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Abstract

Geocoding is a fundamental technique that
links location mentions to their geographic po-
sitions, which is important for understanding
texts in terms of where the described events
occurred. Unlike most geocoding studies that
targeted coarse-grained locations, we focus on
geocoding at a fine-grained point-of-interest
(POI) level. To address the challenge of finding
appropriate geo-database entries from among
many candidates with similar POI names, we
develop a text embedding-based geocoding
model and investigate (1) entry encoding rep-
resentations and (2) hard negative mining ap-
proaches suitable for enhancing the model’s
disambiguation ability. Our experiments show
that the second factor significantly impact the
geocoding accuracy of the model.1

1 Introduction

Geocoding is a fundamental technique that identi-
fies the geographic positions, typically, coordinates,
of real-world locations from reference expressions
(mentions) written in natural languages. Geocod-
ing results are useful for accurately understand-
ing where the events in the texts occurred, thereby
paving the way for various applications, including
tourism management, disaster management, and
disease surveillance (Hu et al., 2022).

Geocoding approaches can be classified into
two types: (i) direct positioning approach and (ii)
linking-based approach. The direct positioning
approach directly identifies the geographic coordi-
nate (or tile) of a location of interest (Gritta et al.,
2018; Kulkarni et al., 2021; Huang et al., 2022).
The linking-based approach searches in the geo-
graphic database (geo-DB) and identifies an entry
with its coordinate corresponding to a location (Li
et al., 2022, 2023; Zhang and Bethard, 2023; Hal-
terman, 2023; Zhang et al., 2024; Gomes et al.,

1We will release our code at https://github.com/
naist-nlp/poi-geocoding
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Figure 1: The difference in focus between previous
studies and ours: coarse-grained locations for the former
and fine-grained POIs, which have many candidates
with similar names, for the latter.

2024). Most existing studies, regardless of the type
of approach, have focused on coarse-grained loca-
tions, such as administrative areas, not fine-grained
points-of-interest (POIs), such as facilities and land-
marks.2 One probable reason is the limited avail-
ability of facility mentions and entries in public
geocoding resources. Recent geocoders (Li et al.,
2023; Halterman, 2023; Zhang and Bethard, 2023;
Zhang et al., 2024; Gomes et al., 2024) have often
been developed using popular geocoding datasets,
for example, the LGL corpus (Lieberman et al.,
2010), TR-News (Kamalloo and Rafiei, 2018), and
GeoWebNews (Gritta et al., 2020), which are news
text corpora annotated with entries in the GeoN-
ames3 database. However, news texts typically
mention coarse-grained locations more frequently
than fine-grained ones, and GeoNames contains a

2We sorely refer to both artificial facilities and natu-
ral/historic landmarks as “facilities.”

3https://www.geonames.org/

https://github.com/naist-nlp/poi-geocoding
https://github.com/naist-nlp/poi-geocoding
https://www.geonames.org/
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relatively small number of facility entries.4

Detailed activities and events are described in
text along with fine-grained POI mentions, thus pre-
dicting the geographic positions of such mentions
is crucial for achieving practical applications, e.g.,
tourist spot recommendation. Motivated by this ob-
servation, our study addresses POI-level geocoding,
which targets facility mentions as well as location
mentions. The difference in focus between previ-
ous studies and ours is illustrated in Figure 1.

A major challenge in fine-grained POI geocod-
ing is to identify appropriate entries from many
facility names with similar strings, containing the
same place names, e.g., 富士駅 (Fuji Station),
富士山駅 (Mt. Fuji Station), and 富士山下駅
(Fujiyama-shita Station, meaning Station at the
Foot of Mt. Fuji). This also implies that sim-
ple approaches based on string match and popu-
lation heuristics,5 both of which have been used in
many geocoding studies for coarse-grained loca-
tions, would not be able to effectively disambiguate
candidate entries of fine-grained POIs. Address-
ing this issue necessitates the development of a
geocoder that can distinguish subtle differences
among similar entries while carefully considering
mention contexts. In this study, we explore a text
embedding-based geocoder, focusing on two tech-
nical points: (1) how to encode key-value style
attributes of geo-DB entries, which typically have
no textual descriptions, and (2) how to penalize sim-
ilar but incorrect entry predictions during model
training.

Our experimental findings regarding the
geocoder’s accuracy include the following: (1) en-
try vector representations with explicit information
of all attributes improved the accuracy to some
extent, and (2) hard negative mining approaches
significantly impact the accuracy; training with
negative examples sampled based on POI name
similarity was most effective among the aspects
we investigated.

4Our preliminary investigation using an existing travelogue
dataset (Higashiyama et al., 2024b) shows that GeoNames
only covered 40% of the gold entries for randomly-sampled 50
facility mentions, whereas another geo-DB, OpenStreetMap,
covered 86% of them.

5It is difficult to obtain comparable population indicators
for various types of facilities.

2 Text Embedding-Based Geocoder

2.1 Task Definition
We treat geocoding as a task of identifying an
appropriate geo-DB entry for each input men-
tion. Formally, given a tokenized document x =
(x1, . . . , xn) with a mention span m = (is, ie)
within it, where is and ie (1 ≤ is ≤ ie ≤ n)
indicate the first and last token indices within the
span, a geocoding system is required to select an
entry e from a geo-DB E = {ej}|E|j=1.

2.2 Input Representations
We use multilingual E56 (Wang et al., 2024a,b)
as our backbone text embedding model. This
model has been pretrained with contrastive learn-
ing on massive multilingual text pairs and has
demonstrated strong performance. Notably, mul-
tilingual E5 has achieved state-of-the-art results
in the Japanese text embedding benchmark.7 Fur-
thermore, its contrastive learning-based pretraining
aligns well with our fine-tuning approach, which is
expected to improve performance.

Mention Vector As the text representation of a
mention of interest, we use a tokenized text with
document context concatenated on both sides of
the mention up to the input length limit, x =
(x1, . . . , xn),8 instead of the entire document.
Then, the text of n tokens is converted into a hid-
den vector sequence H(t) = (h

(t)
1 , . . . ,h

(t)
n ) via

a Transformer encoder, and the mention vector is
obtained using either of the following ways:

• Average pooling of token vectors over the en-
tire text: hm = 1

n

∑n
i=1 h

(t)
i ,

• Average pooling of token vectors within the
mention span: hm = 1

ie−is+1

∑ie
i=is

h
(t)
i .

