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Abstract
Dataset pruning aims to select a subset of a
dataset for efficient model training. While
data efficiency in natural language processing
has primarily focused on within-corpus scenar-
ios during model pre-training, efficient dataset
pruning for task-specific fine-tuning across di-
verse datasets remains challenging due to vari-
ability in dataset sizes, data distributions, class
imbalance and label spaces. Current cross-
dataset pruning techniques for fine-tuning often
rely on computationally expensive sample rank-
ing processes, typically requiring full dataset
training or reference models. We address this
gap by proposing Swift Cross-Dataset Prun-
ing (SCDP). Specifically, our approach uses
TF-IDF embeddings with geometric median to
rapidly evaluate sample importance. We then
apply dataset size-adaptive pruning to ensure
diversity: for smaller datasets, we retain sam-
ples far from the geometric median, while for
larger ones, we employ distance-based strati-
fied pruning. Experimental results on six di-
verse datasets demonstrate the effectiveness of
our method, spanning various tasks and scales
while significantly reducing computational re-
sources. Source code is available at: https://
github.com/he-y/NLP-Dataset-Pruning.

1 Introduction

Deep learning progress has been fueled by mas-
sive datasets (Tan et al., 2024; Gadre et al., 2024),
but managing and training on such data poses
computational and storage challenges (Yang et al.,
2023). Dataset pruning, or coreset selection, aims
to identify a subset that achieves comparable model
performance to the full dataset (Mirzasoleiman
et al., 2020; Killamsetty et al., 2021), reducing
training and storage costs while maintaining model
effectiveness (Huang et al., 2021; Xia et al., 2022).
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Figure 1: Accuracy and time required for ranking
samples for SWAG, QNLI datasets with our proposed
method, EL2N, CCS, Forgetting at 50% pruning rate
and 70% pruning rate. Our method is significantly more
time-efficient and yields higher accuracy.

This challenge is particularly evident in language
model (LM) training, which involves two distinct
scenarios: pre-training and fine-tuning, each re-
quiring different data handling approaches. Data
for pre-training, like those used for BERT, com-
prise large-scale, unlabeled, and diverse corpora
like BookCorpus and English Wikipedia, collec-
tively containing over 3,300 million words (Devlin
et al., 2019). These corpora aim to facilitate the
learning of broad language representations. In con-
trast, datasets for fine-tuning for downstream tasks,
such as SWAG (113,000 examples) (Zellers et al.,
2018), are smaller, labeled, and task-specific, de-
signed to evaluate targeted abilities such as com-
monsense reasoning. Although dataset efficiency
techniques such as language filtering, quality as-
sessment, and deduplication (Albalak et al., 2024;
Longpre et al., 2024) are proposed for large-scale
pre-training corpora, they are not suitable for fine-
tuning.

While single-dataset fine-tuning benefits from
a narrow target distribution (Albalak et al., 2024),
establishing general dataset pruning rules for cross-

https://github.com/he-y/NLP-Dataset-Pruning
https://github.com/he-y/NLP-Dataset-Pruning
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Figure 2: Overview of the proposed method. We introduce the Frequency Distance (FD) score, in which we leverage
TF-IDF embeddings combined with geometric median calculations to swiftly assess sample importance. We propose
dataset size-adaptive pruning to enhance adaptability in cross-dataset setting.

dataset fine-tuning remains challenging due to the
diversity of natural language processing (NLP)
tasks. Common benchmarks reveal significant vari-
ations in task types, dataset sizes, and domains. For
instance, for fine-tuning datasets, training set sizes
range from just 2.49k examples (RTE) to 105k ex-
amples (QNLI), while task types span from single-
sentence classification (e.g., SST-2) to complex
inference tasks (e.g., SWAG).

This heterogeneity is further complicated by the
different data types, ranging from movie reviews to
news reports and Wikipedia articles. Such diversity
presents a unique challenge in developing pruning
strategies that can effectively generalize across the
spectrum of NLP tasks, underscoring the need for
data pruning approaches in cross-dataset scenarios.

Existing cross-dataset pruning methods require
computationally expensive sample ranking pro-
cesses. These methods require training to be run
on original data to collect pruning statistics, access
to reference models and label information (Fayyaz
et al., 2022; Zayed et al., 2023). As shown in Figure
1, these methods typically take around 60 minutes
to process standard datasets like SWAG, with more
complex approaches or larger datasets demanding
even more time. In contrast, our method achieves
comparable or superior performance in mere sec-
onds, regardless of dataset size or task complexity.
The superiority in time efficiency and performance
of our method is shown in Figure 1.

To tackle these problems, we introduce Swift
Cross-Dataset Pruning (SCDP). Specifically, our
approach introduces Frequency Distance (FD)
score, in which we leverage TF-IDF embeddings
combined with geometric median calculations to

swiftly assess sample importance. This tech-
nique offers two significant advantages. 1) Cross-
Dataset Generalizability: By using TF-IDF em-
beddings, our method captures the semantic im-
portance of words across various NLU tasks and
domains. The geometric median calculation then
provides a task-agnostic measure of centrality in
the embedding space. This combination ensures
that our approach is universally adaptable across
multiple datasets and task types, from language
inference to reasoning and beyond. 2) Compu-
tational Efficiency: Unlike existing cross-dataset
pruning methods that often require computationally
expensive processes such as model training, access
to reference models, or label information (Fayyaz
et al., 2022; Zayed et al., 2023), our approach al-
lows for rapid evaluation of sample importance.
The TF-IDF and geometric median calculations
can be performed efficiently on raw text data, sig-
nificantly reducing the computational overhead typ-
ically associated with sample ranking processes.

