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Abstract

Dialogue policy trains an agent to select dia-
logue actions frequently implemented via deep
reinforcement learning (DRL). The model-
based reinforcement methods built a world
model to generate simulated data to alleviate
the sample inefficiency. However, traditional
world model methods merely consider one-
step dialogues, leading to an inaccurate en-
vironmental simulation. Furthermore, differ-
ent users may have different intention prefer-
ences, while most existing studies lack consid-
eration of the intention-preferences causal re-
lationship. This paper proposes a novel frame-
work for dialogue policy learning named MCA,
implemented through model-based reinforce-
ment learning with automatically constructed
causal chains. The MCA model utilizes an au-
toregressive Transformer to model dialogue tra-
jectories, enabling a more accurate simulation
of the environment. Additionally, it constructs
a causal chains module that outputs latent pref-
erence distributions for intention-action pairs,
thereby elucidating the relationship between
user intentions and agent actions. The exper-
imental results show that MCA can achieve
state-of-the-art performances on three dialogue
datasets over the compared dialogue agents,
highlighting its effectiveness and robustness.

1 Introduction

Dialogue policy plays a crucial role in task-oriented
dialog systems with a pipeline approach, as it de-
termines the next agent action and drives the di-
alog generation (Kwan et al., 2023; Zhao et al.,
2024). In recent years, the construction of di-
alogue policy agent has been regarded as a se-
quential decision-making problem and optimized
via deep reinforcement learning (DRL). The opti-
mization process can be summarized: Interaction–
Samples–Deep Learning–Action, i.e., the interac-
tion between agent and user to generate samples
and employ deep learning to train the samples for

predicting the next agent action. The traditional
dialogue policy methods include model-free and
model-based methods, the deep Q-network (DQN)-
based methods (Tian et al., 2022; Zhao et al., 2021a;
Zhang et al., 2022), the actor-critic(AC) based
methods (Malviya et al., 2022; Peng et al., 2018a;
Chen et al., 2020) are the model-free methods.
However, these methods lack modeling of the en-
vironment and don’t have the ability of perception,
making the dialogue agent inadequately anthro-
pomorphic. Recently, as task-oriented dialogue
systems have become more popular and powerful,
building a human-like dialogue agent with efficient
perception and causal reasoning is a promising re-
search direction.

Compared to the model-free methods, the model-
based methods build a world model to facilitate
dialogue agents’ decisions by simulating human
perception (Matsuo et al., 2022). In the dialog
policy, the world models help the dialogue agent
more efficiently by generating simulated data with
learning in imagination, such as DDQ (Peng et al.,
2018b), Budget DDQ (Zhang et al., 2020), and
DPPO (Huang and Cao, 2023). However, these ap-
proaches rely on large amounts of real user-agent
interaction data and only consider one-step dia-
logue transition, ignoring multi-step perception
like humans. Research has shown that modeling
multi-step state transition has more accurate percep-
tual capabilities (Benechehab et al., 2023; Micheli
et al., 2023). Therefore, designing a new world
model that can handle complex sequenced inter-
action data with fewer samples is a more feasible
endeavor similar to human perception.

Furthermore, existing research on dialogue pol-
icy also lacks interpretability, establishing state-
action mapping relationships through deep neural
networks, that hard to uncover the internal rela-
tionship between user intentions and actions. In-
deed, human beings not only have the ability to
perceive the outside environment but infer some
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latent result based on past interactions, i.e., we
can generalize some fundamental causal relation-
ships based on past information to better facili-
tate future decision-making (Griffiths et al., 2010).
The causality strategy from psychological research
(Sloman, 2005) can be aware of the causal mech-
anisms of underlying actions and improve the in-
terpretability (Gao et al., 2024). However, exist-
ing dialogue policy methods are not equipped with
causal chains. Although some causal reinforcement
learning algorithms consider the static prior knowl-
edge (Goyal and Bengio, 2022; Pouncy and Gersh-
man, 2022), which did not improve their reasoning
ability during interactions without adaptation. To
dynamically acquire user causal chains to explain
agents’ decisions, we collect success trajectories
in interactive dialogues between the agent and the
user, constructing causal chains that present poten-
tial changes between the user’s intentions and the
agent’s actions. To the best of our knowledge, the
proposed model is the first method applying causal
chains to learn dialogue policies without requiring
any expert experience.

