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Abstract
Event Relation Extraction (ERE) aims to ex-
tract various types of relations between dif-
ferent events within texts. Although Large
Language Models (LLMs) have demonstrated
impressive capabilities in many natural lan-
guage processing tasks, existing ERE methods
based on LLMs still face three key challenges:
(1) Time Inefficiency: The existing pairwise
method of combining events and determining
their relations is time-consuming for LLMs. (2)
Low Coverage: When dealing with numerous
events in a document, the limited generation
length of fine-tuned LLMs restricts the cov-
erage of their extraction results. (3) Lack of
Rationale: Essential rationales concerning the
results that could enhance the reasoning abil-
ity of the model are overlooked. To address
these challenges, we propose LLMERE, an
LLM-based approach with rationales for the
ERE task. LLMERE transforms ERE into a
question-and-answer task that may have mul-
tiple answers. By extracting all events related
to a specified event at once, LLMERE reduces
time complexity from O(n2) to O(n), com-
pared to the pairwise method. Subsequently,
LLMERE enhances the coverage of extraction
results by employing a partitioning strategy that
highlights only a portion of the events in the
document at a time. In addition to the extracted
results, LLMERE is also required to generate
corresponding rationales/reasons behind them,
in terms of event coreference information or
transitive chains of event relations. Experi-
mental results on three widely used datasets
show that LLMERE achieves significant im-
provements over baseline methods1.

1 Introduction

Event Relation Extraction (ERE) is a crucial task in
natural language processing and information extrac-
tion, which aims to identify the types of relations

∗Corresponding author.
1The source code is available at https://github.com/

HerbertHu/LLMERE

Connie first posed a threat to the Lesser Antilles, 
ultimately passing about 105mi (165km) north of the 
island group. …… 

The rains from storm contributed to flooding that caused 
$700 million in damage.

Hurricane Connie contributed to 
significant inundation across the 
eastern United States in August 1955.

The total losses in the United States 
amounted to approximately $86 million.

coreference

causal
temporal

subevent

Figure 1: An example of the ERE task. Lines indicate
the relations between events.

between events in texts, such as temporal, causal,
subevent, and coreference. For example, in Fig-
ure 1, an ERE model needs to identify all existing
event relations within a document. ERE plays a sig-
nificant role in establishing extensive connections
among events, which benefits various practical ap-
plications, including event prediction (Chaturvedi
et al., 2017; Bai et al., 2021), reading comprehen-
sion (Berant et al., 2014), and question answer-
ing (Oh et al., 2017).

Previous methods (Wen and Ji, 2021; Chen et al.,
2022) primarily rely on Pre-trained Language Mod-
els (PLMs) to encode documents. Due to the length
limitation of the input sequence (e.g., BERT has a
maximum encoding length of 512 tokens), PLMs
are unable to encode an entire document at once,
leading to challenges in capturing long-range se-
mantic dependencies. Currently, Large Language
Models (LLMs) have demonstrated impressive ca-
pabilities in understanding the semantics of long
texts (Peng et al., 2023; Dong et al., 2024). There-
fore, some methods (Yuan et al., 2023; Yu et al.,
2023) attempt to utilize LLMs to accomplish the
ERE task.

However, existing LLM-based ERE methods
still face three key challenges: (1) Time Inef-

https://github.com/HerbertHu/LLMERE
https://github.com/HerbertHu/LLMERE
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ficiency: Reasoning with LLMs is highly time-
consuming, as determining the relations between
all event pairs requires significant computational
resources. (2) Low Coverage: The limited gener-
ation length of fine-tuned LLMs restricts the cov-
erage of their extraction results. As shown in Fig-
ure 2, when the number of events in a document is
large, LLMs can only extract a portion of the event
relations, resulting in limited coverage. (3) Lack
of Rationale: Essential rationales concerning the
results that could enhance the reasoning ability of
the model are overlooked.

