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Abstract

The data and compute requirements of current
language modeling technology pose challenges
for the processing and analysis of low-resource
languages. Declarative linguistic knowledge
has the potential to partially bridge this data
scarcity gap by providing models with useful
inductive bias in the form of language-specific
rules. In this paper, we propose a retrieval aug-
mented generation (RAG) framework backed
by a large language model (LLM) to correct the
output of a smaller model for the linguistic task
of morphological glossing. We leverage lin-
guistic information to make up for the lack of
data and trainable parameters, while allowing
for inputs from written descriptive grammars
interpreted and distilled through an LLM.

The results demonstrate that significant leaps
in performance and efficiency are possible with
the right combination of: a) linguistic inputs in
the form of grammars, b) the interpretive power
of LLMs, and c) the trainability of smaller to-
ken classification networks. We show that a
compact, RAG-supported model is highly ef-
fective in data-scarce settings, achieving a new
state-of-the-art for this task and our target lan-
guages. Our work also offers documentary lin-
guists a more reliable and more usable tool
for morphological glossing by providing well-
reasoned explanations and confidence scores
for each output.1

1 Introduction

Over the last decade, language models have
evolved rapidly, culminating in impressively
domain-agnostic decoder-only models like GPT
(Brown et al., 2020) and Llama 2 (Touvron et al.,
2023). Although these models can be versatile
in terms of being applicable to a wide variety of
tasks and providing straightforward interfaces for
quick inference, the fact remains that they are ex-
tremely parameter-heavy, making them difficult

1Code, prompt templates, and data samples available here.

Figure 1: One Uspanteko sentence, with its original
gloss, a predicted gloss, and an explanation from our
IGT-RAG model. For each morpheme in the sentence,
the model describes which section of the provided Us-
panteko grammar it used to make its labeling decision.

and expensive to train (Bender and Koller, 2020).
LLMs, however, give us a unique descriptive power
that can boost explainability when used in certain
contexts. In this paper, we examine how LLMs
can be used to make RAG-informed corrections
for the task of morpheme glossing (Section 2.1),
a crucial and time-intensive part of the workflow
of documenting endangered languages. Retrieval
augmented generation (RAG) incorporates an ini-
tial retrieval step, where LLMs query an external
data source to gather relevant information before
generating answers or text. This retrieval phase not
only informs the subsequent generation process but
also ensures that the responses are based on solid
evidence, thereby improving the accuracy and rele-
vance of the output. Figure 1 shows an example of
one sentence from the Mayan language Uspanteko,
its true and predicted morpheme glosses, and the
explanations produced by our RAG pipeline. We
test and compare the efficacy of two popular LLMs

https://github.com/bhargavns/RAG_analysis/tree/main
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- Claude 3.5 Sonnet (Anthropic, 2024) and GPT-4
(Achiam et al., 2023). In our experiments, Claude-
3.5-Sonnet gives the most promising outputs, with
both word and morpheme-level accuracies improv-
ing significantly over baselines for Uspanteko and
Arapaho.

LLMs also come with a known limitation: they
are inherently data-hungry, relying on vast amounts
of training data to achieve their impressive perfor-
mance (Holmström et al., 2023). This characteristic
makes them less effective when dealing with small
datasets, particularly prevalent in low-resource lan-
guage contexts such as supporting documentation
of endangered languages. In these scenarios, leaner,
tailor-made models seem to be preferred, offering
better computational efficiency and flexibility.

In this paper, we specifically focus on the low-
resource Uspanteko and Arapaho languages (Sec-
tion 4) as we have author-approved access to gram-
mar resources and data for these languages. Our
approach leverages the knowledge encapsulated in
large models combined with these digitized gram-
mars. In Reid et al. (2024), Google’s Gemini team
demonstrated that they could fit an entire grammar
for a low-resource language (Kalamang) in a single
prompt owing to the massive context window size
of Gemini 1.5.

While this zero-shot setting may work well for
individual inputs, it is important to remember that
the model must process the full grammar each time
it receives a new prompt. It is more computation-
ally efficient and cost-effective to retrieve only the
parts of the grammar most relevant to the given
query. The RAG pipeline has been well-established
for question-answering tasks, and this paper ex-
plores the capacity of LLMs to retrieve, interpret,
and use only the relevant, retrieved parts of the
grammar in a zero-shot setting to correct the output
of a smaller model.

The process is not just about size reduction; it’s
a strategic transfer of linguistic capabilities, ensur-
ing that the compact model inherits the teacher’s
strengths while remaining resource-efficient. In
our baseline experimental setting, we simply call
the LLM at inference time to correct the output
of the smaller token classification network. Ex-
perimenting further, we fine-tune the retrieval and
re-ranking components in conjunction with the to-
ken classification model to boost performance.

Furthermore, large language models can be
prompted to explain their chain-of-thought (Wei
et al., 2023), an approach with immense benefits

for model explainability. Apart from correcting the
output, we also generate a JSON object that con-
tains descriptions of which chunks were retrieved,
how these chunks informed the final output, and the
level of confidence the pipeline has in its final pre-
dictions. As seen in figure 1, the LLM-generated
explanations of the results and how RAG was used
to achieve them are (largely) coherent and contex-
tually relevant.

Our specific contributions include (1) develop-
ment of a RAG pipeline to correct the predictions
of a smaller model, (2) improving the usability of
NLP models for language documentation by elic-
iting confidence scores and explanations for each
prediction, (3) demonstration of significant per-
formance improvements in low-resource language
processing and a new SOTA for this task, and (4) a
scalable approach that balances computational effi-
ciency with linguistic accuracy and explainability.

2 Background and Related Work

2.1 The glossing task
The specific task we address in this paper is mor-
phological glossing, a component of the automatic
production of interlinear glossed text (IGT). IGT
is a richly-annotated data format widely used in
linguistics, especially as one product of work docu-
menting and describing endangered languages.