Furthermore, we apply dataset size-adaptive
pruning to ensure diversity for two distinct sce-
narios. For smaller datasets, we retain samples
far from the geometric median, preserving outliers
and edge cases to maintain diversity by keeping
"unusual" examples. For larger datasets, we select
samples from each stratum to maintain a balanced
representation of the data distribution while signifi-
cantly reducing the dataset size.

Our main contributions are:
• We propose Frequency Distance, a score that

uses TF-IDF embeddings and geometric me-
dian to swiftly rank samples.

• We propose dataset size-adaptive pruning to
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enhance adaptability in cross-dataset setting.
• We conduct extensive experiments on six di-

verse datasets, encompassing various tasks
such as paraphrase identification, natural lan-
guage inference, and reasoning. Our experi-
ments span a range of dataset sizes, demon-
strating the superior efficiency and perfor-
mance of our method in cross-dataset settings.

2 Related Work

Dataset Pruning for Vision Dataset. Early works
in dataset pruning focus its application in computer
vision tasks. Toneva et al. (2018) define forgetting
as the number of transitions from correct predic-
tion to incorrect prediction of a sample in training,
and use this to rank samples. Paul et al. (2021)
propose to use EL2N and GraNd scores obtained
from training period to rank samples. AUM (Pleiss
et al., 2020) is a metric that calculates the differ-
ence between the logit of the ground truth label
and the highest other logit. Coleman et al. (2020)
propose to use a small proxy model to obtain pre-
sentation for dataset pruning. These works require
training on original data and a pre-trained model
to obtain sample ranking metrics and are compu-
tationally expensive for large-scale models. On
sampling from ranking metrics, Zheng et al. (2023)
propose coverage-centric coreset selection, an al-
gorithm based on stratified sampling for dataset
pruning and achieve better performance at high
pruning rates for image classification tasks. Xia
et al. (2022) selects data points with scores that
are close to the score median to build a moderate
coreset.

Dataset Pruning for Language Model Pre-
training. Most previous works on data efficiency
for language tasks focus on the pre-training phase
of LMs. Common approaches for this task are
language filtering (Wenzek et al., 2020; Raffel
et al., 2020; Xue et al., 2021; Laurençon et al.,
2022), heuristic filtering (Rae et al., 2021; Xue
et al., 2021), data quality assessment (Du et al.,
2022; Marion et al., 2023), data deduplication (Lee
et al., 2022; Abbas et al., 2023; Tirumala et al.,
2024), toxic or explicit content filtering (Jansen
et al., 2022; Subramani et al., 2023; Maharana
et al., 2024). These methods address issues like
irrelevant content and data redundancy before the
model learns from the data, which is crucial in
LM pre-training. However, it is difficult to apply
these methods to cross-dataset scenarios, due to

differences in task target, use-case, dataset pruning
criterias. Dataset pruning in cross-dataset settings
is more difficult due to the wide range of tasks,
dataset sizes involved.

Dataset Pruning for Language Model Fine-
tuning. For fine-tuning phase of pre-trained LMs,
Attendu and Corbeil (2023) and Fayyaz et al.
(2022) study the application of EL2N and GraNd
scores to fine-tuning transformer-based language
models. Zayed et al. (2023) propose a new met-
ric based on EL2N which also use model logits to
prune samples for fairness. Yang et al. (2024) use
training trajectories from small models to select
samples for dataset pruning. Chen et al. (2024) try
to use strong LLMs such as ChatGPT to rate the
quality of samples. Maharana et al. (2024) create
a graph for the whole dataset, in which each node
represents a sample and is initiliazed with difficulty
score from model training. These methods require
extensive training time on original data and depend
on models to assess data importance, making them
computationally expensive.

3 Methodology

3.1 Task Description and Formulation

Given a training set of a fine-tuning task S =
(xi, yi)

N
i=1, where N ∈ N, xi represents the i-th

input and yi is its true label. Pruning rate r ∈ R,
where 0 < r < 1 represents the portion of dataset
that will be removed. The objective of dataset
pruning is to identify a coreset Sc ⊂ S where
|Sc| = (1− r)|S|, and when the model is trained
on Sc, it may still retain the highest possible per-
formance on the test set.

3.2 Sample Vectorization via TF-IDF

Term Frequency-Inverse Document Frequency (TF-
IDF) (Sparck Jones, 1972) is a numerical measure
that indicates the importance of a word within a spe-
cific document in relation to its occurrence across
a collection of documents, or corpora. TF-IDF is
ideal in this scenario because it captures the signifi-
cance of terms relative to the entire dataset while
being fast and scalable. Unlike transformer-based
embeddings like BERT (Devlin et al., 2019), which
focus on contextual similarity and are computation-
ally intensive, TF-IDF emphasizes term frequency
and rarity, making it efficient for identifying unique
and informative samples. This allows for effective
pruning strategies that preserve diverse and repre-
sentative samples.
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We use TF-IDF for unigrams to assess the sig-
nificance of a term in a sample by considering how
frequently it appears in that sample and how in-
frequently it appears across other samples in the
dataset. From the dataset S, we obtain the vo-
cabulary V = {w0, w1, ..., wn} which contains all
terms from all samples in dataset S, wj denotes the
j-th term in the vocabulary.