To address the aforementioned challenges, this
paper proposes an LLM-based ERE method with
rationales, called LLMERE. For the first challenge,
LLMERE transforms ERE into a question-and-
answer task with multiple possible answers, where
LLMs answer the question of which events are re-
lated to a specific event within a given document.
By doing so, LLMERE significantly reduces the
time complexity of training and inference from
O(n2) to O(n), compared to the existing pairwise
methods. For the second challenge, we propose a
partitioning strategy to reduce the generation length
of the output for each sample. Specifically, the
document is duplicated, with each copy highlight-
ing a subset of the candidate events. The model
focuses on generating answers from a different por-
tion of events each time. For the third challenge,
in addition to the extracted event relation results,
we also require the model to generate correspond-
ing rationales behind the relations, such as event
coreference information and event relation transi-
tive chains that adhere to logical rules. By learning
from these rationales, the model can develop rea-
soning abilities that enable it to infer more accurate
results.

In general, the main contributions of this paper
can be summarized as follows:

• We propose an LLM-based method for ERE
(LLMERE). It utilizes a question-and-answer
format that enumerates multiple answers to
reduce the task complexity from O(n2) to
O(n).

• A partitioning strategy is proposed to address
the problem of limited coverage in extraction
results when the number of events in the doc-
ument is large.

• LLMERE is required to generate rationales
that could enhance its reasoning capabilities,
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Figure 2: The ERE results of a fine-tuned LLM on the
MAVEN-ERE dataset, across documents with varying
numbers of events.

including event coreference information and
event relation transitive chains.

• According to experimental results on three
widely used datasets, LLMERE achieves sig-
nificant improvements in the F1 score com-
pared to the state-of-the-art baselines.

2 Related Work

Since the fundamental role of event relations in
natural language processing, extracting event rela-
tions has attracted extensive attention in the past
few years. Early methods (Riaz and Girju, 2013,
2014) rely on lexical and syntactic features to de-
termine event relations. Subsequently, some meth-
ods (Wen and Ji, 2021; Zhou et al., 2022) leverage
PLMs to encode text, obtaining semantic repre-
sentations of event pairs for classification. Some
methods (Phu and Nguyen, 2021; Fan et al., 2022)
construct event graphs, treating events within the
document as nodes and modeling the interactions
among them. In addition, since PLMs are unable
to process entire documents at once, some meth-
ods (Man et al., 2022; Guan et al., 2024) attempt
to select important contexts.

Recently, LLMs have demonstrated impressive
performance in understanding the semantics of
long documents. To investigate the performance of
LLMs in various ERE tasks, several studies (Yuan
et al., 2023; Yu et al., 2023; Chen et al., 2024;
Zhang et al., 2024) conduct evaluations. The re-
sults of these studies indicate that, under few-shot
settings, directly using LLMs does not effectively
identify relations between events. Moreover, these
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methods adopt a pairwise approach to determine
relations between each pair of events, resulting in
excessively high task complexity. Therefore, we
propose an ERE method tailored for LLMs, which
aims to reduce task complexity while improving
extraction performance.

Furthermore, some studies (Wiegreffe et al.,
2021; Wei et al., 2022) have demonstrated that
rationales can improve LLMs by generating high-
quality reasoning steps to explain their predictions.
In the ERE task, event coreference information
and event relation transitive chains can provide de-
tailed explanations for the extracted event relations.
Therefore, we leverage them as rationales to en-
hance the reasoning capabilities of the model.

3 The LLMERE Model

In this section, we introduce the proposed
LLMERE model. First, we construct input-output
training data using the method described below and
then utilize these data to train the model. Figure 3
illustrates the process of constructing the training
data. In the inference phase, only the inputs need
to be given and the model will generate the corre-
sponding outputs. Next, we sequentially introduce
the Document Partitioning, Context Input, Model
Output, and Instruction Tuning of the model.

3.1 Document Partitioning

In the preliminary experimental results, we observe
that as the number of events in the document in-
creases, the performance of the LLM gradually
deteriorates. This is because the limited generation
length of fine-tuned LLMs restricts the coverage of
their extraction results. To alleviate this problem,
we propose a partitioning strategy. Specifically,
we count the number of events n in the document
and set a threshold k for the maximum number
of annotated events allowed per document. After
applying the partitioning strategy, the number of
document replications m is calculated as follows:
m = ⌈n−1

k ⌉, where ⌈⌉ denotes the ceiling func-
tion. Subsequently, as shown on the left side of
Figure 3, we specify one event and then uniformly
and randomly annotate other events across m doc-
uments. Uniform partitioning helps avoid issues
with uneven event distribution in the partitioned
documents. Random partitioning can enhance the
ability of the model to recognize events located at
different positions within the document, preventing
it from overly focusing on a single text segment.