The data format, an example of which appears
below, consists of multiple interrelated tiers con-
taining different types of linguistic information.
This Uspanteko example is representative of a com-
mon IGT configuration, with one tier for the orig-
inal utterance, one for a morphological segmenta-
tion, one for a detailed labeling of the component
morphemes, and one line with a translation into a
language of wider communication.

(1) xqil
x-∅-q-il
COM-A3S-E1P-ver

‘lo vimos’ (‘we saw it’)

We focus specifically on the glossline, in which
we see a mix of stem translations (e.g. ver (in
English, to see) for the Uspanteko stem il) and
labels indicating morphosyntactic functions (e.g.
COM indicates marking of completive aspect on
the verb stem). Glossing is a sequence-to-sequence
problem that can be approached in 2 ways. The
first approach is to train a model to segment the
data and then view it as a token classification task.
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The second is to view it as a translation problem
with uneven input and output lengths, thus requir-
ing an encoder-decoder model that can perform
sequence-to-sequence conversion. In this paper,
we use the former approach. The IGT task was the
focus of a SIGMORPHON 2023 shared task. The
task, resources, and previous models are described
in detail in Ginn et al. (2023).

We directly use the segmented data in track 2 of
the Sigmorphon 2023 glossing shared task to train
our compact model. The corrective LLM only sees
the segmented output of the compact model and
the unsegmented text in the training data.2

2.2 Related Work

Analyses like those by Conneau et al. (2020) re-
veal the inadequacies of large language models in
capturing the nuances of less-common languages.
These studies underline the necessity for special-
ized models that cater to the unique characteris-
tics of low-resource languages. Furthermore, posi-
tion papers like Bender and Koller (2020) critically
analyze the bias and limitations in LLMs, advo-
cating for more inclusive and adaptable language
technologies. Another interesting approach to in-
corporating linguistic information is described in
Tziafas et al. (2023). They directly apply syntac-
tic supervision at the pre-training stage to enhance
the model with syntactic awareness. While this ap-
proach shows promising results, pre-training again
requires large amounts of labeled data which is not
available in a low resource setting.

Introduced by Lewis et al. (2021), Retrieval-
Augmented Generation (RAG) represents a signif-
icant advancement in the field of large language
models (LLMs) for enhancing generative tasks. By
dynamically retrieving information from knowl-
edge bases during inference, RAG effectively ad-
dresses issues such as the generation of factually
incorrect content, often referred to as “hallucina-
tions.” The integration of RAG into LLMs has been
rapidly adopted, making it a crucial technology for
enhancing chatbot capabilities and making LLMs
more practical for real-world applications.

Naive RAG is the most basic form of retrieval
augmented generation. The retrieve-read frame-
work, which was described by Ma et al. (2023), ex-
plains the process of indexing and vectorizing refer-
ence documents, retrieving relevant chunks based
on vector similarity, and generating outputs based

2https://sigmorphon.github.io/sharedtasks/2023/

on compound prompts that combine the chunks
and the query. The idea of RAG has since been
expanded and adapted to several domains. Yan
et al. (2024) suggest a corrective RAG (CRAG)
approach that incorporates a lightweight retrieval
evaluator to test the quality and relevance of the re-
trieved content. The information is then filtered or
accepted in the process of producing the final out-
put. In our paper, we also add a corrective step in a
different context. Instead of evaluating the retriever,
we make the LLM itself generate confidence scores
for each of its predicted outputs.

Other recent work on the IGT task takes various
approaches. Ginn et al. (2024b) build a very large,
multilingual corpus of IGT and use it to finetune
a ByT5 model (Xue et al., 2022), achieving good
results especially on languages not seen in train-
ing. He et al. (2024) train models to extract IGT
directly from audio data, and Ginn et al. (2024a)
explore the use of in-context examples to teach
LLMs to gloss low-resource language data. Us-
ing the same dataset we use, they find that LLM
performance improves dramatically with targeted
selection of examples. Even with no traditional
training or fine-tuning, models like Gemini 1.5 Pro,
Cohere’s Command R+ and GPT-4o outperform
transformer baselines. We do not explore few-shot
prompting techniques, but it is possible that the
performance of our corrective LLM can be further
enhanced in this way.

3 Methodology

Our approach combines the strengths of compact
token classification models with the knowledge
embedded in large language models (LLMs) and
structured grammatical descriptions. The process
involves several key steps:

1. Initial glossing: A compact token classifi-
cation model (either RoBERTa or Bi-LSTM)
generates an initial morphological gloss for
the input sentence.

2. Retrieval: Relevant chunks of grammatical
information are retrieved based on the input
sentence and initial gloss.

3. Augmented generation: An LLM uses the re-
trieved grammar chunks to correct and refine
the initial gloss.

4. Explanation generation: The LLM provides
detailed explanations and confidence scores
for each morpheme in the corrected gloss.

5. Modular optimization: In an advanced ver-
sion of our approach, we fine-tune the retrieval
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and token classification components together
to optimize the entire pipeline.

We explore two main variants of this approach: a
naive RAG method and a modular RAG method.

3.1 Using Naive RAG to correct the output of
a smaller model

The Naive Retrieval-Augmented Generation (RAG)
approach enhances the performance of two com-
pact token classification models trained for gloss-
ing of Uspanteko and Arapaho. The process begins
by indexing and vectorizing reference grammar
documents using a dense vector representation like
BERT embeddings (Devlin et al., 2018). Here, we
use OpenAI embeddings (Achiam et al., 2023).

Let D = d1, d2, . . . dn be the set of n grammar
document chunks, where each di is represented as
a dense vector vi in a high-dimensional space Rd.
We experimented with different chunk sizes and
chunking strategies and found that a default chunk
size of 400 characters with a 50-character overlap
on either side provided the best results across 5
trials. We also tried chunking according to head-
ings in the grammar, but this resulted in chunks of
uneven sizes that did not optimally aid the retrieval
process and contextual inference.