Geo-Database Entry Vector We assume that
geo-DB entries have attributes, each of which cor-
responds to a key-value pair, e.g., name=興福寺
(Kofukuji temple), prefecture=奈良県 (Nara), and
building=temple. Because how to represent entries
as a text is non-trivial, we use the following two
types of text representations:

6https://huggingface.co/intfloat/
multilingual-e5-base

7https://github.com/sbintuitions/JMTEB/tree/
main

8Following Wang et al. (2024a), we added the prefix text
“query: ” and “passage: ” to the beginning of the mention and
entry text representations, respectively. We set the length limit
as 512 in our experiments. Note that x1 and xn are special
tokens of the beginning and end of the context, respectively.

https://huggingface.co/intfloat/multilingual-e5-base
https://huggingface.co/intfloat/multilingual-e5-base
https://github.com/sbintuitions/JMTEB/tree/main
https://github.com/sbintuitions/JMTEB/tree/main
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• Attribute key-value string concatenation with
the special separate token [SEP]: e.g.,
“name=興福寺 [SEP] prefecture=奈良県
[SEP] building=temple”,9

• Natural language template filled with attribute
values: e.g., “興福寺は奈良県に位置して
います。 [SEP] building=temple”.10

Then, the text of ℓ tokens is converted into a hidden
vector sequence H(d) = (h

(d)
1 , . . . ,h

(d)
ℓ ) via the

encoder, and the entry vector he is obtained in
similar ways to those for mention vectors, namely,
the average pooling of token vectors over the entire
text or those within the span of the name value text.

2.3 Candidate Entry Ranking

Given a mention of interest m and the set of candi-
date entries Em ⊆ E ,11 the score s for each candi-
date entry e ∈ Em is calculated as the inner product
between the mention and entry vectors:

s(m, e) = hm · he. (1)

When predicting top-k entries for a mention, the
entries with the top-k scores are selected.

2.4 Training with Negative Examples

Positive training examples are pairs of mentions
and their gold entries. For negative examples, sev-
eral approaches can be used. In this study, we use
two types of negatives: in-batch random negatives
and hard negatives (Gillick et al., 2019).12

In-Batch Random Negatives Assume a train-
ing mini-batch B = {(mb, eb)}

|B|
b=1 ⊂ MB × EB ,

where MB and EB indicate the set of all men-
tions and their gold entries in B, respectively. For
each mention mb ∈ MB , we use pairs with the
gold entries of other in-batch mentions (mb, eb′)
(eb′ ∈ EB \ {eb}) as in-batch random negatives.

Hard Negatives As illustrated in Figure 2, we
generate hard negatives using a popular sparse
lexical search algorithm, BM25 (Robertson et al.,

9In practice, we replace [SEP] with </s>, which is defined
as the separator symbol in the multilingual E5 tokenizer.

10The template “{x}は{y}に位置しています。” means
“{x} is in {y}.” We applied this template only to name and
address-related attributes and adopted key-value-style strings
for the remaining attributes.

11In the experiments, we used the full geo-DB E as the set
of candidate entries Em for all mentions.

12The purpose of introducing hard negatives is similar to
Gillick et al., but our sampling method is different from theirs.
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Figure 2: Generation flow of hard negatives.

1995),13 as follows. First, we represent each geo-
DB entry as a certain string explained later and cre-
ate a search index from these “documents.” Next,
for each training mention, we search and store the
top-N results prior to training using the same for-
mat string of its gold entry as the “query.” During
model training, for each epoch, we randomly select
an entry from the N saved entries (we call them a
hard negative pool) for each mention mi and add
the entry as a hard negative ehard

i for the mention.
Specifically, we use the following three criteria for
hard negative search,14 focusing on one or more
specific attribute types:

• Name: A query/document entry is represented
as a string where its name value is tokenized
by the encoder’s tokenizer. For example, an
entry whose name is興福寺 (Kofukuji tem-
ple) is converted into a token sequence [“_”,
“興”, “福”, “寺”].15

• Address: A query/document entry is repre-
sented as a string where its address-related
attribute16 values are independently tokenized
by the tokenizer and concatenated. For exam-
ple, an entry with address-related attributes
prefecture=奈良県 (Nara Prefecture) and
city=奈良市 (Nara City) is converted into

13We used an implementation by Lù (2024), BM25-Sparse
(https://github.com/xhluca/bm25s).

14Regardless of the string representation used here, the entry
text representations explained in §2.2 are used for calculating
embedding vectors.

15The character “_” (U+2581) is the meta symbol that rep-
resents a whitespace.

16We regard the following attributes as address-related ones:
prefecture, city, suburb, quarter, neighbourhood, and road.

https://github.com/xhluca/bm25s
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Set Doc Sent Mention
All FAC LOC LINE

Train 70 4,254 1,544 835 559 150
Dev 10 601 223 133 79 11
Test 20 1,469 457 235 200 22

Table 1: The numbers of documents (Doc), sentences
(Sent), and mentions in ATD-MCL.

[“_”, “奈良”, “県”, “_”, “奈良”, “市”].
• Misc: A query/document entry is converted

into a token sequence where the key-value
strings of its miscellaneous attributes (at-
tributes rather than name and address-related
ones) are concatenated. For example, an
entry with miscellaneous attributes build-
ing=temple and amenity=place_of_worship is
converted into [“building=temple”, “amenity=
place_of_worship”].

• Mixture of attribute types: A query/document
entry is converted into a token sequence that
concatenates two or three of name, address,
and misc-style token sequences.

The use of a specific type of string representation
indicates that entries similar to the gold entries in
terms of a targeted attribute type are penalized as
negative examples, so that the geocoder does not
predict such entries. Thus, hard negatives based
on different types of string representations would
train the model’s discriminative ability in different
directions.

Training Loss During training, we update the
encoder’s parameters for each mini-batch B by
minimizing the following loss LB based on the
score s in Eq. (1):

LB =
1

|B|

|B|∑
b=1

{−s(mb, eb)

+ log

|B|∑
b′=1

{exp(s(mb, eb′)) + exp(s(mb, e
hard
b′ ))}}.