It is worth noting that the partitioning strategy is
applied during both the training and testing phases.
During the testing phase, the extraction results from
multiple samples are merged to obtain all events
related to the specified event.

3.2 Context Input
The input part of the data provides the necessary
contextual information, which primarily consists
of three components: Task description, Document,
and Instruction. As shown in the middle section of
Figure 3, these three components are concatenated.

Task Description. Since LLMs are significantly
influenced by the content of the prompts, we pro-
vide a detailed task description to thoroughly ex-
plain the task being performed. We treat the four
types of event relations (temporal, causal, subevent,
and coreference) as distinct subtasks, each with its
own task description. The model adaptively per-
forms the corresponding subtask based on the pro-
vided task description each time. For each subtask,
event relations are further divided into multiple
subtypes. Existing multi-turn question-answering
methods for relation extraction (Li et al., 2019) re-
quire specifying a head entity first, and then ex-
tracting the results for each subtype during the
multi-turn process. In contrast, LLMERE extracts
the results for all subtypes of the task in a single
step. This approach has two advantages: first, it in-
creases extraction efficiency; second, the model is
able to make global reasoning, avoiding the identifi-
cation of multiple conflicting relations for the event
pair (eA, eB). Subsequently, to make it easier for
the model to identify event locations, the method
for annotating events in the document is provided.
To facilitate the subsequent analysis of the output
results, we specify a detailed expected output for-
mat. A well-defined task description enables the
LLM to better understand the task being performed,
thereby enhancing its performance. Detailed task
descriptions can be found in Appendix A.

Document. To better understand the global se-
mantics of the document, the entire content of the
document is utilized as input. Additionally, we con-
struct samples using the partitioned documents. To
more accurately detect the location of events and
indicate them in the extraction results, special sym-
bols are used to annotate the events. Specifically,
we use angle brackets to enclose event mentions
and label them with sequential numbers, for exam-
ple, <e0 Hurricane> <e1 inundation>.
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Extraction Results:
CAUSE: <e1 inundation>, <e2 losses>, <e6 flooding>, <e7 damage>;
PRECONDITION: none

Results

Event Graph

Event Graph

The current task is an event 
causal relation extraction
task …… including two subtypes: 
CAUSE and PRECONDITION.

Task Description

<e0 Hurricane> Connie contributed 
to <e1 inundation> …... The rains 
from <e5 storm> contributed to 
<e6 flooding> that caused $700 
million in <e7 damage> …… 

Document

Please identify the events in the 
document that have causal 
relations with the given event <e5 
storm>.

Instruction

Specify Event

Partition

Connie first <e3 posed> a 
threat to the Lesser Antilles, 
ultimately <e4 passing> 
about 105mi …… The rains 
from <e5 storm> contributed 
to flooding that caused $700 
million in damage …… 

Doc Sample 1
Connie first posed a threat to 
the Lesser Antilles, ultimately 
passing about 105mi …… 
The rains from <e5 storm>
contributed to <e6 flooding> 
that caused $700 million in 
<e7 damage> …… 

Doc Sample 2

e0 e2 e4e1 e3 e5 e6 e7 e8

e0 e2 e4e1 e3 e5 e6 e7 e8

e5 e3 e8e2 e4 e5 e1 e7e0 e6

e5

e7

e6

e0

e1

e2

coref.

cause

Rationales

Annotated
Triples

e5

e7

e6

e0

e1

e2

coref.

cause

cause
cause

cause
cause

cause

Highlight events

Document Partitioning Input Output

Coreference Information:
<e0 Hurricane > and <e5 storm> are identical; ……
Transitive Chains:
<e5 storm> causes <e6 flooding> to occur, <e6 flooding> causes <e7 damage>
to occur; ……

Rationales

Derive 
Rationales

Figure 3: The construction process of LLMERE training data. Training data includes input and output.

Instruction. To reduce the complexity of using
LLMs for ERE, we specify a particular event and
prompt the model to enumerate all other events that
are related to it.

3.3 Model Output

In the output section, the model is required not
only to generate the extraction results regarding
event relations but also to provide corresponding
rationales for these results.