This paper proposes a dialogue policy learning
framework with model-based reinforcement learn-
ing and causal chains. It implements the percep-
tion and reasoning for anthropomorphic dialogue
agents. Concretely, we first employ the autoregres-
sive Transformer (Vaswani et al., 2017; Micheli
et al., 2023) to build a world model that simu-
lates dialogue trajectories. The constructed world
model dynamically learns a sequence modeling
problem rather than one-step transitions, making
us accurately simulate the dialogue environment.
Secondly, we build causal chains via user inten-
tions to form the latent preference distribution and
then distill the latent distribution into the policy
learning model. Our main contributions are:

• We proposed a sample-efficient dialogue pol-
icy learning method that simulates human per-
ception and reasoning, integrating world mod-
els and causal chains to facilitate policy learn-
ing and enhance interpretability.

• We build an autoregressive Transformer-based
world model, which learns dialogue trajecto-
ries rather than one-step transition, constructs
a causal graph between user intentions and
actions during interaction, generates a latent
intention-action distribution, and distills the
distribution into policy learning.

• We compare plentiful algorithms on three
dialogue datasets, and experimental results
demonstrate our method has effectiveness,
high performance, and robustness.

2 Background and related work

2.1 Dialogue policy
Dialogue policy is one of the core components of
pipeline approach dialogue systems, often modeled
through deep reinforcement learning (DRL). Dia-
logue policy learns policy parameters (or Q-value)
according to the dialogue state, then selects an ac-
tion to push natural language generation (Kwan
et al., 2023). The DRL-based dialogue policy col-
lects data during the interaction and predicts di-
alogue action by learning the collected data. It
consists of five tuples, < S,A, P,R, γ >, where
S is the dialogue state space, A is the dialogue ac-
tion space, P is the state transition function of the
environment, and R is the reward function. At the
moment t, the dialogue agent receives the state st,
obtains the reward rt by taking action at, and then
the environment transfers to the next state st+1.
The optimization objective of the dialogue policy
is to maximize the overall cumulative reward.

π∗ = argmaxπE(
T∑
t=0

γtrt) (1)

where π∗ is the optimal policy, T is the maximum
dialogue turns, and γ is the discount factor used to
force the dialogue agent to focus on the shot term
reward.

2.2 World Model
The world model is used to perceive the outside
environment Currently, the dialogue policies favor
learning in imagination to train dialogue agents,
aiming to mitigate sample inefficiencies. Dialogue
agents have real experiences and simulated expe-
riences. The real experiences come from the real
environment, and simulated experiences come from
the world model. The world model simulates the
dynamics of the environment, including state trans-
fer Pw(s

′|s, a) and dialogue rewards Rw(r|s, a).

s′ ∼ Pw(s
′|s, a), r = Rw(r|s, a) (2)

The DDQ (Peng et al., 2018b) model is the first
study to train a dialogue agent via an imaginary
world model. It provides a theoretical foundation
for subsequent studies on dialogue policy learn-
ing. For example, (Wu et al., 2019) introduces a
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switcher to improve DDQ by automatically balanc-
ing the usage of simulated experiences and real ex-
periences. Budgeted policy learning (Zhang et al.,
2020) leverages active learning and human teaching
to guide DDQ in generating more highly effective
dialogue experiences. DR-D3Q (Zhao et al., 2020)
designs a dynamic reward function based on the
user’s valid subgoals via the DDQ and replaces the
deep Q-network with the Dueling network. Similar
to the work of (Zhao et al., 2020), (Huang and Cao,
2023) integrate the proximal policy optimization
(PPO) algorithm with a DDQ-based world model,
proposed DPPO. However, Both (Zhao et al., 2020)
and (Huang and Cao, 2023) do not modify the
world model module of DDQ, merely replacing
the deep Q-network module in DDQ with different
deep reinforcement learning algorithms.

Moreover, the above methods of world model-
based dialogue policies only consider one-step tran-
sitions. The world model module inputs the current
dialogue state and the last agent action and outputs
the predicted next user action, reward, and termina-
tion signal. The interaction between the agent and
user usually involves multiple turns. If the world
model can model the whole sequential data, it can
make sufficient use of the interaction information
and enhance its perceptual ability. Meanwhile, the
Transformer has a particular advantage when oper-
ating sequential discrete tokens. The Transformer-
based modal world model has achieved advanced
results in the game tasks (Micheli et al., 2023).

2.3 Causality in Reinforcement Learning
Causality draws some inferences based on exist-
ing information, which is combined with reinforce-
ment learning to construct causal reinforcement
learning (Wang et al., 2021). Causal reinforce-
ment learning can improve generalization and in-
terpretability. In recent years, there has been a
prevalence that integrates causal inference with re-
inforcement learning. (Ramachandran et al., 2022)
proposed a causal aware safe policy improvement
method, which learns causal reward with the human
demonstrator. However, the collection of expert
demonstration data is time-consuming and labori-
ous. (Wen et al., 2024) proposed a diversity-aware
causal mode, where they modeled user’s feedback
through causal inference, combined with offline
reinforcement learning, for promoting diversity in
interactive recommendations. They lack dynami-
cally expanding causal graphs and are harder to ap-
ply to variable scenarios. In addition, some studies

integrate causal inference and model-based rein-
forcement learning (Mutti et al., 2023; Wang et al.,
2022; Yu et al., 2023). Based on these studies, the
combination of causal reasoning and world model-
ing can help improve performance.