3 Experimental Settings

We performed geocoding experiments to investi-
gate the accuracy of our text embedding-based
model. In this section, we describe the common
setups of our experiments in §3.1–3.4 and present
the specific experimental scenarios in §3.5.

3.1 Dataset

We used ATD-MCL17 (Higashiyama et al., 2024b),
which is a Japanese travelogue dataset18 (Arukikata.
Co., Ltd., 2022; Ouchi et al., 2023) annotated with
geographic mentions and their corresponding en-
tries of a geo-DB, OpenStreetMap (OSM).19 We
converted the original coreference cluster-level ex-
amples20 with best_ref_type=OSM into mention-
level examples and targeted only mentions of
proper nouns (e.g., “Nara station”) with location
(LOC), facility (FAC), and line (LINE) types, exclud-
ing mentions of general noun phrases (e.g., “the
station”) and deictic expressions (e.g., “there”). As
shown in Table 1, this dataset is suitable for a POI
geocoding task because it contains the large num-
ber of facility mentions.

We adopted the geo-DB preprocessing to group
together entries that refer to almost the same real-
world locations by assigning the same group ID
string, which consists of attribute key-value pairs,
following Higashiyama et al. (2024b). This re-
sulted in 1.8M entry groups. Thus, we adopted a
setting where entry groups should be predicted as
linking units rather than individual entries for given
mentions.21

3.2 Metrics

We used Mean Reciprocal Rank (MRR) and
recall@k (R@k) as the evaluation metrics for the
geocoding task, by treating it as an entry ranking
problem targeting all entries (entry groups, to be
precise) in the geo-DB. The MRR score for q ex-
amples is calculated as follows:

MRR =
1

q

q∑
i=1

1

rank(mi, ei)
,

where mi, ei, and rank(mi, ei) indicate a mention,
its gold entry, and the rank of ei among all entries
based on the model’s prediction scores regarding
mi, respectively. For recall@k, the prediction is
regarded as correct if one of the predicted k entries
contains the gold entry for each mention.

17http://github.com/naist-nlp/atd-mcl
18https://www.nii.ac.jp/dsc/idr/arukikata/
19https://www.openstreetmap.org/
20In the dataset, a set of mentions that refer to the same

location constitutes a coreference cluster.
21An example of entry group ID: “奈良県|city=奈良市|

quarter=樽井町|road=猿沢遊歩道|amenity=cafe” (Star-
bucks Coffee at Sarusawa pathway, Tarui-cho, Nara City, Nara
Prefecture).

http://github.com/naist-nlp/atd-mcl
https://www.nii.ac.jp/dsc/idr/arukikata/
https://www.openstreetmap.org/
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EntRep NegCrite R@1 R@5 R@10 MRR

Leven - - 0.317 0.588 0.667 0.443
BM25 - - 0.338 0.618 0.700 0.465

E5

KV Random 0.465 (±0.031) 0.777 (±0.050) 0.844 (±0.037) 0.602 (±0.033)

KV Name & Addr & Misc 0.570 (±0.024) 0.827 (±0.004) 0.875 (±0.004) 0.683 (±0.014)

Template Random 0.478 (±0.022) 0.788 (±0.026) 0.850 (±0.011) 0.613 (±0.021)

Template Name & Addr & Misc 0.573 (±0.050) 0.828 (±0.052) 0.877 (±0.030) 0.685 (±0.045)

Table 2: Performance of the string similarity baselines and E5-based model with different settings for two represen-
tative aspects, i.e., entry text representations (EntRep) and hard negative mining criteria (NegCrite), on the test set.
The best scores are indicated in bold, and second-best scores are underlined.

3.3 String Similarity Baselines
We use two types of baseline systems that rank en-
tries based on string similarities: BM25 and the
Levenshtein distance. The BM25 baseline scores
candidate entries based on each query mention
string, where entries are represented by only name
values and tokenized by the encoder’s tokenizer,
in the same manner as that for name-style hard
negative sampling in §2.4. The Levenshtein base-
line calculates the score based on the Levenshtein
distance (Levenshtein, 1966) dLevenshtein between
each mention text and a candidate entry, which is
represented by only name value. The normalized
Levenshtein distance between mention m and entry
e is calculated as follows:

dLevenshtein(str(m), str(e))
max(len(str(m)), len(str(e)))

,

where str(·) and len(·) are functions that return the
string representation and length of an argument,
respectively.

As the evaluation metrics for these baselines,
we calculate the expected recall value following
Higashiyama et al. (2024a) and the expected MRR
value based on mention-level MRR for mention mi

(MRRi) as follows:

MRRi =
1

|Ei|

|Ei|∑
j=1

1

rank(mi, ej)
,

Ei = {ej | s(mi, ej) = s(mi, ei)}.

3.4 Model Training Settings
We fine-tuned the pretrained model, multilingual
E5 (base), with the hyperparameter settings in Ap-
pendix A, and selected the model checkpoint with
the best MRR score on the development set. We
performed model fine-tuning three times with dif-
ferent random seeds for each setting and report
mean scores for the three runs, unless otherwise
specified.

3.5 Experimental Scenarios
In our experiments with the text embedding-based
geocoder, we focused on two aspects, input repre-
sentations and hard negative mining, each of which
consists of two sub-aspects, as follows:

1. Input representations (§2.2):
(a) entry text representations, and
(b) mention/entry vector pooling method.

2. Hard negative mining (§2.4):
(a) mining criteria, and
(b) pool size.

Evaluating all combinations of different settings for
these aspects is computationally expensive. Thus,
we evaluated our model for each aspect on the de-
velopment set, by varying the settings of one aspect
at a time while using the fixed default settings of the
other aspects (shown in Appendix B), which were
determined based on preliminary experiments. The
experiments in §4 show the results of the model
with each possible settings for the focusing aspect
and default settings for the other aspects, except
for the main experiments (§4.1).