3.3.1 Extraction Result
In this section, since a single event from the sam-
pled document partition is specified in the prompt,
the model only needs to identify other events that
are related to it. Furthermore, for each ERE sub-
task, the model extracts results for all relation types
in a single inference process. If none of the events
in the document are related to the specified event,
the output should be “none”. For example, in the
event causal relation extraction subtask, as shown
on the right side of Figure 3, the extraction re-
sult is “CAUSE: <e1 inundation>, <e2 losses>,
<e6 flooding>, <e7 damage>; PRECONDITION:
none”. “CAUSE” and “PRECONDITION” repre-
sent two subtypes of the causal relation.

3.3.2 Rationales
The rationales regarding the results helps the model
better understand the relations between events.
These rationales primarily include event coref-
erence information and event relation transitive
chains that adhere to logical rules. By enabling
the model to learn these rationales while extracting
results, its reasoning capabilities can be enhanced,
leading to more accurate extraction results. All
rationales are derived from existing datasets. Event

coreference information is contained within the
dataset. The event relation transitive chains are de-
rived from the original annotated data using logical
rules.

Event Coreference. When multiple event men-
tions in the text refer to the same event, these men-
tions exhibit coreference relations. Event corefer-
ence relations connect scattered events throughout
the document. Identifying coreference relations
between events helps in comprehensively under-
standing the content of the entire document. We
represent event coreference relations in natural lan-
guage, for example, “<e5 storm> and <e0 Hurri-
cane> are identical.” For the event coreference
relation extraction subtask, the model only outputs
the extraction results.

Transitive Chains. When determining the rela-
tions between a specified event and other events,
some relations are difficult to directly infer and re-
quire leveraging transitive chains of event relations
for assistance. Therefore, we design a method to
automatically generate transitive chains and utilize
logical rules to verify the validity of these chains.
First, we extract all event relation triples from the
annotated data and then convert these triples into
an event graph. After that, we designate the spec-
ified event as the starting node of the path and
set the first-order neighbors of the specified event
as the ending nodes of the path. We then search
for paths between two nodes in the graph, exclud-
ing those paths where the two nodes are directly
connected. If the relation between the starting
and ending nodes inferred through the transitive
chains matches the relation annotated in the orig-
inal data, we consider such a path to be one that
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satisfies the logical rules. For example, the transi-
tive chain, <e5 storm> cause−→ <e6 flooding> cause−→
<e7 damage> is a path that satisfies the logical
rules, as it yields a result consistent with the labeled
data, namely <e5 storm> cause−→ <e7 damage>. If
multiple paths exist between two nodes, we ran-
domly retain one to avoid information redundancy.
Next, we convert all transitive paths into textual
descriptions to facilitate the understanding of the
model. Finally, we train the model to learn from
the transitive chains, thereby enhancing its reason-
ing capabilities. Detailed transitivity logic rules
can be found in Appendix B. We did not introduce
transitive chains for temporal data, because the tem-
poral graph is dense, and doing so would introduce
additional noise.

3.4 Instruction Tuning and Evaluation

After constructing the training dataset, we use
instruction tuning to train the LLMERE. The
LLaMA-Factory (Zheng et al., 2024) framework is
employed to train the model. The base models used
for fine-tuning are primarily the LLaMA2-7B (Tou-
vron et al., 2023) and LLaMA3-8B (Grattafiori
et al., 2024) series. The Lora (Hu et al., 2022) tech-
nique is adopted for parameter-efficient fine-tuning.
The model training utilizes the cross-entropy loss
function.

Multi-task Joint Training. As mentioned in Sec-
tion 3.2, we treat the four types of event relations
as four distinct subtasks, resulting in four separate
sets of training data. To enable an LLM to extract
multiple types of event relations, we combine these
four separate sets of training data and perform joint
training.

Negative Sample Sampling. Due to the sparsity
of relations between events, many events within a
document exist independently and have no connec-
tion to other events. We consider such instances
as negative samples, while others are treated as
positive samples. This leads to an imbalance be-
tween positive and negative samples. To mitigate
this issue, we employ a negative sample sampling
strategy, retaining only a portion of the negative
samples.

Evaluation. During the testing phase, to evalu-
ate LLMERE on unseen documents, these input
documents only include event trigger annotations
without event relations, and thus do not contain any
rationales about these relations.