The term frequency for term wj in sample xi,
denoted as tf i,j ∈ R, is calculated as:

tf i,j =
f(wj , xi)∑

wk∈xi
f(wk, xi)

, (1)

where f(wk, xi) is the number of occurrences of
term wk in sample xi.

By concatenating all the term frequencies of
each term in sample xi, we get the term frequency
vector tf i ∈ Rn of sample xi as follows:

tf i = tf i,0 ⊕ tf i,1 ⊕ ...⊕ tf i,n. (2)

The inverse document frequency of a term in the
dataset idf j ∈ R is computed as:

idf j = log
N

1 + df (wj)
. (3)

where df(wj) is the number of samples from the
dataset that contains the term wj .

By concatenating all the inverse document fre-
quencies of each term, we get the term frequency
vector idf ∈ Rn as follows:

idf = idf0 ⊕ idf1 ⊕ ...⊕ idfn, (4)

Each sample xi is represented as a vector of TF-
IDF scores. The TF-IDF vector ti ∈ Rn for sample
xi is given by:

ti = tf i ⊙ idf , (5)

where ⊙ denotes the element-wise product opera-
tion of two vectors.

3.3 Frequency Distance Score
Due to the sparse nature of TF-IDF representations
in datasets, clustering methods, as previously used
for dataset pruning (Das and Khetan, 2023; Yang
et al., 2024), cannot be applied. Therefore, we
propose Frequency Distance (FD), a new distance-
based scoring metric with geometric median, which
calculates distance of each sample in the embed-
ding space to the geometric median. This score

Algorithm 1 Dataset-size adaptive pruning

Inputs: S = {(xi, yi)}ni=1: original dataset; D =
{FD(xi)}ni=1: set of calculated Frequency Dis-
tance scores; r: dataset pruning rate; k: the
number of strata.

Outputs: Sc: the selected coreset
function SIZEADAPTIVEPRUNING(S, D, r, k)

if (1− r)|S| > 1500 then
R1, R2, ..., Rk ← splits scores from D

into k ranges with even width
B ← {Bi: Bi consists of samples whose

scores are in Ri}
m← n× (1− r)
Sc ← ∅
while B ̸= ∅ do
Bmin ← argmin

B∈B
|B|

mB ← min{|Bmin|, ⌊ m|B|⌋}
SB ← randomly sample mB samples from

Bmin

Sc ← Sc ∪ SB

B ← B \ {Bmin}
m← m−mB

end while
else if (1− r)|S| ≤ 1500 then

D′ ← argsort(D)
Sc ← D′[(1− r)|S| :]

end if
end function

represents the relative position of each sample with
regard to the geometric median of the whole dataset
in the embedding space.

From the set of N points {t0, t1,...,tN} which
represent the embeddings of each document, we
find the geometric median point g∗ ∈ Rn that min-
imizes the sum of L2 distances to every point:

g∗ = argmin
g∈Rn

f(g),

where f(g) =
∑

i∈[1,N ]

||g − ti||2.
(6)

Computing the geometric median is challenging,
and no linear time algorithm currently exists (Bajaj,
1988). Consequently, we employ an approximation
technique proposed by Vardi and Zhang (2000)
to estimate the geometric median. This approach
yields an ϵ-accurate geometric median, satisfying
the condition f(gϵ) ≤ (1 + ϵ)f(g∗).

For each sample xi in the dataset, we obtain FD
score by calculating the L2 distance of its embed-
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Dataset Metric Task Size

RTE Accuracy NLI 2.49k

MRPC Accuracy Paraphrase 3.67k

CoLA Matthews
corr.

Grammatical
Acceptabil-

ity

8.55k

SST-2 Accuracy Sentiment
Analysis

67.3k

SWAG Accuracy Reasoning 73.5k

QNLI Accuracy QA/NLI 105k

Table 1: Evaluation metric, task and original size of train
set of the datasets used in experimental evaluation. QA:
Question Answering, NLI: Natural Language Inference.

ding to the geometric median di ∈ R as follows:

FD(xi) = ||ti − gϵ||2. (7)

For each sample, we use Eq. 7 to calculate its
score, to obtain the set of score of every sample
D = {FD(xi)}Ni=1. This metric is used to evaluate
data points in the training set to perform dataset
pruning.

3.4 Dataset size-adaptive pruning

In our cross-dataset setting, to ensure performance
across diverse scales of datasets, we present dataset
size-adaptive pruning, a novel sampling method to
choose samples from set of FD scores, as presented
in Algorithm 1. By applying dataset size-adaptive
pruning, we ensure diversity for two distinct sce-
narios.

For smaller datasets, every sample could poten-
tially carry unique information crucial for model
performance. We retain samples far from the geo-
metric median, preserving outliers and edge cases.
This maintains diversity by keeping "unusual" ex-
amples that, while rare, are crucial for comprehen-
sive model training and incentivize the understand-
ing of rare or complex patterns.