Our proposed MCA has an independent causal
inference module from the world model, where
the inference information is the user’s intention
rather than the complete state, which reduces the
size of causal graphs. Furthermore, we continu-
ously optimize the causal information throughout
the reinforcement learning interaction without ex-
pert experiences. To the best of our knowledge, the
proposed MCA model is the first dialogue policy
learning framework that mimics human perceptual
and causality behaviors. It endows the dialogue
agent with adaptive perceptual and memory capa-
bilities, aiming to make the dialogue agent more
human-like.

3 Method

3.1 Architecture Overview

We adopt the autoregressive Transformer to build
the world model, and the knowledge of causal
chains is infused into the direct reinforcement learn-
ing for our proposed dialogue policy method. The
world model is endowed with the ability to per-
ceive the outside world, while the causal chains
are generated via identical user intentions to obtain
the latent action distribution. The output layer of
the direct deep reinforcement learning module is
refashioned for distilling the latent action distribu-
tion. The primary motivation of this work is to
enhance the sample efficiency by drawing inspi-
ration from human perception (world model) and
ratiocination (causal chains). A pictorial descrip-
tion of our framework is presented in Figure 1. It
consists of three main modules:

(a) Transformer-based world model: It receives
the real squeezed interaction memory and outputs
the predicted following user action, current reward,
and termination flag. It is based on supervised
learning to perceive the outside environment and
generate simulated data Ds. The Transformer-
based world model has two advantages. (i) We
model the entire dialogue sequence without a sin-
gle step of transfer, which allows us to construct
a more accurate world model. (ii) We model the
world using only successful interaction trajectories
without expert demonstrations.

(b) Direct reinforcement learning: It is imple-
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Figure 1: The proposed MCA framework. It contains three modules, (a) Transformer-based world model, (b) Direct
reinforcement learning for dialogue interaction, (c) Causal reasoning module.

mented via actor-critic based reinforcement learn-
ing. This module is trained with previous inter-
action memory and the simulated data, distilling
the valuable knowledge from the causal reasoning
module. The Actor network Q-value distribution
will combine with the causal action distribution.

(c) Causal reasoning module: It analyzes the
user-agent interaction information to obtain suc-
cessful agent actions with different user intentions,
then generates the causal chains to provide knowl-
edge for direct reinforcement learning. It can gradu-
ally learn the user’s intent preferences, which helps
to provide a more personalized response.

The three modules interact with each other to
iteratively facilitate efficient dialogue policy learn-
ing.

3.2 Transformer-based World model

In dialogue policy learning, the current dialogue
state st consists of the user intention sut , the last
agent response sat−1, dialogue history sht , and
database query results sdt . This combination is
more common in recent studies (Peng et al., 2018b;
Zhao et al., 2021b; Rohmatillah and Chien, 2023).
st = [sut , s

a
t−1, s

h
t , s

d
t ], where [ ] represents the con-

nection operation. The user intention sut includes
user action aut , user information slot uinft , and user
request slot ureqt , sut = [aut , u

inf
t , ureqt ]. t is the

number of current dialogue turns.
Existing world model methods (Peng et al.,

2018b; Zhao et al., 2020; Zhang et al., 2020) simu-
late one-step dialogue transfer, lacking considera-
tion of the holistic dialogue interaction. In the real

world, the dialog agent usually has to engage in
multi-turn conversations with a user to complete
a specific task. The users’ utterances are drawn
into the user’s intentions, and dialogue policies se-
lect a dialog action to respond to user utterances.
This process involves a sequence of user intentions
with agent actions. Thus, we use an autoregressive
Transformer to model the world model for simu-
lating the sequential interaction data (as shown in
Figure 1.a). The discrete user intentions and agent
actions are regarded as the tokens to input the au-
toregressive Transformer. The input sequence is:

Ht
i = (su0 , a0, s

u
1 , a1, ..., s

u
t , at) (3)

which come from the dialogue history sht . The
autoregressive Transformer-based world model ac-
cording to the Ht

i predicts the next user action âut+1,
the current termination flag d̂t, and the current re-
ward r̂t. The âut , d̂t, and r̂t can be obtained as
follows:

Transition : âut+1 ← T (âut+1 | su≤t, a≤t | Ht
i )
(4)

Termination : d̂t ← T (âut+1 | su≤t, a≤t | Ht
i )
(5)

Reward : r̂t ← T (âut+1 | su≤t, a≤t | Ht
i ) (6)

where T is the autoregressive Transformer model,
su≤t = {su0 , ..., sut }, a≤t = {a0, ..., at}. Each sui
corresponds to a user action aui , and each pair of
(sui , ai) corresponds to a reward ri and termination
di. We train T with planning time steps via suc-
cessful interaction experiences. The cross-entropy
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loss is employed for âut and d̂t, and a mean-squared
error loss for reward r̂t.