4 Results

4.1 Main Results
Table 2 shows the main experimental results (mean
± standard deviation for each metric) on the test
set, which includes results of the E5-based model
with different settings for representative aspects,
i.e., entry text representation (EntRep) and hard
negative mining criteria (NegCrite),22 as well as the
results of string similarity baselines. The evaluated
settings for the E5-based model include key-value
string concatenation (KV) and natural language

22For the remaining aspects, we used the best settings on
the development set: the mention span average pooling for
mention vectors, the entire text average pooling for entry
vectors, and 40 for hard negative pool size N .
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EntRep NegCrite R@1
FAC LOC LINE

Leven - - 0.335 0.311 0.184
BM25 - - 0.361 0.302 0.417

E5

KV Random 0.477 0.470 0.303
KV N&A&M 0.594 0.552 0.485

Template Random 0.467 0.490 0.485
Template N&A&M 0.591 0.568 0.424

Table 3: Performance of the baselines and E5-based
model for each entity type on the test set. “N&A&M”
indicates the mixture criterion of three attribute types,
i.e., name, address, and misc.

template (Template) for EntRep, and the mixture
criterion of three attribute types (Name & Address
& Misc) for NegCrite. For comparison, we also
evaluated the random criterion, which stores ran-
dom N entries from all candidate entries for each
training mention as a hard negative pool.

The results indicate the following three find-
ings. (1) The E5-based model outperformed the
string similarity baselines by up to 0.235 points
in R@1 and 0.220 points for MRR, demonstrat-
ing the strong representational capability of the
text embedding model. (2) The selection criteria
for hard negatives had a significant impact on per-
formance, for example, approximately 0.1 point
improvements in R@1, considering that the ran-
dom criterion used the same number of negatives
as the mixture criterion. (3) Using either of two
entry text representations had little impact on per-
formance, which is unsurprising given that both
contain equivalent information.

Results of Another Dense Retrieval Model The
aspects investigated in this study have room for fur-
ther exploration using alternative modeling frame-
works other than the text embedding model. Thus,
we also evaluated another modeling framework: bi-
encoder model (Wu et al., 2020) with BERT (De-
vlin et al., 2019). 23 As described in Appendix D,
we observed that the findings for the BERT-based
model were almost consistent with those for the
E5-based model, particularly demonstrating the im-
portance of the selection criteria for hard negatives.

Results for Each Entity Type Table 3 shows
the performance of the same geocoders as those
in Table 2 for each entity type. A similar trend in
accuracy across methods was observed, as in the
overall results in Table 2, except for line, which

23We leave the introduction of the re-ranking step with the
cross-encoder for future work.

Name Addr Misc R@1 R@5 MRR

Random - - - 0.425 0.827 0.598
(a) ✓ - - 0.601 0.885 0.701
(b) - ✓ - 0.447 0.813 0.613
(c) - - ✓ 0.389 0.786 0.566
(d) ✓ ✓ - 0.575 0.843 0.700
(e) ✓ - ✓ 0.571 0.861 0.701
(f) - ✓ ✓ 0.393 0.770 0.554
(g) ✓ ✓ ✓ 0.649 0.891 0.755

Table 4: Performance of the E5-based model with dif-
ferent hard negative mining criteria on the dev set.

has only a small number of development examples
(i.e., 22). Additionally, the results indicate the fol-
lowing findings. (1) The string similarity baselines
achieved better accuracy for facility mentions than
for location mentions, indicating there is a higher
ratio of gold entries with names similar to mention
texts for facility than location. (2) Despite this fact
and the large number of facility training examples,
the E5-based model trained based on the random
criterion yielded similar or worse accuracy for fa-
cility mentions than for location mentions, suggest-
ing insufficient learning for facility mentions to
identify the correct candidate from among many
candidates with similar names.24 (3) However, the
E5-based model trained based on the mixture cri-
terion achieved larger improvements over the ran-
dom counterpart for facility mentions (0.117–0.124
points in R@1) than for location mentions (0.078-
0.082 points), suggesting that the mixture crite-
rion successfully selected hard negatives useful for
learning facility examples.

4.2 Comparison of Hard Negative Mining
Criteria

We compared possible hard negative mining crite-
ria, that is, all combinations where one or more at-
tribute types were selected from the three attribute
types: name, address, and misc. The results on the
development set are shown in Table 4.

The results indicate the following three findings.
(1) Compared to the random criterion, the crite-
ria without name attributes yielded slight improve-
ments or degradations. (2) The criteria with name
attributes (highlighted in pale purple background)
achieved significant performance improvements,
specifically, 0.146–0.224 point improvements in
R@1 over the random criterion and 0.128–0.256

24Actually, gold facility entities have more candidate entries
with the same or similar names than gold location entries as
discussed in Appendix §C.
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Mention Entry R@1 R@5 R@10 MRR

Entire Entire 0.617 0.877 0.921 0.729
Span Entire 0.620 0.883 0.927 0.734
Entire Span 0.586 0.861 0.906 0.707
Span Span 0.577 0.877 0.919 0.712

Table 5: Performance of the E5-based model with differ-
ent vector pooling methods, i.e., the entire text average
pooling or mention/name span average pooling, on the
dev set.

point improvements in R@1 over the counterpart
criteria without name attributes. (3) Although the
criteria with address and misc attributes did not
necessarily bring improvements, the criterion of
the mixture of three attribute types (g) achieved the
best performance.

The key finding (2) suggests that by using hard
negatives whose names are similar to those of gold
entries, the model had come to focus on mention
contexts and other entry attributes while avoiding
excessive dependence on mention text and entry
names. This is also supported by our observations
of the prediction examples on the development set.
For example, for a mention広島駅 (Hiroshima Sta-
tion), the model trained based on the name criteria
correctly predicted the gold entry representing the
Hiroshima railway station, with attributes name=広
島 (Hiroshima) and railway=station, but the model
trained based on the other criteria predicted incor-
rect entries, e.g., those with attributes name=広島
駅 and highway=bus_stop.

4.3 Effect of Hard Negative Pool Size

We investigated the impact of varying the size N
of hard negative pools among 10, 20, 40, and 80,
which correspond to the expected number of times
that each entry in a pool is actually selected as a
negative example is 2, 1, 0.5, and 0.25. The results
on the development set are shown in Figure 3. Com-
pared to the case where N = 0, which corresponds
to the model trained only with in-batch random
negatives, the model’s performance significantly
improved in all cases where N > 0. Additionally,
the best performance was achieved when N = 40,
and the degraded performance was observed when
N = 80. This suggests the importance of balanc-
ing the diversity of hard negatives and the reason-
ably high similarity between them and gold entries.

Figure 3: Performance (Recall@1) of the E5-based
model trained with hard negatives sampled from hard
negative pools with different size N on the dev set.