For larger datasets, the challenge lies in main-
taining a balanced representation of the data dis-
tribution while significantly reducing the dataset
size. By selecting samples from each stratum fol-
lowing Zheng et al. (2023), we ensure a diverse
range of examples in the pruned dataset, from typi-
cal central cases to unique peripheral ones. Dataset
size-adaptive pruning is applied as follows:
• Case 1: For small post-pruning coreset size,

where (1− r)|S| ≤ 1500, keeping furthest sam-
ples is the preferred strategy. From the set of

PR EL2N AUM Forgetting CCS Ours

RTE

50% 45.84 45.72 47.53 50.78 55.83
70% 43.96 45.00 45.12 48.49 57.40

MRPC

50% 68.54 68.38 74.58 77.77 83.00
70% 68.38 68.38 70.09 71.64 75.73

CoLA

50% 12.90 0.00 43.94 46.38 45.30
70% 0.01 0.00 4.05 36.86 43.39

SST-2

50% 90.51 90.97 90.75 90.02 90.74
70% 88.79 88.99 89.90 89.52 90.21

SWAG

50% 55.76 50.54 61.40 64.57 65.43
70% 28.14 23.83 53.17 61.82 63.54

QNLI

50% 83.88 84.47 86.50 86.50 87.19
70% 66.53 42.68 75.94 83.88 85.52

Table 2: Overall result of baselines and our method.
Pruning rate (PR) is the percentage of data that is re-
moved from full training data during dataset pruning.
The best results are highlighted in bold.

calculated FD scores D, this strategy keeps the
samples furthest to geometric median as coreset
Sc.

• Case 2: For middle to large post-pruning core-
set size, where (1 − r)|S| > 1500, since we
have enough representative samples in each stra-
tum, we use stratified sampling to ensure that
the pruned dataset retains a representative mix of
samples across different strata.

4 Experiments

4.1 Experiment Settings

Evaluation Datasets. We experimented on six
natural language understanding datasets, including
RTE, QNLI, CoLA, MRPC, SST-2 from the GLUE
benchmark (Wang et al., 2019), SWAG (Zellers
et al., 2018). The task and evaluation metric of each
dataset is listed in Table 1. The selected datasets
have a large variance in size of samples and has
a wide variety of tasks, which demonstrates the
universal effectiveness of our method.

Model settings. We fine-tune pre-trained Dis-
tilBERT (Sanh et al., 2019) in all experiments. A
task-specific head is added to the final layer of
DistilBERT. First, we use the proposed method to
prune and obtain the remaining coreset and fine-
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Pruning rate 10% 30% 50% 70%

RTE

Sentence-BERT 57.03 57.88 55.83 49.81
TF-IDF 61.85 57.39 55.83 57.40

MRPC

Sentence-BERT 84.47 83.33 81.78 72.87
TF-IDF 84.55 83.41 83.00 75.73

CoLA

Sentence-BERT 49.53 47.39 45.65 41.58
TF-IDF 49.43 48.09 45.30 43.39

SST-2

Sentence-BERT 90.63 90.71 90.21 89.44
TF-IDF 90.97 91.13 90.74 90.21

SWAG

Sentence-BERT 67.09 66.63 64.57 63.47
TF-IDF 67.45 66.68 65.43 63.54

QNLI

Sentence-BERT 89.01 87.80 87.21 85.30
TF-IDF 89.10 88.27 87.19 85.52

Table 3: Ablation study for embedding methods. The
best results are highlighted in bold.

tune DistilBERT with the coreset. We fine-tune
DistilBERT on 3 epochs with an initial learning
rate of 5e − 5 with cosine annealing scheduler
(Loshchilov and Hutter, 2016), batch size 32, using
AdamW optimizer (Loshchilov and Hutter, 2019).

Pruning settings. For geometric median approx-
imation, we use ϵ = 1e−5. For stratified sampling,
we set the number of strata to k = 100.

Baselines. We compare our method against five
baselines, four of which are SOTA methods for
dataset pruning. We use (1) Random: we randomly
select samples to form the coreset, (2) AUM (Pleiss
et al., 2020), (3) EL2N (Paul et al., 2021), (4) For-
getting (Toneva et al., 2018), (5) CCS (Zheng
et al., 2023): coverage-centric coreset selection
with AUM as the importance score. All exper-
iments are run three times and average score is
reported in this paper.

4.2 Experimental Results

Main Experiments. The evaluation results of the
baseline methods are compared to our proposed
method. We conduct experiments on multiple prun-
ing rates to investigate how our method perform
at different data compression rates. In Table 2,
we present the performance on all datasets at 50%
and 70% pruning rates. Full results at 10%, 30%,
50% and 70% over all datasets are presented in

Pruning rate 10% 30% 50% 70%

RTE

Random 58.06 54.75 53.90 54.75
Our method 61.85 57.39 55.83 57.40

SWAG

Random 65.20 64.75 63.96 62.88
Our method 67.45 66.68 65.43 63.54

QNLI

Random 87.44 87.32 86.06 85.27
Our method 89.10 88.27 87.19 85.52

Table 4: Comparison with random selection. The best
results are highlighted in bold.

Model BERT ALBERT XLNet RoBERTa

Random 57.03 52.70 61.01 59.92
EL2N 39.71 45.84 47.65 44.40
AUM 43.32 48.01 50.54 52.70
Forgetting 44.76 55.59 50.54 52.70
CCS 56.67 52.70 53.79 50.54
Ours 61.37 57.40 59.20 56.67

Table 5: Experiments on other models on RTE dataset at
70% pruning rate. The best and the second best results
are highlighted in bold and underlined, respectively.