Given an input query q, in this case the sentence
to be glossed along with the attempted prediction of
the compact model, the retriever module computes
the cosine similarity between the query embedding
vq and each document chunk embedding vi:

sim(q, di) =
vq · vi

∥vq∥∥vi∥

The top-k most similar document chunks Dq =
{dq1, dq2, . . . , dqk} are retrieved based on their co-
sine similarity scores. These chunks are concate-
nated with the original input query to form a com-
pound prompt P :

P = [q; dq1; dq2; . . . ; dqk]

The prompt P is then fed into an LLM, which in-
terprets the linguistic rules and morphological pat-
terns described in the retrieved grammar excerpts
Dq. It uses this information to identify and correct
potential errors in the glossing output gs generated
by the smaller token classification model:

gc = LLM(P, gs)

where gc represents the corrected glossing se-
quence. To illustrate the correction process, let

fs be the function learned by the smaller token
classification model that maps the input sentence x
to the glossing output gs.

The Naive RAG approach learns a corrector func-
tion fRAG that takes the original input x, the gloss-
ing output gs, and the retrieved grammar chunks
Dq to produce the corrected output gc:

gc = fRAG(x, gs,Dq)

By leveraging the linguistic information retrieved
from the grammar documents, the RAG model
fRAG is able to refine the predictions of the base
model fs and generate more accurate glossing se-
quences. The Naive RAG approach thus enables
the smaller model to benefit from the vast knowl-
edge captured by the LLM without the need for
extensive fine-tuning or additional training data.
This is particularly advantageous in low-resource
scenarios where labeled data is scarce, as the LLM
can provide valuable linguistic insights to guide
the glossing process. [Refer to the appendix to see
some of these generated explanations.]

3.2 Generating Labeling Justifications and
Confidence Scores

In addition to correcting glossing labels, our RAG
pipeline also generates explanations justifying the
corrections made. We achieve this by prompting
the LLM to provide a chain-of-thought reasoning
trace that justifies the decision-making process be-
hind the corrections. The LLM is prompted with
an instruction I that requests a justification J , an
explanation of how RAG was used R, and a confi-
dence score C for corrected glossing output gc:

[J,R,C] = LLM(I, P, gs, gc)

The justification J is a natural language explana-
tion that describes the grammar rules and morpho-
logical patterns retrieved from the grammar ex-
cerpts Dq and how they informed the corrections
made to the glossing sequence. This explanation
can be modeled as a set of reasoning steps:

J = [r1, r2, . . . , rm]

where each ri represents a single reason that links
the retrieved linguistic information to the specific
corrections made in gc. This set of ri is not neces-
sarily sequential.

To quantify the model’s confidence in the cor-
rected output, a confidence score C is generated.
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This score reflects the LLM’s certainty in the ac-
curacy of the final glossing sequence based on the
retrieved grammar rules and the original output gs.
When asked how it assigned confidence scores, this
was Claude’s response:

"Confidence scores were assigned based on how
closely each word or morpheme matched informa-
tion provided in the grammar document. Higher
scores (closer to 1.0) indicate a strong direct match,
while lower scores (closer to 0.5) indicate a more
tentative match based on context or inference."

Through these confidence scores and justifica-
tions, the RAG pipeline boosts the interpretability
of the model’s predictions. The explanations of-
fer insights into the linguistic reasoning behind
the corrections, allowing users to understand why
certain changes were made. This can be crucially
important for documentary linguists who may be
reluctant to use NLP tools due to concerns about
reliability and a lack of interpretibility.

3.3 Modular RAG: Training the retriever
with the sequence to sequence model

Due to the size of our grammars, it makes sense
to further train our retriever and rank the retrieved
content based on its relevance to the query. This
is an extension of the previously described Naive
RAG approach. The modular RAG approach al-
lows for a more sample-efficient utilization of the
available grammar resources. By learning to re-
trieve and prioritize the most relevant excerpts, the
model can focus on the linguistic information that
is most beneficial for each specific input, rather
than processing the entire grammar at once.

1. Initial Retrieval: The process begins by re-
trieving k context chunks from the grammar
based on relevance to the input query.

2. Retrieval Module Training: The retrieval
module, which is a different instance of the
RoBERTa model, is fine-tuned based on the
performance of the LLM outputs. The input to
the retrieval module consists of all the initially
retrieved chunks of context, and the output is
a relevance vector r = [r1, r2, ..., rk], where
ri ∈ [0, 1] indicates the relevance score for
the ith chunk of context.

3. Final Context Selection: Out of the k re-
trieved pieces of context, only the top-n most
relevant pieces are selected for use in the final
LLM prompt.

Let fs be the token classification model that
maps input sentence x to the initial glossing output
gs. The retriever module fr is trained to select the
top-n relevant grammar chunks Dq based on the
input sentence x and the initial glossing output gs:

Dq = fr(x, gs, k, n)

where k is the initial number of retrieved chunks
and n the final number of selected chunks (n ≤ k).

The selected grammar chunks Dq are concate-
nated with the input sentence x and the initial gloss-
ing output gs to form a prompt P :

P = [x; gs;Dq]

The prompt P is then fed into the LLM to gener-
ate the corrected glossing sequence gc.

During training, the retriever fr and token clas-
sification model fs are jointly optimized using a
combined loss function:

L = Ls(gc, gt) + α · Lr(Dq, Dt)

where:

• Ls is the sequence loss between the corrected
glossing sequence gc and the ground truth
glossing labels gt.

• Lr is the retrieval loss that encourages the
retriever to select relevant grammar chunks. It
is implemented as a ranking loss between the
retrieved chunks Dq and the chunks that led
to the best LLM performance Dt.