4.4 Comparison of Vector Pooling Methods

We evaluated the model with possible combinations
of vector pooling methods, where average pool-
ing over the entire text or that over mention/name
span was used for mention and entry vectors, re-
spectively. The results on the development set are
shown in Table 5. The results indicate that the
two pooling methods for mention vectors yielded
similar performance when those for entry vectors
were fixed. In contrast, for entry vectors, pooling
over the entire text achieved better performance
than the counterpart by 0.031–0.043 points in R@1
and 0.022 points in MRR. This result for entry vec-
tors further indicates that not only name but also
other attributes, such as address, are important for
distinguishing multiple entries with the same or
similar names. For the different trends in results
between the pooling methods for mention and entry
vectors, we present the following possible explana-
tion. Whereas token vectors within a mention span
may already contain information on useful context
via Transformer’s attention over natural language
text, token vectors within an entry name span may
not sufficiently contain information on attributes
outside the name because of non-optimal attention
over attribute key-value pair sequence.

4.5 Qualitative Analysis

We conducted an error analysis on the prediction re-
sults for the four model variants in Table 2. Table 6
shows these results for the development examples.

For example [1] of mention夫婦岩 (Meoto Iwa,
meaning the Wedded Rocks), the model trained
with hard negatives identified the correct entry in
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Gold Entry EntRep/NegCrite Top Predicted Entry Gold Entry Rank

[1]

KV/Random 夫婦岩 (Ichinoseki City, Iwate Pref.) 11
夫婦岩 KV/N&A&M 夫婦岩 (Ise City, Mie Pref.) 1

(Ise City, Mie Pref.) Template/Random 夫婦岩 (Ichinoseki City, Iwate Pref.) 12
Template/N&A&M 夫婦岩 (Ise City, Mie Pref.) 1

[2]

KV/Random 大三島環状線 12
大三島 KV/N&A&M 三島市 (Shizuoka Pref.) 13

(Imabari City, Ehime Pref.) Template/Random 大三島橋 (Imabari City, Ehime Pref.) 13
Template/N&A&M 大島大橋 3

[3]

来島海峡大橋; KV/Random 来島海峡大橋 (Imabari City, Ehime Pref.) 2
しまなみ海道 KV/N&A&M 来島海峡大橋 (Imabari City, Ehime Pref.) 4

サイクリングロード Template/Random 来島海峡大橋 (Imabari City, Ehime Pref.) 13
(Imabari City, Ehime Pref.) Template/N&A&M 来島海峡大橋 (Imabari City, Ehime Pref.) 89

Table 6: Prediction examples by the E5-based model on the dev set. The mentions are夫婦岩 (Meoto Iwa),大三
島 (Omishima), and来島海峡大橋 (Kurushima Kaikyo Bridges) for examples [1], [2] and [3], respectively. The
entries without prefecture or municipality information originally lacked that information.

Ise City, Mie Pref by leveraging the surround con-
text about Ise whereas the model trained only with
random negatives predicted an incorrect entry with
the same name in the different prefecture. This
indicates that training with hard negatives enabled
the model to focus not only name but also other
attributes, such as address-related ones.

For example [2] of mention大三島 (Omishima)
in Ehime Prefecture, all model variants failed to
predict the correct entry and some model variants
predicted entries in different prefectures. This ex-
ample is difficult because the input document did
not describe any prefectures and municipalities,
which is often the case in personal travelogues.

For example [3] of mention来島海峡大橋 (Ku-
rusima Kaikyo Bridges), all model variants pre-
dicted an almost correct entry that represents a reg-
ular bridge POI. However, the mention is annotated
with the gold entry that refers to the same bridge
but represents a bicycle path, しまなみ海道サ
イクリングロード (Shimanami Kaido Cycling
Road). This example is challenging but not impos-
sible to resolve because the context for the mention
includes descriptions related to cycling, which are
useful to identify the gold entry, as shown in Fig-
ure 6 (Appendix E).

5 Related Work

5.1 Geocoding
There exist two main approaches to geocoding: di-
rect positioning and linking-based approaches.

Direct positioning approach The direct posi-
tioning approach predicts geographic coordinates
or grids for given mentions. Gritta et al. (2018)

classify mentions into geodesic tiles using neu-
ral networks that encode lexical features, such as
mentions and their surrounding words, and popu-
lation information taken from an ontology. Kulka-
rni et al. (2021) adopt a similar approach but pre-
dict hierarchical multi-level regions without rely-
ing on gazetteer metadata. For predicting fine-
grained POIs, the direct positioning approach ne-
cessitates an overwhelming number of classes for
small grids.25 To tackle this problem, Huang et al.
(2022) propose a pretraining method for incorpo-
rating toponym and spatial knowledge and attempt
to predict a character sequence that efficiently en-
codes the multi-level cells for a POI.26

Linking-based approach The linking-based ap-
proach identifies the location for a mention by
choosing the most suitable entry from a geo-DB.
Many prior systems first perform lexical search to
collect candidates from a DB and then rank them by
using textual features for machine learning models,
such as LightGBM (Wang et al., 2019) and neural
networks (Zhang and Bethard, 2023; Halterman,
2023; Zhang et al., 2024). Notably, Li et al. (2023)
perform contrastive learning to relate linguistic and
geospatial contexts for language model pretraining.
Gomes et al. (2024) employ a Transformer-based
sentence encoder to sort candidate entries by co-
sine similarity. Our method is similar to those of
Li et al. (2023) and Gomes et al. (2024) but dif-
fers in (i) not performing candidate generation, (ii)

25For instance, the Earth’s surface is divided into 105
trillion S2 cells at level 22 (https://s2geometry.io/
resources/s2cell_statistics).

26Their experiments were conducted on proprietary data.

https://s2geometry.io/resources/s2cell_statistics)
https://s2geometry.io/resources/s2cell_statistics)
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exploiting geographic attributes rather than geospa-
tial contexts to represent geo-DB entries, and (iii)
mining hard negatives using entry attributes as well
as names. Particularly regarding (i), our geocoder
is not affected by the performance of candidate
generation,27 and vector-based retrieval during in-
ference can be accelerated by pre-indexing entries
and using an efficient search algorithm, such as
Hierarchical Navigable Small World.