Appendix A.4. In overall, our proposed method
performs the best compared to all other baselines
methods and outperforms baseline methods.

When compared to SOTA baselines, our method
has best performance overall. Our method consis-
tently outperforms state-of-the-art baselines AUM,
EL2N, Forgetting and CCS. For high post-pruning
coreset size, distance-based stratified sampling is
particularly effective because it ensures that the
pruned dataset remains both diverse and informa-
tive, eliminating redundant data while preserving
the core structure of the dataset. At small post-
pruning coreset size, furthest samples prove to be
effective, since most distant from the central ten-
dency can help maintain the diversity and richness
of the data.

Comparison between our method and random
baseline is shown in Table 4. At 10% pruning rate,
the overall improvement to random is 2.57%, and
at 70% pruning rate, the overall improvement to
random is 1.19%.

We tested our methods on other language mod-
els, specifically BERT (Devlin et al., 2019), AL-
BERT (Lan et al., 2020), XLNet (Yang et al., 2019)
and RoBERTa (Liu, 2019) on the RTE dataset to
evaluate the robustness of our methods, as shown
in Table 5. Our method consistently perform well
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Figure 3: Results of pruning strategies from set of distance-based scores.

Figure 4: PCA Plot of selected data points with regard
to full training set for SWAG dataset at 70% pruning
rates for different pruning strategies.

across all models, which prove that our method
is not a phenomenon with respect to a particular
language model.

Dataset size-adaptive pruning. In Figure 3,
we compare three different pruning strategies from
distance-based scores: only keeping the closest
samples to geometric median, only keeping the
furthest samples to geometric median, and using
stratified sampling to select the coreset.

With regard to the proposed dataset size-adaptive
pruning, there are three cases where keeping fur-
thest samples are applied: for MRPC dataset at
70% pruning rate, and for RTE dataset at 50% and
70% pruning rates. For these scenarios, furthest
samples prove to be more effective coresets, pro-
ducing higher performance than stratified sampling.
For coresets with bigger size, stratified sampling
prove to be the best strategy compared to the other
methods, since it maintains the distribution charac-
teristics of the original dataset.

Keeping closest samples method still retain good

Figure 5: PCA Plot of selected data points with regard
to full training set for QNLI dataset at 70% pruning
rates for different pruning strategies.

performance at 30% pruning rate. However, at
higher pruning rates, its performance drop quickly,
for most datasets it may perform worse than ran-
dom pruning.

4.3 Further Analysis

TF-IDF embedding performs superior to
Sentence-BERT embedding. To validate the ef-
fectiveness of TF-IDF embedding, we performed
experiments with Sentence-BERT (Reimers and
Gurevych, 2019) embedding of samples. The
performance of TF-IDF is superior compared to
Sentence-BERT across all datasets, as shown in
Table 3. TF-IDF is superior to Sentence-BERT
embeddings in this context because it directly cap-
tures the importance of individual words within
each sample, emphasizing terms that are signifi-
cant to the dataset. This makes TF-IDF particularly
effective for identifying central and representative
samples in the dataset, as it reflects the specific vo-
cabulary and term frequency patterns of the data. In
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ID Example FD QuRating

2015
What does基督徒(pinyin: jı̄dū tú)
mean? (pinyin: jı̄dū tú), literally
"Christ follower."

1.009
(99.99%)

-1.22
(6.72%)

22851 Which vowel remains distinct? ; /i/
remains distinct.

1.008
(99.99%)

-0.83
(11.90%)

10539

Name one of the individuals
considered the founding fathers of
modern Cypriot art. Arguably the two
founding fathers of modern Cypriot art
were Adamantios Diamantis
(1900–1994) who studied at London’s
Royal College of Art and
Christopheros Savva (1924–1968) who
also studied in London, at Saint
Martin’s School of Art.

0.990
(53.77%)

3.92
(98.58%)

40675

Where was the University of Paris
located? The Left Bank was the site of
the University of Paris, a corporation
of students and teachers formed in the
mid-12th century to train scholars first
in theology, and later in canon law,
medicine and the arts.

0.966
(0.31%)

3.10
(95.28%)

Table 6: Comparison to QuRating. The percentage
shows a sample’s percentile rank in the dataset.

contrast, Sentence-BERT embeddings focus on cap-
turing the overall semantic meaning of sentences,
which obscure the importance of individual words
and lead to less precise centrality measures.

Stratified sampling maintains good coverage
in embedding space. Figure 4 and Figure 5 demon-
strate the selected data points and the pruned data
points for 70% pruning rate in 2 dimension space
using principle component analysis (Wold et al.,
1987). Stratified sampling method works very well
for medium to large size datasets since it is able to
keep a balanced representation of the data distribu-
tion. Compared to keep furthest strategy or keep
closest strategy, stratified sampling coreset covers
much wider regions of the plot. Interestingly, in
the keep furthest samples strategy, selected sam-
ples are placed relatively close to the center of the
2 dimensional plot in the SWAG dataset. This is
explained by the sparsity of TF-IDF vectors of the
furthest samples, where rare words are included
and their lengths are often shorter.