• α is a hyperparameter that controls the weight
of the retrieval loss.

By jointly optimizing the retriever and token
classification components, the modular RAG ap-
proach enables the model to learn to identify the
most relevant grammar information and effectively
incorporate it into the glossing process. We take
different combinations of input context chunks (

(
k
n

)
combinations for each test example) and select the
combination that results in the most accurate out-
put. The retriever learns to select excerpts that
are most pertinent to the input sentence and initial
gloss output based on these combinations of ideal
chunks.

During inference, the trained retriever fr is used
to select the top-n relevant grammar chunks Dq for
each input sentence x and initial glossing output gs.
These selected chunks are provided to the LLM to
generate the corrected glossing sequence gc.
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3.4 Baseline Glossing Models

Our expectation is that the best results for this task
will be achieved by combining a model that ex-
ploits all available training data (the compact trans-
former or LSTM model) with the analytical power
of modern LLMs.

More specifically, we use two baseline gloss-
ing models, both of which have been shown to
achieve strong performance in the standard setting
for the glossing task (Ginn et al., 2023). Following
this setting, we model the production of IGT as a
token classification task rather than as a sequence-
to-sequence task. Specifically, we experiment with
two baseline models: one using RoBERTa (Liu
et al., 2019), the second using a Bi-LSTM archi-
tecture. By exploiting the contextual information
captured by these architectures, we aim to obtain
accurate predictions of the morphological labels for
each token in the input sentences. These predicted
labels are then used as the initial glossing output in
the RAG framework.

For the RoBERTa baseline, we use the same
setting as the baseline for the IGT shared task, as
described in Ginn et al. (2023). The input sentences
are tokenized and encoded using the RoBERTa to-
kenizer and encoder. The encoded representations
are then passed through a linear classification layer
to predict the morphological labels for each token.

For the Bi-LSTM model, input sentences are first
tokenized and converted into word embeddings.
These embeddings are then fed into the Bi-LSTM
layer to obtain the contextualized token representa-
tions. A linear classification layer is applied on top
of the Bi-LSTM outputs to predict the morphologi-
cal labels for each token. Both models are trained
using cross-entropy loss and optimized using the
Adam optimizer. We use an adaptive learning rate
and early stopping to ensure a better fit to the data.

We additionally compare with two different
LLMs used in a single-model, zero-shot RAG ar-
chitecture. In this setting, the LLMs are solely
responsible for the glossing output, rather than cor-
recting the output of a predecessor model.

4 Uspanteko and Arapaho: Data and
Grammars

Uspanteko is an endangered Mayan language spo-
ken primarily in Guatemala. It is an ergative-
absolutive language with moderately complex con-
catenative morphology. Much morphological in-
flection occurs on the verb stem, which takes both

prefixes and suffixes and inflects for person, num-
ber, participant role, tense/aspect/mood, and voice,
with a final status suffix. Arapaho is an endangered
Algonquian language spoken by several communi-
ties in the Western United States. The language has
free word order, polysynthetic and agglutinating
morphology, and especially complex verbal mor-
phology (Cowell and Moss Sr, 2011).

Data. We use the Uspanteko and Arapaho IGT
datasets provided as part of the 2023 SIGMOR-
PHON shared task (Ginn et al., 2023), licensed
under CC BY-NC 4.0, and we use the data in accor-
dance with the uses intended as part of the shared
task. The Uspanteko dataset has about 11,000 us-
able sentences and about 80 unique morphological
function labels.

The average sentence is 4.37 words, with many
multi-morphemic words. The Arapaho dataset is
much larger, consisting of 39,500 sentences (5.4
words on average per sentence) in the training set
and 5000 in the dev set.

For Uspanteko, we use a very short (10 page)
grammatical description, in Spanish, from the be-
ginning of an Uspanteko-Spanish dictionary (Mén-
dez, 2007). For Arapaho, we use a 500-page ref-
erence grammar authored by Andrew Cowell and
Alonzo Moss, Sr. (Cowell and Moss Sr, 2011).

5 Experiments and results

Table 1 shows results for all experimental settings,
as well as the previous state-of-the-art for each lan-
guage, as reported in Ginn et al. (2023). The two
LLM-only baselines perform well below the gloss-
ing baselines (RoBERTa and Bi-LSTM, see 3.4)
and all other models. For each of the two gloss-
ing baselines, we compare our naive and modular
RAG models (see 3), separately in combination
with Claude and GPT-4. We aim to evaluate which
LLM is most effective at correcting the glossing
output of the smaller token classification network,
given retrieved grammar excerpts. Before evalua-
tion, we perform post-processing to correct some
common punctuation errors in the LLM output.

We evaluate on both word-level and morpheme-
level accuracy metrics as described in (Ginn et al.,
2023). These metrics are computed by compar-
ing the corrected glossing sequences gLLMc with
the ground truth glossing labels gt for each input
sentence x in the test set. We manage to beat the
previous SOTA with modular RAG for Uspanteko
and naive RAG for Arapaho.



7476

Uspanteko Arapaho

Model Word-level Morpheme-level Word-level Morpheme-level

Accuracy Accuracy Accuracy Accuracy

GPT-4 Baseline (Zero-shot RAG) 42.21 51.88 48.47 53.48

Claude Baseline (Zero-shot RAG) 38.40 42.21 49.91 58.60

Previous SOTA (Shared task) 78.46 84.51 85.87 91.37

RoBERTa Baseline 76.55 82.48 85.44 91.11

RoBERTa + Claude (Train + RAG) 79.21 84.84 86.82 93.74

RoBERTa + GPT-4 (Train + RAG) 78.41 81.49 85.51 91.43

RoBERTa + Claude (Modular RAG) 81.12 85.02 83.98 90.26

RoBERTa + GPT-4 (Modular RAG) 79.44 82.98 82.41 88.68

Bi-LSTM Baseline 71.28 73.90 76.41 80.44

Bi-LSTM + Claude (Train + RAG) 77.47 80.21 79.12 85.44

Bi-LSTM + GPT-4 (Train + RAG) 73.17 78.23 74.16 81.31

Bi-LSTM + Claude (Modular RAG) 78.26 82.22 81.24 85.89

Bi-LSTM + GPT-4 (Modular RAG) 74.12 78.99 76.77 82.18

Table 1: Comparison of all model performances for Uspanteko and Arapaho. Averaged over 5 runs. Highest scores
for each model type (naive, modular) are in boldface; overall high scores underlined. Naive RAG retrieves up to 6
relevant chunks of context while Modular RAG restricts this to the top 3 chunks.