The proposed autoregressive Transformer-based
world model is empowered to generate simulated
experience Ds with planning G. In more detail,
Algorithm 1 (See appendix A) summarizes the pro-
posed world model.

3.3 Causal reasonging Module

The causal reasoning module infers user intention
preferences from the interacted data, which consid-
ers user preferences and task completion. Figure
1(c) illustrates causal inference information that
contains a causal graph G. Traditional online rein-
forcement learning can be regarded as the causal-
ity mapping the relationship from state to action
(Schulte and Poupart, 2024). In Figure 1(c), we
use s to denote the dialogue state, a denotes the
action of the dialogue, and r denotes the immediate
reward signal. However, this mapping lacks con-
sideration of the causal relationship between user
intent and action. We extend it by adding su and
M nodes, where su is the user’s intention and M
denotes the causal effect of user intention su under
dialogue action a.

We consider three factors to estimate the causal
effect M . Including the number of intention’s ac-
tions, the action distribution of current intention,
and the action distribution of similar intentions.
The number J of user-intention actions reflects the
optional action. We use factor Ci to indicate,

Cj = exp(−J) (7)

The smaller J is, the larger the factor Cj is, and the
stronger the causal effect of the intention.

The action distribution of current intention re-
flects the user’s preference probability for different
actions, which is denoted by

P u
j =

msu
j∑|a|

j=1m
su
j

(8)

where msu
j is the number of action j correspond to

the intention su, and |a| is the number of selectable
action. The larger P u

j is, the stronger the user’s
preference for the current action.

Considering that the causal graph G reflects a
limited number of causal relationships between
user intentions and actions, for a new user inten-
tion, we employ a similar intention to obtain the

corresponding action distribution. Hence, we con-
struct the similarity factor for the causal effect.

wj = exp(−(ϵ+
∑

(sui |s,a)∈τ

sim(sui , suj ))−1)

(9)
where τ is the dialog trajectories, ϵ is a hyperparam-
eter that prevents the numerical value from being 0.
wj denotes the weight value of similar intentions.
We select the most similar intention in the setting.
For a dialog interaction

τi = (s0, a0, r0, ..., st, at, rt, ..., sL−1, aL−1, rL−1, f)
(10)

where f = 1 indicates a user’s goals have been
completed. Note that (st, at) can be attended in
either successful or failed dialog interactions. Be-
cause an agent completes a user’s single-turn re-
quests does not mean it completes the entire user
task. Furthermore, the user intention sui is a portion
of si. A successful agent action means that the
user’s intention is fulfilled. Therefore, we employ
the user intention and the agent action to build the
causal chains. The final causal effect is

mj = Softmax(γ1Cj + γ2wjp
u
j ) (11)

The Softmax function is employed to map the
user’s preference information within [0, 1]. γ1 and
γ2 are hyperparameters. In this paper, we set them
to 1.

From the above analysis, we finally output a
prior distribution p(su|s, aj) ∼ mj as the biased
knowledge bias, then the distribution p(su|s) for
current user intention is used to improve policy
learning. Moreover, the p(su|s) is dynamically
shifting during the dialogue interactions. The
denser the number of successful dialogs (f = 1),
the stronger the agent latent action distribution.

3.4 Dialogue Policy Learning
The simulation experience Ds obtained from the
world model is directly used to improve dialogue
policy learning. The distribution p(sui |si, ai) ob-
tained from the causal reasoning module is used
as a priori knowledge to facilitate the efficiency
of the policy model. We employ the PPO as a di-
rect reinforcement learning to train the dialogue
agent, the Actor network as a policy model, and
the Critic network as an evaluating model. The
Actor network outputs action distribution q(ai|si)
with dialogue state st. The distribution p(sui |sui , ai)
is integrated into the Actor network. We draw in-
spiration from the knowledge distillation (Bachem
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and Geist, 2024; He et al., 2022) to learn the latent
distribution. Then the Kullback-Leibler (KL) diver-
gence is used between the q(si, ai) and p(sui |si, ai).
The loss function is defined as follows:

L(θ) = LPPO(θ) + αH(logπθ
a) + βKL(q|p)

(12)
where LPPO(θ) is the PPO loss, H(logπθ

a) is the
entropy regularization, KL(q|p) is the distill the ra-
tiocination causal action distribution, α and β is the
hyper-parameters, q and p are the Actor network
action distribution and the ratiocination causal ac-
tion distribution, respectively. We use the reverse
KL because it has stronger policy improvement
guarantees (Chan et al., 2022; Bachem and Geist,
2024). Algorithm 2 (see appendix A) summarizes
the whole procedure of the proposed MCA frame-
work. Note that our method can be implemented
using different reinforcement learning algorithms.
For example, value-based reinforcement learning
methods, such as DQN, Dueling DQN. When using
a value-based reinforcement learning algorithm, its
current network structure needs to be modified to
enable it to output the latent agent action distribu-
tion, and the simulated data are directly incorpo-
rated into the interaction experiences.