Dataset #Doc. #Events #Events/Doc.
MAVEN-ERE 4,480 112,276 25.1
MATRES 275 11,861 43.1
HiEve 100 3,185 31.9

Table 1: Statistics of the datasets.
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Figure 4: Document length distribution in the datasets.

4 Experiments

4.1 Datasets and Metrics

Datasets. We utilize three commonly used bench-
mark datasets to evaluate the proposed method:
MAVEN-ERE, MATRES, and HiEve. The statis-
tics of these datasets are presented in Table 1.
MAVEN-ERE (Wang et al., 2022) is a unified
large-scale dataset for the ERE task, annotated
on English Wikipedia documents in the general
domain. This dataset is annotated with four ma-
jor types of event relations, i.e., temporal, causal,
subevent, and coreference. It contains 103,193
events coreference chains, 1,216,217 temporal rela-
tions, 57,992 causal relations, and 15,841 subevent
relations. The annotation scale of this dataset is
at least an order of magnitude larger than that
of any existing datasets for the ERE task. MA-
TRES (Ning et al., 2018) is a commonly used
dataset for evaluating event temporal relation ex-
traction. The documents in the MATRES primarily
originate from news reports, with annotations lim-
ited to verb events. It contains 13,573 temporal
relations. HiEve (Glavaš et al., 2014) is a com-
monly used dataset for evaluating subevent relation
extraction. The documents in the HiEve primar-
ily consist of news reports, with manually anno-
tated events that have actually occurred. It contains
3,648 subevent relations. The distribution of docu-
ment lengths (tokens) in these datasets is presented
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in Figure 4. All datasets are publicly accessible2.
The details of the dataset partitioning are presented
in Appendix C.

Metrics. For the tasks of temporal, causal, and
subevent relation extraction, we adopt the stan-
dard micro-averaged Precision (P), Recall (R), and
F1-score as evaluation metrics. For event corefer-
ence resolution, following previous works (Wang
et al., 2022), we adopt MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFe (Luo,
2005) and BLANC (Recasens and Hovy, 2011)
metrics. Due to space limitations, we only report
the average F1-score for all coreference metrics.
We conduct significance testing at the level of 0.05
for all of our experiments.

4.2 Experimental Setup
Implementation Details. LLMERE is a method
suitable for generative LLMs, and its backbone can
be replaced. The ratios of positive to negative sam-
ples for temporal, causal, subevent, and coreference
relations are set at 4:1, 1:1, 2:3, and 2:3, respec-
tively. The Lora rank is set to 64, and the maximum
sequence length is set to 2048. The threshold k for
the number of annotated events per document is set
to 30. The model is optimized with a learning rate
of 2e-4, and the learning rate scheduler employs a
cosine function. The model is trained for 3/10/10
epochs on MAVEN-ERE/MATRES/Hieve, respec-
tively. All the LoRA parameters are trained on an
NVIDIA A100 GPU with 40GB memory.

Baseline Methods. In prior research, event rela-
tion extraction tasks about different types are re-
garded as distinct tasks, leading to inconsistent
baselines across different datasets. We compare
two types of methods: one is classification-based,
while the other is generation-based.

Classification-based: For MAVEN-ERE,
ERGO (Chen et al., 2022) builds a relational
graph to model interactions between event pairs;
Joint (Wang et al., 2022) is a method that performs
joint training for multiple types of event relations,
while Split trains each type of event relations
separately; ProtoERE (Hu et al., 2023) models
the prototypes of event relation types. The detailed
baselines for the MATRES and HiEve datasets are
presented in Appendix D.

Generation-based: Yuan et al. (2023) and Wei
et al. (2024) conduct experiments on the MA-
TRES and MAVEN-ERE datasets using the official

2https://github.com/THU-KEG/MAVEN-ERE

API of OpenAI3. ChatGPT (Zero-shot) and Chat-
GPT (CoT) denote reasoning methods utilizing
zero-shot and chain-of-thought (Wei et al., 2022),
respectively. Doc-SFT refers to fine-tuning LLMs
to directly extract all event relation triples from the
given document.

4.3 Experimental Results

Table 2 presents the experimental results on the
MAVEN-ERE dataset. Overall, our method out-
performs both classification-based and generation-
based approaches.