We see that a RAG approach combining the
RoBERTa baseline with Claude consistently per-
forms best. The Bi-LSTM model performs reason-
ably well in most cases, although it consistently
trails RoBERTa. Selective retrieval seems to help
more with Uspanteko than Arapaho. In fact, we
see a performance drop when we train the retriever
with Arapaho. Modular RAG retrieves a smaller,
more focused set of grammar chunks than naive
RAG. It is possible that this reduced set fails to
capture all the information needed to inform the
Arapaho gloss correction process, resulting in a
small accuracy drop.

A Note on Reproducibility The results reported
here are based on experiments that were conducted
with earlier versions of Claude and GPT-4. We
used the GPT-4 model that was available on 14 May
2024 and the Claude-3.5-Sonnet model available
on 23 June 2024. On re-running our experiments
with the new GPT-4o model, we found that halluci-
nations have significantly increased in morpheme
replacements. The model is more likely to make
corrections that are not necessarily supported by
the retrieved context. We realize that these prob-
lems arise due to the usage of proprietary models.
We fully intend to re-run all our experiments with
open-source models and report the results to our
Git repository. To assist with reproducibility, we

list the model hyperparameters and the prompt used
on these dates in Appendix C.

6 Qualitative analysis: usability

This system is designed to support linguists and
others performing the work of interlinear glossing.
The explanations generated by the model improve
interpretability, as they provide an opportunity for
human users to get some insight into the model’s
decision-making process. The best evaluation of
the usability of our system would come from proper
user studies, which we have begun and will report
on in later work. We perform two manual analyses,
both using outputs from our Modular RAG pipeline
with RoBERTa + Claude. We also discuss some of
the confounds with quantitative evaluation.

Glossing error types. Initial inspection of sys-
tem outputs showed that, in some cases, the LLM
proposes a corrected gloss that is close to the ex-
pected output without being identical, resulting in
a ding to automatically-evaluated performance. For
example, the model sometimes outputs 3S when
the expected tag is 3.S, an output that registers as
an error but would be easily resolved by a human
user. We randomly select 50 instances across the
two datasets and evaluate them for error types. Ta-
ble 2 explains our error types and their frequencies
in this sample; we identify 103 errors across the 50
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Type Explanation Example Frequency
content true mismatches between expected output and model output FUT for PAST 30
form variation in form only; likely resolvable by users EXIST for EXS 18
specificity generated output is more or less specific than expected output NOM for SAB (abstract noun) 2
category generated tag where lexical output is expected, or vice versa PROHIB for ‘eat something’ 39
presence generated output contains spurious labels, PAST-NEG for PAST 10

or has fewer labels than expected
unk model generates ‘?’ or replaces ‘?’ with a guess SREL for ‘?’ 4

Table 2: Error types and frequencies across 50 randomly-selected instances, some Arapaho and some Uspanteko.

pre-LLM errors corr/inc/part new errors % corr. expl. exp. quality (1-5) ret. quality (1-5)
Arapaho 21 7 / 10 / 4 7 82.55% 3 1.98
Uspanteko 23 16 / 7 / 0 9 81.38% 3.19 2.42

Table 3: Manual analysis of model output, 14 Arapaho/16 Uspanteko examples. We count model corrections that are
correct, incorrect, and partially correct, as well as new errors introduced by the corrective LLM. We also rate the
average explanation correctness and quality of both explanations and retrieved chunks. Details in Appendix B.

instances. Arapaho sentences have an average of
2.2 errors per sentence, with 1.9 for Uspanteko.

Category-type errors, where the model gener-
ates a tag instead of a lexical item, or vice versa,
are most common, followed by content-type errors,
which we consider “true” glossing errors. The er-
ror types form and specificity are those which we
expect to be easily interpreted and corrected by hu-
man users; these account for roughly 19% of the
errors. See Appendix B.1 for error subtypes.

Quality of explanations. Our second manual
analysis concerns the quality and relevance of the
explanations provided by the LLM.

Examples in Appendix A show the two-part
structure of the explanations: 1) explanation of the
presumed meaning of the morphemes, 2) explana-
tion of which parts of the grammar were retrieved
and used to make glossing decisions.

We randomly select 30 instances. For each,
we collect the original text, expected gloss, out-
put of the initial glossing model, LLM-corrected
output, and the complete set of explanations and
retrieved grammar chunks from the RAG pipeline.
A professional linguist then analyzes the number
of pre-LLM errors, how many are addressed cor-
rectly/incorrectly/partially correctly, the percentage
of correct morpheme explanations, the subjective
quality of the RAG explanations, and the subjective
quality of the retrieved grammar chunks, the latter
two on a Likert scale (1-5). Appendix B.2 contains
a detailed description of the steps of the analysis.

The results appear in Table 3. On average, the
model corrections for Uspanteko are more accurate
than those for Arapaho, with a similar number of
new errors being introduced for both languages.