4 Experiment

4.1 Datasets and Baseline models
We implement experiments on three task-oriented
dialogue datasets: movie-ticket booking, taxi book-
ing, and automatic diagnosis. The movie and taxi
domain datasets are provided by the Microsoft Dia-
logue Challenge (Budzianowski et al., 2018), and
the diagnosis domain dataset comes from (Liu et al.,
2018). These datasets have been commonly used
in dialogue policy learning (Xu et al., 2024; Huang
and Cao, 2023; Qiu et al., 2023; Zhao et al., 2024).
The movie ticket booking task includes 128 user
goals and 2890 dialogs. The taxi calling task in-
cludes 3094 dialogs with 158 user goals for experi-
ments. The automatic diagnosis dataset is collected
from the pediatric department in a Chinese online
healthcare community, which includes 67 symp-
toms and more than 700 user goals. We compare
our proposed MCA framework with some base-
lines:

• DQN has successfully learned policies from
high-dimensional state inputs. Most of the
dialogue policy learning methods are imple-
mented based on DQN. Such as DDQ (Peng

et al., 2018b) and DPPO (Huang and Cao,
2023), etc.

• Dueling modifies the structure of DQN to al-
leviate the over-optimization of q-values. It
decomposes a single stream of fully connected
layers into the Q-value and the advantage
value function.

• DRQN modifies the portion of deep learn-
ing in DQN, replacing MLP with the LSTM
network, which achieved advanced results in
dialogue policy learning (Wang et al., 2016).

• MAXMIN (Lan et al., 2020) employs multi-
ple DQNs and selects the minimum Q-value
among the maximum Q-value of DQNs to al-
leviate the overestimation bias of Q-learning.

• DPAV utilizes a weight between the maxi-
mum q-value and the minimum q-value to
estimate the ground truth q-value. The weight
can be obtained via the heuristics algorithm
(Tian et al., 2022).

• DDQ is the first study to apply a world for
modeling dialogue policy learning. Its world
model only considers one-step transfer (Peng
et al., 2018b).

• DR-D3Q integrates an adaptive reward to the
loss function and replaces the reinforcement
learning portion of DDQ with the Dueling
network (Zhao et al., 2020).

• LKTD quantifies the uncertainty in the
environmental dynamics through Kalman
Temporal-Difference and can supervise the
uncertainty during policy updating, enhancing
the robustness of policy learning (Shih and
Faming Liang, 2024).

We use dialogue success rate (suc.) and average
reward (rew.) to evaluate the experimental perfor-
mances. The suc. indicates the completion of tasks
within the maximum number of turns. The rew. is
the average of the cumulative rewards by the rein-
forcement learning agent for completing dialogues.
These metrics are frequently employed to evaluate
the dialog policy learning (Lu et al., 2023; Zhao
et al., 2024).

To comprehensively evaluate the overall perfor-
mance of each model, we added new evaluation
metrics, AUS and AUR, which reflect the Area
Under the Success rate curve and the Area Under
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Reward curve, respectively. These two metrics
are used because they can cover both efficiency
and performance. The higher the learning effi-
ciency of the model, the faster the curve rises and
the larger the area is, and the higher the perfor-
mance of a model, the higher the curve peaks
and the larger the area is. The AUS is calcu-
lated using the trapezoidal rule and is normalized.

AUS =
∑K−1

k=1 (suc.k+1−suc.i)

2K(MAXsuc.−MINsuc.)
, where MAXsuc.

is the maximum, and MINsuc. is the minimum of
dialogue success rate. k is the number of iterations.
The AUR is calculated in the same way as AUS.
Implementation details are described in Appendix
B.

