.891, and MRR at 0.724. While this
approach improves performance to some extent, it
still falls short of the full model, indicating that
preserving the context of the query text plays an
important role in achieving better performance.

(iii) In the CS_rln experiment, we remove the
instruction templates and directly concatenate all
information. The results show R@1 reaching 0.649,
R@5 at 0.870, R@10 at 0.900, and MRR at 0.746.
Although this method performs relatively well, it
still underperforms compared to the full model,
highlighting the key role that instruction templates
play in cross-modal reasoning.

(iv) Compared to other experiments, the full
model achieves the best results across all metrics,
with R@1 at 0.671, R@5 at 0.866, R@10 at 0.904,
and MRR at 0.759. This shows that the combina-
tion of all components in our method maximizes
the model’s performance, especially in code search
tasks, where complete context reasoning and in-
struction learning are crucial.

4.7 Effect of Prefix Length on Model
Performance

Table 5 reflects the impact of mapping code vector
representations to different prefix lengths on model
performance. We find that: (i) It can be observed
that as the prefix length increases, the model’s
scores across all four metrics also rise. When the
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Figure 3: Case study of sample outputs in JAVA.

prefix length is set to 4, the model shows improve-
ment in R@10 and MRR, with R@10 reaching
0.904 and MRR reaching 0.760. This suggests
that the model is better able to learn and capture
contextual information at this length.

(ii) When the prefix length is set to 5, the model
achieves its best results in R@1 and R@5, with
scores of 0.671 and 0.866, respectively, indicating
optimal performance for top-1 and top-5 retrieval
results. However, R@10 remains the same as at
length 4, and MRR is slightly lower than at length 4.
This may be due to the introduction of redundant or
inaccurate information, which affects the model’s
ability to learn from context.

(iii) When the prefix length increases to 6, al-
though the scores for R@1, R@5, and R@10 are
close to the highest values, overall performance
slightly declines. This suggests that longer pre-
fixes may introduce unnecessary information, nega-
tively impacting model performance. Therefore, an
appropriate prefix length can effectively enhance
model performance, while overly long prefixes may
introduce noise.

4.8 Case Study

Figure 3 presents the experimental results of our
model compared to the baseline models CoCoSoDa
and mAdamAdapter-UniXcoder on Java programs.
We observed the following: (i) Our model demon-
strates superior semantic understanding when han-

dling queries, while other baseline models (such
as CoCoSoDa and mAdamAdapter-UniXcoder)
failed to accurately grasp the core semantics of
the query. For instance, CoCoSoDa incorrectly
checked for the @Deprecated annotation, which
clearly deviates from the query requirements, and
mAdamAdapter-UniXcoder focused on field type
checks, neglecting the annotation on the construc-
tor, thus missing the query’s semantic needs.

(ii) Our model precisely captures every crucial
aspect of the query, showing exceptional recogni-
tion of fine-grained features, especially in the code
search task. In contrast, other models only focus on
superficial or irrelevant details, leading to incorrect
results.

5 Conclusion

In this paper, we propose a fine-grained code search
model that leverages co-attention networks (CAN)
to address the limitations of existing methods,
which typically average code and query represen-
tations, leading to the loss of critical details. Our
approach integrates a cross-modal encoder with
GraphCodeBERT for feature alignment, a mapping
layer with CAN to capture fine-grained interactions
between code and queries, and a classification layer
enhanced with instruction learning for contextual
reasoning. Through extensive experiments on mul-
tiple programming language datasets, our model
demonstrated improvements over state-of-the-art
methods, particularly in its ability to accurately
match code snippets with queries by focusing on
detailed semantic features.

6 Limitations

While our model has demonstrated improvements
across multiple programming language datasets,
there are still some limitations. First, the perfor-
mance of the model relies on large, high-quality
datasets, which may be difficult to obtain in certain
programming languages or domains. Additionally,
although the collaborative attention mechanism en-
hances the model’s ability to capture fine-grained
semantics, it also increases computational complex-
ity, particularly when dealing with large-scale code-
bases. Despite the excellent performance in our
experiments, the method has not yet been widely
tested in real-world development environments. Fu-
ture work will focus on optimizing the model’s ef-
ficiency in low-resource settings and validating its
effectiveness in practical applications.
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