Model explanations for individual morphemes are
largely correct, and the chunks retrieved for Uspan-
teko are slightly higher quality. We note that there
is a clear difference in the nature of the two gram-
mars. The Arapaho grammar is a full and complex
reference grammar, and the Uspanteko grammar
is a sketch, using simpler explanations in a more
compact presentation. This initial analysis sug-
gests the need for a deeper exploration into linguis-
tic reference materials of different types and their
use in RAG. Arapaho morphology is also signifi-
cantly more complex than Uspanteko morphology,
increasing the complexity of the morphological
analysis task.

Examples of errors and the problem with quan-
titative evaluation. Our zero-shot LLM-based
setting yields some interesting error types that high-
light the difficulty of using quantitative metrics like
F1 and accuracy for LLM outputs.

(2)

Original Text: pyor kita’ len twiqw re jili

RoBERTa Output (or obfuscated gloss): peor NEG INT
INC-MED-PART él/ella ver

Expected Gloss: peor NEG INT INC-adornar-PART él/ella
allá

Corrected Gloss: same as original

In this example, the model decides not to make
corrections, as the retrieved context does not pro-
vide enough justification. Although the LLM has
been explicitly instructed to produce all outputs
in a particular format (see Appendix D), it ran-
domly replaces the original gloss with an arbitrary
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observation - "same as original". For quantitative
evaluation, this prediction would be marked en-
tirely wrong although the accuracy should ideally
be the same as the original gloss that the LLM
encountered. Such errors do not appear with any
consistency across re-runs of the same model with
all other hyperparameters held constant.

Errors also occur due to inconsistencies in gloss-
ing standards of the initial data, usage of citation
forms over conjugated forms (the Spanish ‘decir’
instead of ‘dice’ for example), conflicting evidence
in the dictionary and the grammar, and an inability
to decide the granularity (for example, labeling a
morpheme as an ADJ instead of replacing it with a
stem translation into the glossing language).

7 Conclusion

This study demonstrates the effectiveness of a
Retrieval-Augmented Generation (RAG) frame-
work in enhancing the performance of compact
models for morphological glossing in low-resource
language contexts. By leveraging the interpretive
power of Large Language Models (LLMs) and the
structured knowledge contained in grammatical de-
scriptions, we achieve a new state-of-the-art for
both languages investigated. A second advantage
is the interpretability provided by LLM-generated
explanations, which is crucial for building trust in
the system’s outputs and facilitating the use of NLP
tools in language documentation efforts.

The RAG approach (combining a RoBERTa
baseline with Claude) consistently outperforms
other configurations, achieving the highest word-
and morpheme-level accuracies for both languages.
This framework effectively bridges the gap between
the limited training data available for low-resource
languages and the rich linguistic knowledge en-
coded in grammatical descriptions. The ability of
LLMs to provide detailed explanations and confi-
dence scores for each morpheme adds a layer of
interpretability to the glossing process, potentially
increasing the utility of these tools for documen-
tary linguists. Even with minimal grammatical
resources, as for Uspanteko, the RAG approach
shows notable improvements over baseline models.

These findings suggest that the integration of
linguistic knowledge through RAG can be a pow-
erful approach for improving NLP tasks in low-
resource settings. By combining the strengths of
compact, trainable models with the vast knowl-
edge encoded in LLMs and structured grammatical

descriptions, we can create more accurate and in-
terpretable tools for language documentation and
analysis. We also find that it is difficult to effec-
tively evaluate LLMs when they produce poten-
tially correct human-readable outputs that deviate
from the strict expectations of quantitative eval-
uation metrics and scripts. Accuracy and F1 are
likely not the best metrics to communicate their ef-
fectiveness in scenarios like the glossing task. Our
recent encounter with increased hallucinations in
the form of overly confident and inconsistent out-
puts reinforces the belief that LLMs, while helpful,
also have the potential to mislead users in certain
circumstances.

8 Future Work

We would like to investigate additional languages,
explore more sophisticated retrieval mechanisms,
incorporate additional linguistic resources (as in
Zhang et al. (2024)), and optimize our LLM selec-
tion and fine-tuning approaches. Near term, we
plan to implement the same framework using an
open-source LLM.

Dictionary-enabled RAG We have conducted
preliminary experiments with a language dictio-
nary as part of the RAG pipeline. We find that a
dictionary can help significantly improve the qual-
ity of the outputs. The code and dictionary for
these experiments can be found here. Initial ex-
periments with Uspanteko on Claude-3.5-Sonnet
(October update) have shown gains of up to 5% on
certain samples of test data. The prompt template
for the dictionary-enabled RAG methodology can
also be found in the appendix. We match strings at
the word level to dictionary entries and if a match
is found, we include the dictionary definition and
example usage as additional context for the model.
Moreover, this additional context is also embedded
and used as a part of the retrieval mechanism to
find relevant chunks in the grammar.

9 Limitations

While the proposed RAG framework for morpho-
logical glossing demonstrates promising results,
there are several limitations to consider:

1. Dependency on grammar quality: The ef-
fectiveness of the RAG pipeline heavily relies
on the quality and comprehensiveness of the
available grammar documents. If the gram-
mar descriptions are incomplete, inconsistent,

https://github.com/bhargavns/RAG_analysis/tree/main/RAG_system/dictionary_expts
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or contain errors, the retrieved excerpts may
not provide accurate or sufficient information
to guide the glossing corrections. This can
lead to sub-optimal performance of the RAG
model.

2. Limited expressiveness of grammars: The
linguistic rules and patterns described in gram-
mar documents may not capture all the nu-
ances and exceptions present in the target lan-
guage. Some morphological phenomena may
be too complex or irregular to be fully ex-
pressed in a concise set of rules. This lim-
itation can hinder the RAG model’s ability
to generate accurate glossing labels for such
cases. This is especially true in the case of our
relatively small Uspanteko grammar.

3. Scalability to larger datasets: The current
experiments focus on low-resource languages
with relatively small datasets. While the RAG
approach is designed to be data-efficient, its
performance and computational requirements
when applied to larger datasets or more di-
verse language families remain to be investi-
gated. The retrieval and processing of gram-
mar excerpts may become more challenging
as the size and complexity of the data in-
creases.