4.2 Evaluation Results

In this section, we display the performance of the
proposed MCA with baseline algorithms. Fig.2
presents the experimental results. In the movie
domain, the proposed MCA achieved the highest
dialogue success rates and the largest dialogue av-
erage rewards. Moreover, the MCA has faster con-
vergence in three dialog domains, owing to the in-
corporation of the causal reasoning module and the
autoregressive Transformer-based world model. In
Fig.2(a), the DDQ model has a sub-optimal learn-
ing efficiency only than MCA, attributed to the
available world model. The MAXMIN has a rela-
tively good dialog success rate at the 400th epoch,
but the training speed is relatively inferior. The
main reason is that MAXMIN introduces multi-
ple agents that do not balance the Q-values well
in the early stages of training. The LKTD has a
relatively fast training speed during the early epoch
stages. But after the 150th epoch, its results begin
to fluctuate. DPAV and Dueling agents have similar
dialogue success in the 400th epoch, but DPAV has
a slight performance advantage over Dueling.

In the dialogue average reward for the movie
domain, MCA has the highest average reward, and
DDQ has the second-best results. The DDQ model
shows a decrease in average dialogue rewards in the
later stages of its training. Owing to the poorer sim-
ulated experience hinders the learning performance
of the dialogue agent. DRQN has the worst aver-
age dialog reward because the LSTM-based state
encoding does not outperform the state encoding
of multilayer perceptron machines. The dialogue
average reward falls before it rises, reflecting that
the dialog agent cannot make good decisions in the
early training.

In the taxi domain, MCA maintains an advanced
learning rate with the highest dialog success rate
and achieves better results before 100 epochs.
DDQ achieves better results in the early stages
of training, but the experimental results fluctuated
widely in the later stages. Its performance is com-
parable to its performance in the movie domain.
MAXMIN has the slowest convergence rate com-
pared to the other agents, but after the 150th epoch,
its dialogue success rate start to increase. The poor
results in the early stages of training because the
MAXMIN does not explore a better Q value. In
Fig.2(d), the average dialog reward obtained by
the proposed MCA is at the leading level. The
advantages of the other algorithms are similar to
the results of their dialog success rates. In the di-
agnosis domain (see Fig.2(e) and Fig.2(f)), MCA
has a clear advantage in terms of dialogue success
rate and dialogue average reward. The final results
for DQN and DDQ are comparable, but the perfor-
mance advantage of DDQ over DQN is in general.
LKTD has the worst results in the diagnosis do-
main, showing a weaker adaptation.

The above experimental results show that the
proposed MCA framework achieves advanced re-
sults in terms of dialog success rate and average
dialog rewards, highlighting the performance and
effectiveness of our proposed methodology. Ta-
ble 6 displays the detailed performance of three
task-oriented dialogue domains (see Appendix C
for details). Both AUS and AUR demonstrate
that our proposed MCA achieves the best results
in three domains. The overall performance is op-
timal. The experimental results demonstrate that
our proposed method can balance convergence and
performance.

4.3 Human Evaluation
We recruited 20 volunteers to perform the human
evaluation, each rated on an integer scale of 0-5.
For the sake of fairness, each volunteer does not
know the agent that makes, and they only evaluate
whether the agent’s policy actions can complete a
specific task. Table 1 shows the results of human
evaluation. It can be seen that the proposed MCA
obtains high human scores in the three different
domains. The DDQ model achieves the second-
best human scores in the movie domain. The DQN
receives better human scores in the taxi domain.
The DR-D3Q achieves human scores that are just
lower than the MCA on the diagnosis domain, and
the results of the DR-D3Q are closer to the results
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(c) Taxi domain success rate
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(d) Taxi domain average reward
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(f) Diagnosis domain average reward

Figure 2: The results of proposed MCA with different baselines.

of the DPAV. The human evaluation demonstrates
the superiority of the MCA method. It offers a per-
formance advantage over the second-best method.

4.4 Ablation study

The reinforcement learning (RL) component of our
proposed method is implemented through the PPO.
The Transformer-based world model and causal
ratiocination are constructed as different modules

to facilitate policy learning. To assess the effective-
ness of various modules, we conducted ablation ex-
periments on each of the three domain datasets. Ta-
bles 2 to 4 display the experimental results. Where
RL is policy learning using only the PPO algorithm,
’W’ is an abbreviation to denote the Transformer-
based world model, and ’C’ denotes the causal
reasoning module. Table 2 shows the experimental
results in the movie domain. The reinforcement
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DQN Dueling DRQN MAXMIN DPAV DDQ DR-D3Q LKTD MCA
movie 2.65 2.30 1.90 1.80 3.25 3.45 3.35 3.40 3.95
taxi 2.60 1.85 1.95 2.00 2.15 2.10 2.25 1.60 2.95
diagnosis 2.30 2.25 1.75 1.70 3.25 3.05 3.30 1.65 3.85

Table 1: Experimental results via human evaluation.