5.2 Negative Sampling for Entity Linking
Linking-based geocoding can be regarded as a spe-
cial case of Entity Linking (EL). EL typically in-
volves two steps: (i) candidate generation and (ii)
reranking, where candidate generation is mainly
performed using frequency-based similarity calcu-
lations, such as BM25 (Logeswaran et al., 2019)
and TF-IDF (Angell et al., 2021).

Bi-encoder models (Gillick et al., 2019; Wu
et al., 2020; Humeau et al., 2020; Agarwal et al.,
2022), a well-known architecture for EL, often use
entries within the batch as in-batch negatives to
improve memory efficiency. However, Gillick et al.
(2019) demonstrated that incorporating not only
in-batch negatives but also hard negatives helps the
model learn by leveraging the context of the en-
try description. Hard negatives are often sampled
based on the predictions of models trained only
with in-batch negatives (Gillick et al., 2019; Wu
et al., 2020) or using the mention-mention similar-
ity graph (Agarwal et al., 2022).

In this study, we employed a shared E5 encoder
but adopted a framework similar to that of bi-
encoder EL models to encode representations of
mentions and entries and calculate the similarity be-
tween mention-entry pairs. Our model, trained with
hard negatives sampled using BM25 in a manner
similar to Logeswaran et al. (2019), exhibited bet-
ter performance than the counterpart model trained
only with in-batch random negatives. The model’s
performance is expected to improve further with
additional training through hard negatives sampled
based on the model’s own predictions, as demon-
strated by Gillick et al. (2019) and Wu et al. (2020).
We leave this for future work.

6 Conclusion and Discussion

This paper has presented a text embedding-based
geocoding model designed for the POI geocoding

27Gomes et al. (2024) report that the recall rate of candi-
date generation for toponym resolution was 90.2% for the
GeoWebNews dataset.

task. We explored entry encoding representations
and hard negative mining approaches for the model
through the extensive experiments, and our model
with the best configuration achieved a recall@1
of 0.573 and a recall@10 of 0.877 on the ATD-
MCL test set. The recall@1 score indicates that
approximately 40% of the top prediction results
are incorrect, suggesting room for further improve-
ment. However, the recall@10 score indicates that
the top 10 predictions contain the majority of the
correct entries. Introducing a detailed reranking
step of candidate entries, such as the cross-encoder
mechanism (Wu et al., 2020), could potentially lead
to more accurate geocoding.

Limitations

Our evaluation is based on a single dataset, which
consists of Japanese language travelogues and in-
cludes only annotated mentions referring to POIs
in Japan. Evaluating geocoding methods on more
diverse datasets, with a large number of facility
mentions, is necessary to ensure that such methods
are applicable across various domains, languages,
and POI areas.

Acknowledgments

We would like to thank the anonymous review-
ers for their constructive comments. This study
was supported by JSPS KAKENHI Grant Number
JP23K24904.

References
Dhruv Agarwal, Rico Angell, Nicholas Monath,

and Andrew McCallum. 2022. Entity linking
via explicit mention-mention coreference model-
ing. In Proceedings of the 2022 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4644–4658, Seattle, United
States. Association for Computational Linguistics.

Rico Angell, Nicholas Monath, Sunil Mohan,
Nishant Yadav, and Andrew McCallum. 2021.
Clustering-based inference for biomedical entity
linking. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2598–2608, Online. Association
for Computational Linguistics.

Arukikata. Co., Ltd. 2022. Arukikata travelogue dataset.
Informatics Research Data Repository, National Insti-
tute of Informatics. https://doi.org/10.32130/
idr.18.1.

https://doi.org/10.18653/v1/2022.naacl-main.343
https://doi.org/10.18653/v1/2022.naacl-main.343
https://doi.org/10.18653/v1/2022.naacl-main.343
https://doi.org/10.18653/v1/2021.naacl-main.205
https://doi.org/10.18653/v1/2021.naacl-main.205
https://doi.org/10.32130/idr.18.1
https://doi.org/10.32130/idr.18.1


7288

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional Transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Asso-
ciation for Computational Linguistics.

Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego
Garcia-Olano. 2019. Learning dense representa-
tions for entity retrieval. In Proceedings of the 23rd
Conference on Computational Natural Language
Learning (CoNLL), pages 528–537, Hong Kong,
China.

Diego Gomes, Ross S Purves, and Michele Volpi. 2024.
Fine-tuning Transformers for toponym resolution: A
contextual embedding approach to candidate ranking.
In Proceedings of The GeoExT 2024: Geographic
Information Extraction from Texts Workshop, pages
43–51.

Milan Gritta, Mohammad Taher Pilehvar, and Nigel Col-
lier. 2018. Which Melbourne? Augmenting geocod-
ing with maps. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1285–
1296.

Milan Gritta, Mohammad Taher Pilehvar, and Nigel Col-
lier. 2020. A pragmatic guide to geoparsing evalua-
tion: Toponyms, named entity recognition and prag-
matics. Language resources and evaluation, 54:683–
712.

Andrew Halterman. 2023. Mordecai 3: A neural geop-
arser and event geocoder. arXiv:2303.13675.

Shohei Higashiyama, Masao Ideuchi, and Masao
Utiyama. 2024a. Construction of the administrative
agency web document corpus for Japanese entity
linking [in Japanese]. IPSJ SIG Technical Report,
2024-NL-260(10):1–15.

Shohei Higashiyama, Hiroki Ouchi, Hiroki Teranishi,
Hiroyuki Otomo, Yusuke Ide, Aitaro Yamamoto, Hi-
royuki Shindo, Yuki Matsuda, Shoko Wakamiya,
Naoya Inoue, Ikuya Yamada, and Taro Watanabe.
2024b. Arukikata travelogue dataset with geographic
entity mention, coreference, and link annotation.
In Findings of the Association for Computational
Linguistics: EACL 2024, pages 513–532, St. Ju-
lian’s, Malta. Association for Computational Lin-
guistics.

Xuke Hu, Zhiyong Zhou, Hao Li, Yingjie Hu, Fuqiang
Gu, Jens Kersten, Hongchao Fan, and Friederike
Klan. 2022. Location reference recognition from
texts: A survey and comparison. arXiv:2207.01683.

Jizhou Huang, Haifeng Wang, Yibo Sun, Yunsheng
Shi, Zhengjie Huang, An Zhuo, and Shikun Feng.