4. Generalization to unseen languages: The
RAG pipeline has been evaluated on specific
low-resource languages, such as Uspanteko
and Arapaho. However, its generalization ca-
pability to other unseen languages with dif-
ferent morphological typologies is not exten-
sively tested. The effectiveness of the ap-
proach may vary depending on the similarity
of the target language to the languages used in
training and the availability of suitable gram-
mar resources.

5. Reliance on proprietary models: We cur-
rently use two proprietary LLMs for these
experiments. Once we have the appropriate
compute infrastructure established, we plan
to implement the same architecture using an
open-source model.

6. Single evaluator for manual qualitative
analysis: So far we have performed only a
small-scale, somewhat subjective analysis of
the quality of the generated explanations and
the relevance of retrieved grammar chunks for

the sentences being glossed. We are currently
building a web interface to allow linguists and
other users to interact and evaluate model out-
puts. Once finished, we will expand this anal-
ysis to a more robust user study with multiple
users and multiple languages.

10 Ethical Considerations

Although generative AI is clearly helpful in mak-
ing the process of language documentation more
explainable and efficient, it can also be deceptively
convincing in its justifications. Through the initial
prompt, the LLM is primed to report any uncertain-
ties and assign confidence scores, but as seen in the
qualitative analysis, this is in no way a foolproof
approach. The RAG-driven system is not ready to
be used by language learners or for large-scale lan-
guage documentation tasks without further testing.

We also recognize that we use sensitive language
data and resources to obtain our results. All our
data is part of the publicly available Sigmorphon
2023 shared task data as mentioned in section 4,
and we have permission from the producers of
the two grammars to use them for research pur-
poses. We will continue to seek express permission
from communities and authors before using low-
resource data and grammars for future experiments.
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A Sample explanations

A.1 Uspanteko Example
Given the Uspanteko sentence "t wi’ tene’ qleen
tob’ool laq b’ee", Claude produced the following
corrected gloss: "EXST talvez NEG-existir ayudar-
NMLZ PREP camino". In addition to the corrected
gloss, Claude generated a detailed explanation for
each morpheme, along with confidence scores:

• ’wi" is an existential predicate (EXIST) indi-
cating the presence or existence of something.
(confidence: 0.9)

• ’tene" is a particle meaning ’maybe’ or ’per-
haps’. (confidence: 0.7)

• ’qleen’ is a negative existential predicate
(NEG-exist), indicating the non-existence of
something. (confidence: 0.9)

• ’tob’ool’ can be broken down as: ’tob" (verb
root meaning ’to help’), ’-ool’ (suffix nomi-
nalizing the verb, NMLZ), yielding a noun
meaning ’help’ or ’assistance’. (confidence:
0.8)

• ’laq’ is a preposition meaning ’at’ or ’in’.
(confidence: 0.8)

• ’b’ee’ is a noun meaning ’path’, ’road’, or
’way’. (confidence: 0.9)

Claude also provided information on how the
RAG approach was used to arrive at the corrections:

• The existential predicate ’wi" and the negative
existential predicate ’qleen’, both of which
appeared in the example sentences.

• The information about the suffix ’-ool’ nomi-
nalizing verbs (NMLZ), which was mentioned
in the ’Estructura de las entradas’ (Structure
of the entries) section.

• The noun ’b’ee’ meaning ’path’, which ap-
peared in one of the example sentences.

• The meanings of ’tene" and ’laq’ were inferred
from context, as they are not explicitly defined
in the grammar document.

A.2 Arapaho Example
Given the Arapaho sentence "Hookoh
neniih’ei3i’okuno’ hoo3oo’o’ hiniito’eino
notoone hiihoowuno’useenino ", Claude pro-
duced the following corrected gloss: "because
IC.scattered-sit-1PL what 3S-relative-OBV.PL
1S-people NEG-arrive-3PL". In addition to the
corrected gloss, Claude generated a detailed
explanation for each morpheme, along with
confidence scores:

• hookoh: glossed as because, seems to be a
conjunction (confidence: 0.9)

• neniih’ei3i’okuno’: a complex verb form
(confidence: 0.8)

– neniih’ei-: possibly an initial change
(IC) form of scattered

– -3i’oku-: likely means sit
– -no’: 1PL (first person plural) marker

• hoo3oo’o: glossed as what, likely an interrog-
ative pronoun (confidence: 0.9)

• hiniito’eino: appears to be a noun phrase
(confidence: 0.7)

– hini-: possibly 3S (third person singular)
prefix

– -ito’ei-: root meaning relative
– -no: OBV.PL (obviative plural) marker

• notoone: glossed as 1S-people, likely a pos-
sessed noun (confidence: 0.8)

– no-: 1S (first person singular) possessive
prefix

– -toone: root meaning people

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2105.13626
https://arxiv.org/abs/2105.13626
https://arxiv.org/abs/2401.15884
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usefulness/correctness
1 all explanations incorrect and/or unuseful
2 most explanations incorrect and/or unuseful
3 about half of explanations correct and/or useful
4 most explanations correct and/or useful
5 all explanations correct and/or useful

Table 4: Likert scale used to score morpheme explana-
tions provided by the corrective LLM.

• hiihoowuno’useenino: a complex verb form
(confidence: 0.8)

– hiihoowu-: NEG (negation) prefix

– -no’usee-: verb root meaning arrive

– -nino: 3PL (third person plural) marker

Claude also provided information on how the
RAG approach was used to arrive at the corrections:

• The basic morphosyntax structure provided
insight into the order of elements in the verb
complex.

• The document mentions person markers and
their positions, which helped in identifying
-no’ as 1PL and -nino as 3PL.

• The negation prefix ihoowu- is mentioned,
which appears here as hiihoowu-.