Comparison of our Frequency Distance score
with previous quality-based score. To compare
our method with quality-based methods in pre-
training dataset pruning, we use QuRating (Wettig
et al., 2024), a method that utilizes a fine-tuned
Sheared-Llama-1.3B model (Xia et al., 2024) to
judge the quality of text, and perplexity (PPL) of
GPT-2 (Radford et al., 2019). Quality assessment is
often used in pre-training dataset pruning to select
data that resembles a high-quality corpus (Albalak
et al., 2024; Wettig et al., 2024; Chowdhery et al.,

ID Example FD PPL

2015
What does基督徒(pinyin: jı̄dū tú)
mean? (pinyin: jı̄dū tú), literally
"Christ follower."

1.009
(99.99%)

34.19
(30.37%)

22851 Which vowel remains distinct? ; /i/
remains distinct.

1.008
(99.99%)

399.56
(99.81%)

10539

Name one of the individuals
considered the founding fathers of
modern Cypriot art. Arguably the two
founding fathers of modern Cypriot art
were Adamantios Diamantis
(1900–1994) who studied at London’s
Royal College of Art and
Christopheros Savva (1924–1968) who
also studied in London, at Saint
Martin’s School of Art.

0.990
(53.77%)

31.06
(24.77%)

40675

Where was the University of Paris
located? The Left Bank was the site of
the University of Paris, a corporation
of students and teachers formed in the
mid-12th century to train scholars first
in theology, and later in canon law,
medicine and the arts.

0.966
(0.31%)

26.04
(16.06%)

Table 7: Comparison to perplexity (PPL) of GPT-2.

2023; Xie et al., 2023). For QuRating, high scor-
ing samples are preferred, while for perplexity, low
scoring samples are preferred. However, this ap-
proach is not applicable to cross-dataset pruning,
since it hurts diversity of the coreset and harms
model performance in this scenario.

In Table 6 and Table 7, we show examples that
are chosen by our stratified sampling strategy at
70% pruning rate in the QNLI dataset and com-
pare FD score to QuRating and perplexity scores.
Our method selects samples ranging from low qual-
ity to high quality, ensuring a more diverse set of
samples. In contrast, quality-based methods like
QuRating or perplexity-based quality filtering pri-
oritizes high quality samples, which can lead to a
loss of important linguistic and contextual variety.

5 Conclusion

In this paper, we introduce SCDP to enhance fine-
tuning efficiency for NLP tasks in cross-dataset
scenarios. We propose Frequency Distance, a sam-
ple ranking score that is computationally efficient
and bypasses the need for expensive reference mod-
els or training on the full original data. Further-
more, we propose dataset size-adaptive pruning
to improve adaptability across a diverse range of
tasks and dataset sizes. Our extensive experiments
across six datasets validate the effectiveness of this
approach, demonstrating that our method achieves
competitive performance while reducing computa-
tional costs. This work represents a significant step
towards data-efficient training in NLP, particularly
for fine-tuning in cross-dataset settings.
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6 Limitations

While our method shows promising results, it has
several limitations. 1) Task diversity: Although
tested on six NLU tasks, the method’s performance
on more complex tasks such as text generation is
unknown. 2) Theoretical grounding: While empiri-
cally effective, our work lacks a rigorous theoreti-
cal analysis explaining the superiority of TF-IDF
with the geometric median for cross-dataset prun-
ing.
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A Experiments

A.1 Dataset Descriptions

We provide a detailed description of datasets used
in our experiments below:

• RTE. In the input, two text fragments are
given. The task is to recognize whether the
meaning of one text is entailed from the other
text.

• MRPC. This dataset consists of sentence pairs
automatically extracted from online news
sources, with human annotations for whether
the sentences in the pair are semantically
equivalent.

• CoLA. This dataset consists of English ac-
ceptability judgments drawn from books and
journal articles on linguistic theory. Each ex-
ample is a sequence of words annotated with
whether it is a grammatical English sentence.

• SST-2. This dataset consists of sentences from
movie reviews and human annotations of their
sentiment. The task is to predict the sentiment
of a given sentence.

• SWAG. Given a partial text description, the
model has to reason about the situation and
anticipate what comes next by choosing one
of multiple-choice text options.

• QNLI. This dataset is a question-answering
dataset consisting of question-paragraph pairs,
where one of the sentences in the paragraph
contains the answer to the corresponding ques-
tion. The task is to determine whether the
context sentence contains the answer to the
question.

A.2 Data Preprocessing

For each dataset, we preprocess the input before
using TF-IDF embedding as follows:

• SWAG. Concatenate sentence 1 and sentence
2 as input to get TF-IDF embedding, and not
include 4 answer options.

• SST-2. The input sentence is the input to get
TF-IDF embedding.

• QNLI. Concatenate question and answer as
input to get TF-IDF embedding.

• RTE. Concatenate sentence 1 and sentence 2
as input to get TF-IDF embedding.

• CoLA. The input sentence is the input to get
TF-IDF embedding.

• MRPC. The input sentence is the input to get
TF-IDF embedding.

A.3 Baseline Experiment Settings
For AUM, EL2N, CCS baseline, we get training
statistics in every epoch. That is, for each epoch,
predictions on the training set will be used to cal-
culate sample importance. Since we fine-tune Dis-
tilBERT on 3 epochs for every dataset, we obtain
scores 3 times and use the mean as the final sample
importance score. For Forgetting baseline, since 3
times are not enough to evaluate forgetting scores,
we evaluate the model on the training set after iter-
ations instead of epochs. That is, we evaluate the
model on the training set after every fixed number
of iterations to get the forgetting information of
samples.