2022. ERNIE-GeoL: A geography-and-language pre-
trained model and its applications in Baidu maps. In
Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD
’22, pages 3029–3039, New York, NY, USA. Associ-
ation for Computing Machinery.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In International Conference
on Learning Representations.

Ehsan Kamalloo and Davood Rafiei. 2018. A co-
herent unsupervised model for toponym resolu-
tion. In Proceedings of the 2018 World Wide Web
Conference, WWW ’18, page 1287–1296, Republic
and Canton of Geneva, CHE. International World
Wide Web Conferences Steering Committee.

Sayali Kulkarni, Shailee Jain, Mohammad Javad Hos-
seini, Jason Baldridge, Eugene Ie, and Li Zhang.
2021. Multi-level gazetteer-free geocoding. In
Proceedings of Second International Combined
Workshop on Spatial Language Understanding and
Grounded Communication for Robotics, pages 79–
88, Online. Association for Computational Linguis-
tics.

Xing Han Lù. 2024. BM25S: Orders of magni-
tude faster lexical search via eager sparse scoring.
arXiv:2407.03618.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions and reversals. Soviet
physics. Doklady, 10:707–710.

Zekun Li, Jina Kim, Yao-Yi Chiang, and Muhao Chen.
2022. SpaBERT: A pretrained language model
from geographic data for geo-entity representation.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 2757–2769.

Zekun Li, Wenxuan Zhou, Yao-Yi Chiang, and Muhao
Chen. 2023. GeoLM: Empowering language mod-
els for geospatially grounded language understand-
ing. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 5227–5240.

Michael D. Lieberman, Hanan Samet, and Jagan
Sankaranarayanan. 2010. Geotagging with local lexi-
cons to build indexes for textually-specified spatial
data. In 2010 IEEE 26th International Conference
on Data Engineering, pages 201–212. IEEE.

Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, Jacob Devlin, and Honglak Lee.
2019. Zero-shot entity linking by reading entity
descriptions. In Proceedings of the 57th Annual
Meeting of the Association for Computational
Linguistics, pages 3449–3460, Florence, Italy. As-
sociation for Computational Linguistics.

Hiroki Ouchi, Hiroyuki Shindo, Shoko Wakamiya, Yuki
Matsuda, Naoya Inoue, Shohei Higashiyama, Satoshi

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/K19-1049
https://doi.org/10.18653/v1/P18-1119
https://doi.org/10.18653/v1/P18-1119
https://doi.org/10.1007/s10579-019-09475-3
https://doi.org/10.1007/s10579-019-09475-3
https://doi.org/10.1007/s10579-019-09475-3
https://arxiv.org/abs/2303.13675
https://arxiv.org/abs/2303.13675
https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=235101&item_no=1
https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=235101&item_no=1
https://ipsj.ixsq.nii.ac.jp/ej/index.php?active_action=repository_view_main_item_detail&page_id=13&block_id=8&item_id=235101&item_no=1
https://aclanthology.org/2024.findings-eacl.35
https://aclanthology.org/2024.findings-eacl.35
https://doi.org/10.1145/3534678.3539021
https://doi.org/10.1145/3534678.3539021
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://doi.org/10.1145/3178876.3186027
https://doi.org/10.1145/3178876.3186027
https://doi.org/10.1145/3178876.3186027
https://doi.org/10.18653/v1/2021.splurobonlp-1.9
https://arxiv.org/abs/2407.03618
https://arxiv.org/abs/2407.03618
https://doi.org/10.18653/v1/2022.findings-emnlp.200
https://doi.org/10.18653/v1/2022.findings-emnlp.200
https://doi.org/10.18653/v1/2023.emnlp-main.317
https://doi.org/10.18653/v1/2023.emnlp-main.317
https://doi.org/10.18653/v1/2023.emnlp-main.317
https://doi.org/10.18653/v1/P19-1335
https://doi.org/10.18653/v1/P19-1335


7289

Nakamura, and Taro Watanabe. 2023. Arukikata
travelogue dataset. arXiv:2305.11444.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at TREC-3. Nist Special Publication
Sp, 109:109.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2024a. Text embed-
dings by weakly-supervised contrastive pre-training.
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024b. Mul-
tilingual E5 text embeddings: A technical report.
arXiv:2402.05672.

Xiaobin Wang, Chunping Ma, Huafei Zheng, Chu
Liu, Pengjun Xie, Linlin Li, and Luo Si. 2019.
DM_NLP at SemEval-2018 task 12: A pipeline
system for toponym resolution. In Proceedings
of the 13th International Workshop on Semantic
Evaluation, pages 917–923.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6397–6407, Online. Association for Computa-
tional Linguistics.

Zeyu Zhang and Steven Bethard. 2023. Improving to-
ponym resolution with better candidate generation,
Transformer-based reranking, and two-stage resolu-
tion. In Proceedings of the 12th Joint Conference on
Lexical and Computational Semantics (*SEM 2023),
pages 48–60.

Zeyu Zhang, Egoitz Laparra, and Steven Bethard.
2024. Improving toponym resolution by predict-
ing attributes to constrain geographical ontology
entries. In Proceedings of the 2024 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 2: Short Papers), pages 35–
44, Mexico City, Mexico. Association for Computa-
tional Linguistics.

https://arxiv.org/abs/2305.11444
https://arxiv.org/abs/2305.11444
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2402.05672
https://doi.org/10.18653/v1/S19-2156
https://doi.org/10.18653/v1/S19-2156
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2020.emnlp-main.519
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2023.starsem-1.6
https://doi.org/10.18653/v1/2024.naacl-short.3
https://doi.org/10.18653/v1/2024.naacl-short.3
https://doi.org/10.18653/v1/2024.naacl-short.3


7290

A Model Hyperparameters

Table 7 shows the hyperparameter values used for
fine-tuning the E5-based model.

Hyperparameter Value

Training epochs 20
Batch size 16
Weight decay 0.01
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-6
Learning rate 1e-5
Learning rate scheduler linear
Warmup ratio 0.06
Optimizer AdamW

Table 7: The hyperparameter values used for the E5-
based model.

B Default Model Settings

In the experiments focusing on specific aspects in
§4.2–4.4, we used the default settings in Table 8,
which were determined based on preliminary exper-
iments, except for settings of the focusing aspects.