• The document discusses obviative plural mark-
ers, supporting the interpretation of -no in
hiniito’eino.

• The contraction rules mentioned weren’t di-
rectly applicable here but provided context for
understanding morpheme boundaries.

B Details of qualitative analyses

B.1 Glossing error types

In section 6 we present an analysis of the types
of glossing errors made by our best model, across
50 randomly-selected sentences. The figures pre-
sented there are for high-level error categories. Dur-
ing the analysis, we consider a number of subtypes
for each high-level error type.

Table 6 (next page) shows the complete set of er-
ror types and subtypes, with frequencies, examples,
and descriptions.

quality/relevance
1 all explanations unhelpful or misleading
2 most explanations unhelpful or irrelevant
3 about half of explanations relevant and helpful
4 most explanations relevant and helpful
5 all explanations relevant and helpful

Table 5: Likert scale used to score RAG explanations
provided by the corrective LLM.

B.2 Quality of explanations
Our process for analyzing the quality of explana-
tions provided consisted of five steps.

1. Compare glossing output of the baseline token
classification model to the expected (gold stan-
dard) glossing output, counting the number of
errors at the morpheme level.

2. Compare the LLM-corrected output to the
baseline output. For each error in the baseline
output, determine whether the LLM made a
correct correction, an incorrect correction, or a
partially correct correction. In addition, look
for new errors introduced by the corrective
LLM.

3. For the set of morpheme explanations, mark
each as correct, partially correct, or incorrect.
Determine the percentage of correct expla-
nations by comparing to the expected gloss,
with partially correct explanations receiving
0.5 points.

4. Rate the set of explanations about how RAG
was used according to their usefulness and/or
correctness, using the scale in Table 4.

5. For each retrieved grammar chunk, rate
its quality/relevance for the example being
glossed, using the scale in Table 5. Compute
the average score across all retrieved grammar
chunks.

C Model Hyperparameters

• Temperature:

– GPT-4 (May 2024): 0.1
– Claude-3.5-Sonnet (June 2024): 0.2

• Similarity Threshold:

– Both models use a similarity threshold
of 0.6 with OpenAI embeddings.
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type subtype example notes frequency
content wholeDiff FUT for NEG single tag wrong, output is 13

entirely different linguistic dimension
wholeSame FUT for PAST single tag wrong, output is 8

same linguistic dimension
partial E3S for E3P one part of compound tag is incorrect 8
multiple 0S for 3PL all parts of compound tag are incorrect 1

form variant EXIST for EXS output has generated a plausible variant 5
not in the tagset (could be in the grammar)

similar IMP for IMPER output is incorrect tag, similar to correct 2
tag, both are in the tagset

punct 3.S for 3S, 3-S for 3S only difference is punctuation (could be 9
missing, could be spurious, could be replacement)

case PAUSE for pause difference is case (which is 2
potentially meaningful in this setting)

presence extra PAST-NEG for PAST output contains spuriously generated material 8
missing output is missing a tag 2

specificity hyper NOM for SAB generated output is less specific than expected 1
tag (e.g. nominal for abstract noun)

hypo DET for PART generated output is more specific than expected 1
tag (e.g. DET could be one of many types of particles)

category 2lex so.that for DETACH generated output has lexical translation instead of tag 17
2tag PROHIB for eat.s.t. generated output has tag instead of lexical translation 22

unk unk ? for SC model generates ? 2
guess SC for ? model guesses where original gloss has question marks 2

Table 6: Glossing error analysis types and subtypes, together with frequencies across 50 sentences.

• Chunk Size:

– Both models use a chunk size of 400.

• Chunk Overlap:

– Both models use a chunk overlap of 50.

D Correction Template and Prompt

At the end of the template, we provide an example
for the model to better understand the formatting.

Template \t is a line in Arapaho or Uspan-
teko and the second line (\g) is the gloss in En-
glish/Spanish. \m is the segmented morpheme line.
Given a new example, your job is to correct the
gloss line based on the provided grammar context.
The grammar may not have all the answers, but you
will need to see if it can inform the gloss correc-
tion. Remember to produce the output in exactly
the same format as seen in the example below.

You can also use your knowledge of English or
Spanish to correct some words where necessary.

If the gloss is in Spanish, maintain the Span-
ish gloss. If the gloss is in English, maintain the
English gloss.

If you are unsure about a morpheme, replace the
label with a question mark (?).

IT IS LIKELY THAT THE ORIGINAL GLOSS
IS MOSTLY CORRECT. IF YOU DO NOT FIND

EVIDENCE IN THE CONTEXT TO MAKE A
CORRECTION, DO NOT MAKE IT. LEAVE THE
LABEL AS IT WAS PREVIOUSLY.

Context: {context}
Gloss to correct: {question}
Output the result in the following format: gloss:

<corrected gloss line>, explanation: <Detailed ex-
planation of each word or morpheme>, how RAG
was used: <Explanation of how the grammar docu-
ment was used>

Prompt Consider these 3 lines and correct the
\g line based on your understanding. Make sure to
replace all the (’?’) with their correct equivalents.
DO NOT MISS ANY ’?’:

Here’s the list of morpheme labels you can
use: A1P, A1S, A2P, A2S, ADJ, ADV, AFE, AFI,
AGT, AP, APLI, ART, CAU, CLAS, COM, COND,
CONJ, DEM, DIM, DIR, E1, E1P, E1S, E2, E2P,
E2S, E3, E3P, E3S, ENF, ESP, EXS, GEN, GNT,
IMP, INC, INS, INT, ITR, ITS, MED, MOV, NEG,
NOM, NUM, PART, PAS, PL, POS, PP, PREP,
PRG, PRON, REC, RFX, S, SREL, SAB, SC, SV,
TOP, TRN, VI, VT, VOC, EP, PREF, SUF, TAM,
PERS
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