A.4 Detailed Results
Table 8 describes the detailed results over 10%,
30%, 50%, 70% pruning rates on all datasets. The
result of fine-tuning on the full dataset is shown in
the rows with 0% pruning rate

B Examples

B.1 Quality-based Comparison
In Table 9-13, we list examples chosen by our
method at 70% pruning rate and compute their
quality-based score with QuRating and Perplex-
ity of GPT-2. Examples show that our method
is able to keep the diversity of samples based on
quality and perplexity, which benefits the model to
generalize to linguistic and contextual features.

B.2 Examples of Furthest Samples and
Closest Samples to Geometric Median

Text input of the samples furthest to the geometric
median and samples closest to the geometric me-
dian of the QNLI dataset are displayed in Table 14.
By applying FD score, we can obtain the most dis-
tinctive samples by choosing samples with highest
FD score. On the other hand, samples nearest to
geometric median tend to have similar terms and
topics. Therefore, it is suitable to use our sampling
method to keep the most diverse samples to benefit
the model performance on the coreset.
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Pruning rate Random EL2N AUM Forgetting CCS Ours
RTE

0% 59.44±4.37

10% 58.06±1.50 53.67±0.91 54.63±3.34 55.95±2.73 58.12±1.91 61.85±1.82

30% 54.75±0.91 48.49±3.24 46.08±1.37 48.13±4.93 55.71±2.92 57.39±0.62

50% 53.90±2.46 45.84±0.96 45.72±0.76 47.53±0.21 50.78±2.53 55.83±0.62

70% 54.75±0.55 43.96±0.50 45.00±1.37 45.12±1.65 48.49±0.55 57.40±2.35

MRPC
0% 84.88±0.14

10% 82.43±0.71 84.15±1.02 85.53±0.65 84.80±0.74 83.98±0.99 84.55±1.91

30% 81.61±1.77 80.06±4.41 78.84±4.50 82.84±2.01 84.31±1.37 83.41±0.14

50% 81.21±1.58 68.54±0.28 68.38±0.00 74.58±3.20 77.77±3.33 83.00±0.57

70% 74.99±4.43 68.38±0.00 68.38±0.00 70.09±0.88 71.64±1.63 75.73±3.78

CoLA
0% 51.83±1.73

10% 47.31±0.51 51.46±2.38 50.50±0.93 49.72±2.82 51.43±2.54 49.43±1.09

30% 44.48±1.08 45.54±4.07 44.51±3.34 48.57±2.02 47.95±0.89 48.09±0.98

50% 43.59±2.14 12.90±12.94 0.00±0.00 43.94±0.43 46.38±0.43 45.30±0.43

70% 36.05±1.33 0.01±0.01 0.00±0.00 4.05±0.43 36.86±0.43 43.39±0.43

SST-2
0% 90.59±0.50

10% 90.32±0.78 90.71±0.20 90.73±0.32 90.44±0.27 91.05±0.11 90.97±0.48

30% 90.17±0.54 91.43±0.24 91.20±0.33 90.74±0.48 90.97±0.78 91.13±0.58

50% 89.79±0.80 90.51±0.84 90.97±0.35 90.75±0.18 90.02±0.53 90.74±0.27

70% 89.48±0.17 88.79±1.09 88.99±0.64 89.90±0.64 89.52±0.47 90.21±0.29

SWAG
0% 67.37±0.23

10% 65.20±0.16 67.20±0.18 66.85±1.06 67.22±0.32 67.14±0.09 67.45±0.32

30% 64.75±0.22 65.16±0.09 65.80±0.70 66.18±0.10 66.32±0.51 66.68±0.41

50% 63.96±0.16 55.76±1.68 50.54±2.58 61.40±0.41 64.57±0.16 65.43±0.39

70% 62.88±0.35 28.14±2.20 23.83±0.80 53.17±1.13 61.82±0.21 63.54±0.38

QNLI
0% 89.49±0.38

10% 87.44±0.38 89.10±0.35 89.41±0.31 89.19±0.18 88.99±0.73 89.10±0.06

30% 87.32±0.59 87.38±0.88 88.61±0.07 88.80±0.53 87.95±0.33 88.27±0.34

50% 86.06±0.42 83.88±0.69 84.47±0.86 86.50±1.31 86.50±0.70 87.19±0.07

70% 85.27±0.43 66.53±0.43 42.68±0.21 75.94±1.96 83.88±0.68 85.52±1.02

Table 8: Overall result with standard deviation.

ID Example Frequency
Distance QuRating Perplexity

496 Euro-Scandinavian media cheer Denmark v Sweden draw. Denmark and Sweden tie. 1.009
(99.91%)

-2.65
(18.21%)

162.14
(99.39%)

904

Rumsfeld said the Pentagon’s annual assessment of China’s military capabilities shows China is
spending more than its leaders acknowledge, expanding its missile capabilities and developing
advanced military technology. China was increasing its military spending and buying large amounts
of sophisticated weapons.

0.994
(77.10%)

-2.56
(20.44%)

25.21
(36.30%)

787 Guggenheim Museum, officially Solomon R. Guggenheim Museum, was founded in 1939 as the
Museum of Non-Objective Art. The Solomon R. Guggenheim Museum was opened in 1939.

0.998
(88.83%)

-3.18
(6.97%)

14.76
(8.39%)

Table 9: Comparison to QuRating and perplexity of GPT-2 in RTE.