Aspect Setting

Entry text representation Key-value string concat
Mention vector Mention span average pooling
Entry vector Entire text average pooling
Hard negative criterion Name
Hard negative pool size 20

Table 8: The default settings used for the E5-based
model in the experiments in §4.2–4.4.

C Candidate Entry Statistics

Figure 4 shows the distribution over the develop-
ment examples (mention-entry pairs) of the average
number of candidate entries (y-axis values) whose
normalized Levenshtein distance to the gold en-
tries’ names is less than or equal to the distance of
x-axis values (from 0 to 1, in increments of 0.1).
This figure can be interpreted as the generalized
degree of ambiguity of gold entries. Specifically,
the y-axis value indicates the number of candidates
with the same name as the gold entry when the x-
axis value is 0, and the number of candidates with
names similar to the gold entry when the x-axis
value is greater than 0. We observe that gold fa-
cility entries have more candidate entries with the
same or similar names than gold location entries.

Similarly to Figure 4, Figure 5 shows the dis-
tribution over the development examples of the

average number of candidate entries (y-axis val-
ues) whose normalized Levenshtein distance to the
mention text is less than or equal to the distance of
x-axis values (from 0 to 1, in increments of 0.1).
From this figure, we observe that, to some extent,
there are more candidate entries with names simi-
lar to the mention texts for facility examples than
location examples when the distance is between
approximately 0.3 and 0.9.

Figure 4: The distribution over the development ex-
amples of candidate entries in terms of the normalized
Levenshtein distance to the gold entries’ names.

Figure 5: The distribution over the development ex-
amples of candidate entries in terms of the normalized
Levenshtein distance to the mention texts.

D Experiments with BERT Bi-Encoder

As another dense retrieval model, we developed a
geocoding model with Japanese BERT28 based on
the bi-encoder framework (Wu et al., 2020). Unlike

28https://huggingface.co/tohoku-nlp/
bert-base-japanese-whole-word-masking

https://huggingface.co/tohoku-nlp/bert-base-japanese-whole-word-masking
https://huggingface.co/tohoku-nlp/bert-base-japanese-whole-word-masking
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EntRep NegCrite R@1 R@5 R@10 MRR

Leven - - 0.317 0.588 0.667 0.443
BM25 - - 0.338 0.618 0.700 0.465

BERT

KV Random 0.416 (±0.043) 0.729 (±0.070) 0.794 (±0.048) 0.552 (±0.051)

KV Name & Addr & Misc 0.596 (±0.037) 0.842 (±0.007) 0.872 (±0.007) 0.708 (±0.021)

Template Random 0.456 (±0.032) 0.774 (±0.011) 0.842 (±0.006) 0.595 (±0.023)

Template Name & Addr & Misc 0.607 (±0.015) 0.842 (±0.004) 0.877 (±0.006) 0.714 (±0.008)

E5

KV Random 0.465 (±0.031) 0.777 (±0.050) 0.844 (±0.037) 0.602 (±0.033)

KV Name & Addr & Misc 0.570 (±0.024) 0.827 (±0.004) 0.875 (±0.004) 0.683 (±0.014)

Template Random 0.478 (±0.022) 0.788 (±0.026) 0.850 (±0.011) 0.613 (±0.021)

Template Name & Addr & Misc 0.573 (±0.050) 0.828 (±0.052) 0.877 (±0.030) 0.685 (±0.045)

Table 9: Performance of the string similarity baselines, BERT-based model, and E5-based model with different
settings for two representative aspects, i.e., entry text representations (EntRep) and hard negative mining criteria
(NegCrite), on the test set. For both BERT- and E5-based models, the best scores and second-best scores across the
four settings are highlighted, respectively. Note that the results except for the BERT-based model are identical to
those in Table 2.

the E5-based model, two separate BERT encoders
(initialized from the same pretrained model check-
point) were used to model mention vectors and
entry vectors. Furthermore, the [CLS] token vec-
tors h(t)

1 and h
(d)
1 were used as the mention vector

hm and the entry vector he, respectively, instead
of applying average pooling of token vectors over
a specific span or the entire text.

Table 9 shows the experimental results on the
test set, where the results for Leven, BM25, and E5
are identical to those in Table 2. Almost consistent
with the discussion of the E5-based model in §4.1,
we observed the following: (1) the BERT-based
model outperformed the string similarity baselines,
(2) the selection criteria for hard negatives had a sig-
nificant impact on performance, and (3) the choice
between the two entry text representations had a
limited impact on performance. In the BERT-based
model, however, the template representation out-
performed the KV representation when the random
criterion was applied.

E Travelogue Example

Figure 6 shows fragment text in a travelogue in
the development set. Mentions are underlined and
contexts related to cycling is dashed underlined,
which are useful to identify the gold entries. As
explained in §4.5, for mention来島海峡大橋 (Ku-
rushima Kaikyo Bridges), all variants of the E5-
based model in Table 6 failed to predict the cor-
rect entry “来島海峡大橋;しまなみ海道サイク
リングロード” (Kurusima Kaikyo Bridges; Shi-
manami Kaido Cycring Road). For mention 伯
方・大島大橋 (Hakata-Oshima Bridge), a model
variant predicted the correct entry because there

展望台から見下ろす来島海峡大橋、とその歩行

者・自転車レーン。
橋に至るスロープも相当な登りだったけど、橋も
微妙に登っているのか、皆漕ぎがゆ～っくり。
今回は多々羅大橋～伯方・大島大橋間のみなの

で、次回ぜひ通ってみたいです。
遠くで見ると細かい吊が、近くだとかなり幅広。
すぐ隣では高速で車がビュンビュン、眼下には海

が広がり、わくわくしてしまいます。
人もまばらで、バーイシコー　バーイシコー♪
(クイーン)と歌いながら上機嫌。

Figure 6: Example of travelogue in the dev set. Men-
tions are underlined and contexts related to cycling is
dashed underlined, for example, “自転車レーン” (the
bicycle lane) and “皆漕ぎがゆ～っくり” (everyone is
pedaling (their bicycles) slowly).

are no candidates similar to the gold entry “伯方・
大島大橋;しまなみ海道サイクリングロー
ド” (Hakata-Oshima Bridge; Shimanami Kaido
Cycring Road).
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