learning baseline module has better suc., rew. than
the RL+W module, but the metrics AUS, AUR
and Overall are inferior to RL+W. This indicates
that RL+W has faster convergence. RL+C has a
higher suc., AUS, AUR and Overall than RL.
This indicates better performance and faster conver-
gence. The proposed method is RL+W+C, which
achieves more advanced results in the movie do-
main and demonstrates the superior performance
of the model. The results with integrated world
model (+W) and causal inference modules (+C) are
consistently optimal in taxi (Table 3 ) and diagnosis
(Table 4) domains.

movie
suc. rew. AUS AUR Overall

RL 0.8700 58.41 0.6744 0.7224 0.6984
RL+W 0.8490 50.68 0.7522 0.7563 0.75425
RL+C 0.8805 54.89 0.8300 0.8390 0.8345

RL+W+C 0.9065 58.47 0.8619 0.8663 0.8641

Table 2: Ablation study in movie domain.

taxi
suc. rew. AUS AUR Overall

RL 0.5491 15.80 0.5105 0.4724 0.4915
RL+W 0.5313 8.21 0.6662 0.6761 0.6713
RL+C 0.5614 18.78 0.5913 0.6332 0.6121

RL+W+C 0.5733 19.74 0.6526 0.6821 0.6674

Table 3: Ablation study in taxi domain.

diagnosis
suc. rew. AUS AUR Overall

RL 0.8075 31.61 0.8016 0.9079 0.8548
RL+W 0.8105 31.42 0.8412 0.9210 0.8811
RL+C 0.8182 32.37 0.8151 0.9139 0.8645

RL+W+C 0.8309 32.40 0.8924 0.9402 0.9163

Table 4: Ablation study in diagnosis domain.

4.5 Forward and inverse KL divergence
Our MCA model uses the inverse KL divergence
to fuse the causal reasoning modules. We imple-
mented an experiment to verify the effect of tem-
perature coefficients under the forward and inverse
KL divergence. Table 5 illustrates the experimental
Overall results in different domains. We discov-
ered that smaller inverse KL divergence achieves

better results when tested on three dialogue tasks.
This implies that the MCA model focuses more on
the causal reasoning module (Smaller temperature
values correspond to the amplification of the causal
reasoning module). In general, the inverse KL di-
vergence is more effective than the forward KL
divergence, especially in the taxi domain, where
the difference between inverse and forward KL di-
vergence is more distinct. This is mainly due to
the distribution of the original datasets, while the
inverse KL divergence with a smaller temperature
is more likely to find the optimal action.

Temperature 0.1 0.3 0.5 0.7 0.9

movie Forword 0.8282 0.8511 0.8302 0.8649 0.8379
Reverse 0.8641 0.8567 0.8651 0.8655 0.8316

taxi Forword 0.1795 0.5263 0.5912 0.6101 0.6027
Reverse 0.6674 0.6432 0.6439 0.6587 0.6344

Diagnosis Forword 0.6054 0.8007 0.8383 0.8625 0.8575
Reverse 0.9163 0.9070 0.8873 0.8689 0.8651

Table 5: Experimental results on forward and reverse
KL on different domains.

5 Conclusion

In this paper, we proposed a Transformer-based
world model and constructed a causal reasoning
module. We endow the dialog agent with a world
model and causality, making its decisions more
human-like with perception and reasoning. We
do four main works for the policy learning of
dialog agents: (i) Constructed an autoregressive
Transformer-based world model for processing di-
alogue sequences and generating simulation data.
(ii) Constructed a causal reasoning module to gen-
erate latent dialogue agent distribution of user in-
tention interaction successfully experiences. (iii)
Modified the network structure of direct deep rein-
forcement learning methods, empowering it to use
both latent distributions and simulated data. (vi)
Experiments demonstrate the effectiveness, high
performance, and robustness, of both individual
and integrated modules. In the future, improving
the causal reasoning module via a nonlinear net-
work is a valuable direction.
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Algorithm 1 Transformer-based world model gen-
erate simulated samples

1: initialize the planning step G and the maxi-
mum dialogue turns L, batch size bs

2: randomly sample batch sizes bs from success-
ful interaction experiences, obtaining a set
H ∈ (H0, H1, ...,Hbs)

3: update world model parameters via Z-step
minibatch SGD of multi-task learning

4: for g = 1 to G do
5: termination flag dt= 0, dialogue turn t=0
6: sample a user goal, obtain user action au

and generate an initial dialogue state st
7: while not dt and t < L do
8: with probability ϵ select a random

action at, otherwise select at =
arga′maxQθ(s, a

′)
9: generate sequential Ht

i according to Eq.
(1)