ID Example Frequency
Distance QuRating Perplexity

1019

Tonight a spokesman for Russia ’s foreign ministry said the ministry may issue a statement on
Thursday clarifying Russia ’s position on cooperation with Iran ’s nuclear-energy efforts . Tonight a
spokesman for the Russian Foreign Ministry said it might issue a statement on Thursday clarifying
Russia ’s position on aiding Iran ’s nuclear-energy efforts .

0.993
(71.01%)

-2.54
(21.15%)

13.58
(9.73%)

2857 Mr. Soros branded Mr. Snow ś policy shift a " mistake . " Soros criticised Snow ś policy shift as a "
mistake " .

1.006
(99.97%)

-1.10
(69.98%)

94.34
(98.11%)

2208
AAA spokesman Jerry Cheske said prices may have affected some plans , but cheap hotel deals
mitigated the effect . AAA spokesman Jerry Cheske said prices might have affected some plans , but
cheap hotel deals made up for it .

0.998
(92.44%)

-2.81
(13.79%)

57.03
(91.27%)

Table 10: Comparison to QuRating and perplexity of GPT-2 in MRPC.
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ID Example Frequency
Distance QuRating Perplexity

145 It is important for the more you to eat, the more careful to be. 0.958
(0.01%)

-0.57
(4.63%)

124.01
(41.37%)

3576 Students intended to surprise the teacher. 0.989
(36.01%)

1.06
(52.08%)

228.78
(61.19%)

2940 Donna fixed a sandwich. 1.007
(99.71%)

1.23
(60.09%)

918.57
(89.70%)

Table 11: Comparison to QuRating and perplexity of GPT-2 in CoLA.

ID Example Frequency
Distance QuRating Perplexity

22585 The woman hands the girl to someone. Someone and someone 0.924
(0.01%)

0.94
(39.75%)

187.70
(83.06%)

54915 A yellow cab speeds towards him, then skids to a halt. Someone 1.008
(99.99%)

1.60
(55.71%)

89.56
(53.67%)

53012 Someone slowly gets up, locks eyes with someone. Someone looks guilty, weakly shaking his head, it 0.980
(38.96%)

2.79
(81.53%)

80.09
(47.81%)

Table 12: Comparison to QuRating and perplexity of GPT-2 in SWAG.

ID Example Frequency
Distance QuRating Perplexity

32532 d ) 0.096
(0.01%)

-1.75
(2.87%)

1648.69
(72.21%)

10397 in jerking off in all its byzantine incarnations to bother pleasuring its audience 0.991
(30.17%)

0.40
(28.98%)

208.79
(25.30%)

2940 Donna fixed a sandwich. 1.007
(99.71%)

1.62
(56.28%)

20360.19
(95.74%)

Table 13: Comparison to QuRating and perplexity of GPT-2 in SST-2.

Sample FD
Furthest samples to geometric median

What does基督徒(pinyin: jı̄dū tú) mean? (pinyin: jı̄dū tú), literally "Christ follower. 1.009
Who wrote Carmen? Georges Bizet’s Carmen premiered 3 March 1875. 1.009
Which Tigranes successor composed Greek tragedies? Tigranes’ successor Artavasdes II even composed Greek tragedies
himself. 1.009

What mostly affects polarization? Reflections generally affect polarization. 1.009
What does Orthodoxy strongly condemn? Similarly, Orthodoxy strongly condemns intermarriage. 1.009

Nearest samples to geometric median
On which side of the war were the Chinese? The major Allied participants were the United States, the Republic of China, the
United Kingdom (including the armed forces of British India, the Fiji Islands, Samoa, etc.), Australia, the Commonwealth
of the Philippines, the Netherlands (as the possessor of the Dutch East Indies and the western part of New Guinea), New
Zealand, and Canada, all of whom were members of the Pacific War Council.

0.954

What was the name of the Philippines nation? The major Allied participants were the United States, the Republic of
China, the United Kingdom (including the armed forces of British India, the Fiji Islands, Samoa, etc.), Australia, the
Commonwealth of the Philippines, the Netherlands (as the possessor of the Dutch East Indies and the western part of New
Guinea), New Zealand, and Canada, all of whom were members of the Pacific War Council.

0.956

The Battle of the Chernaya took place in what year? The deployment of Italian troops to the Crimea, and the gallantry
shown by them in the Battle of the Chernaya (16 August 1855) and in the siege of Sevastopol, allowed the Kingdom of
Sardinia to be among the participants at the peace conference at the end of the war, where it could address the issue of the
Risorgimento to other European powers.

0.956

When were the economic laws passed in Mexico City? The politics pursued by the administrations of heads of government
in Mexico City since the second half of the 20th century have usually been more liberal than those of the rest of the
country, whether with the support of the federal government—as was the case with the approval of several comprehensive
environmental laws in the 1980s—or through laws recently approved by the Legislative Assembly.

0.957

What political leaning does Mexico City take? The politics pursued by the administrations of heads of government in Mexico
City since the second half of the 20th century have usually been more liberal than those of the rest of the country, whether
with the support of the federal government—as was the case with the approval of several comprehensive environmental laws
in the 1980s—or through laws recently approved by the Legislative Assembly.

0.958

Table 14: Nearest samples to geometric median and furthest samples to geometric median on the QNLI dataset.
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