10: world model responds with aut+1, rt and
dt

11: update dialogue state to st+1 according to
aut+1

12: store (st, at, rt, st+1, dt) to Ds

13: set t = t+ 1, st = st+1

14: end while
15: end for

B Implementation details

The hidden layer size in deep reinforcement learn-
ing is 80 and an activation function of tanh. The
discount factor for the reinforcement learning re-
ward is γ = 0.9. On the movie ticket booking
dataset, the size of the memory pool Du is 5,000,
and the size of the simulated experience pool Ds is
5,000. On the taxi calling dataset, the size of Du

is 10,000, and the size of Ds is 10,000. The ex-
perience pool is Du = 10, 000, and the simulated
experience pool is Ds = 10, 000 in the diagnosis
domain. The model optimizer for value-based re-
inforcement learning uses RMSprop, the learning
rate is 0.001, and the batch size is 16. The pro-
posed method is implemented via proximal policy
optimization (PPO) methods, and the learning rates
are 0.0003 and 0.001 for the Actor and Critic net-
work, respectively. The clipping value is 0.2 in
the movie domain, 0.6 in the taxi domain, the α
parameter of entropy regularization is 0.01, and
β for distilling the episodic memory distribution
is 0.9. The optimizer for updating the Actor and

Algorithm 2 Proposed Model-based Causal dia-
logue Agent

1: for each episode do
2: initialize raw state s1
3: for t = 1 to L do
4: select an action at according to the proba-

bility of the actor network.
5: execute action at, receive environment re-

wards rt and come into next state st+1, ob-
serve user response aut , update task com-
pleted signal f

6: store (st, at, rt, st+1) to Du

7: set st = st+1

8: end for
9: obtaining τ based on Du and calculating the

p(sut ) according to Eq. 11.
10: obtain Ds by executing Algorithm 1
11: sample random minibatch of

(st, at, rt, st+1) from Ds and Du, re-
spectively

12: execute a gradient descent step via Eq. 12
with Ds and Du, and update network param-
eter θ

13: end for

Critic network is Adam. The maximum dialogue
length L is 40 in the movie and taxi domains. In
the diagnosis domain, L = 26. All user requests
completed within L turns are considered dialogue
successful. The agent receives a reward of 2 ∗ L
when they complete all of the user’s requests within
L. If the agent fails to complete the requests or the
dialogue turns over L, it receives a reward of −L.
Additionally, the agent obtains a reward of -1 for
each time step to incentivize the task completed.
All world models use a planning step 5. The num-
ber of DQNs in MAXMIN is 5. The balance weight
of the DPAV algorithm is 0.75 in the movie domain
and 0.2 in the taxi domain, 0.6 for the automatic
diagnosis domain The adaptive reward parameter
of DR-D3Q is 0.05 on the movie domain, 0.9 on
the taxi domain, and 0.4 on the disease diagnosis
domain. The proposed autoregressive Transformer-
based world model has a timestep parameter of
L/2, the embedding dimension is 256, the layers
are 10, the attention heads are 4, the weight decay
is 0.01, the embedding dropout is 0.1, the attention
dropout is 0.1, and the residual dropout is 0.1. All
experiment results are averaged in 5 tests. The user
simulator used in our experiments is the same as
(Zhao et al., 2024) and (Xu et al., 2024).
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movie taxi diagnosis
AUS AUR Overall AUS AUR Overall AUS AUR Overall

DQN 0.4765 0.5132 0.4949 0.4149 0.4625 0.4387 0.6070 0.7633 0.6852
Dueling 0.5004 0.5276 0.5140 0.2173 0.2525 0.2349 0.4324 0.6506 0.5415
DRQN 0.4719 0.5031 0.4875 0.2761 0.3104 0.2933 0.2941 0.5860 0.4401
MAXMIN 0.4145 0.4625 0.4385 0.3106 0.3670 0.3388 0.4876 0.6939 0.5908
DPAV 0.5706 0.6153 0.5930 0.3585 0.4014 0.3800 0.5335 0.7219 0.6277
DDQ 0.7144 0.7543 0.7344 0.3202 0.3596 0.3399 0.6432 0.7829 0.7131
DR-D3Q 0.4590 0.4769 0.4680 0.3607 0.4040 0.3824 0.5298 0.7072 0.6185
LKTD 0.568 0.5939 0.5810 0.2142 0.2358 0.2250 0.0921 0.3955 0.2438
MCA 0.8619 0.8663 0.8641 0.6526 0.6821 0.6674 0.8924 0.9402 0.9163

Table 6: The experiment results in three task-oriented domains. The best results are indicated in bold, and the
second-best results are underlined. Overall is the average of the two metrics AUS and AUR.

C Detailed Experimental Results

The detailed performance of three task-oriented di-
alogue domains, see table 6. The proposed MCA
algorithm achieves the best results in all three do-
mains.DDQ overall achieves the second-best re-
sults in the domains of movie and diagnosis, and
DQN maintains the second-best results in the do-
main of taxi. The experimental results demonstrate
the superiority of the MCA algorithm.
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