Compared to the classification-based SOTA
method ProtoERE, LLMERE improves the over-
all F1 score by 1.7%, achieving superior results.
Additionally, LLMERE exhibits outstanding per-
formance in causal relation extraction, with a 4.2%
improvement over the SOTA method. This indi-
cates that LLMs contain rich causal knowledge,
and after fine-tuning, they can more easily deter-
mine causal relations between events.

For generation-based methods, we can observe
that even advanced models like GPT-4, under a 5-
shot setting, fail to recognize event relations effec-
tively. This underscores the necessity of fine-tuning
LLMs. After fine-tuning, the ability of the model
to recognize event relations improves significantly.
The overall F1 score of LLMERE is 29.2% higher
than that of GPT-4 and 13.1% higher than that
of Doc-SFT. Additionally, compared to pairwise
methods, LLMERE reduces the time complexity of
the task. This indicates that our method achieves
a favorable balance between task complexity and
extraction performance.

To investigate the impact of language model
backbones on experimental results, we conduct
experiments using various backbones. As shown
in Table 2, using the base versions of the mod-
els (LLaMA2-7B-base, LLaMA3-8B-base) yields
better performance compared to using the fine-
tuned models (LLaMA2-7B-chat, LLaMA3-8B-
instruct). This is because their fine-tuning formats
differ significantly from the format of our ERE
task. Additionally, using language models with
better foundational capabilities yields better results
(e.g., LLaMA2-7B-base vs. LLaMA3-8B-base).

Tables 3 and 4 present the experimental results
on the MATRES and HiEve datasets, respectively.
Compared to the SOTA model, LLMERE improves
the F1 score by 1.5% on the MATRES dataset and

3https://platform.openai.com/docs/models

https://github.com/THU-KEG/MAVEN-ERE
https://platform.openai.com/docs/models
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Model Language Model Temporal Causal Subevent Coref. Overall

P R F1 P R F1 P R F1 F1 F1

Classification-based methods

ERGO (Chen et al., 2022) RoBERTa-base 50.3 52.1 51.2 31.5 25.2 28.0 26.9 18.4 21.8 89.3 47.6
Joint (Wang et al., 2022) RoBERTa-base 49.4 56.0 52.5 32.8 27.5 29.9 27.3 19.6 22.7 90.4 48.8
Split (Wang et al., 2022) RoBERTa-base 49.5 55.6 52.4 32.7 26.8 29.4 26.7 21.8 23.9 90.4 49.0

ProtoERE (Hu et al., 2023) RoBERTa-base 48.9 59.9 53.8 32.5 31.3 31.8 26.2 29.7 27.9 89.8 50.8

Generation-based methods

Llama2 (5-shot) (Wei et al., 2024) Llama2-7b-chat 13.5 2.7 4.5 0.0 0.0 0.0 0.0 0.0 0.0 60.8 16.3
ChatGPT (5-shot) (Wei et al., 2024) gpt-3.5-turbo 16.3 8.0 10.8 3.9 4.8 4.3 0.0 0.0 0.0 60.9 19.0

GPT4 (5-shot) (Wei et al., 2024) gpt-4 21.6 11.6 15.1 10.4 6.0 7.6 1.9 2.4 2.1 68.4 23.3
Doc-SFT Llama2-7b-base 35.9 18.5 24.4 25.8 30.0 27.7 19.8 27.2 23.0 82.5 39.4

LLMERE (Ours) Llama2-7b-chat 50.1 57.9 53.7 34.1 35.0 34.6 23.6 26.6 25.0 91.1 51.1
LLMERE (Ours) Llama2-7b-base 51.0 58.1 54.3 34.7 36.4 35.6 24.2 30.6 27.0 90.7 51.9
LLMERE (Ours) Llama3-8b-instruct 50.5 59.9 54.8 34.9 36.1 35.5 25.4 26.0 25.7 90.7 51.7
LLMERE (Ours) Llama3-8b-base 50.1 60.2 54.7 35.0 37.2 36.0 26.0 30.8 28.2 90.9 52.5

Table 2: Experimental results (%) on the MAVEN-ERE dataset. Precision, Recall, and F1-score are denoted by P, R,
and F1, respectively. The best results are highlighted in bold, and the second-best results are underlined.

Method P R F1
CSE+ILP (Ning et al., 2019) 71.3 82.1 76.3
Deep (Han et al., 2019) 77.4 86.4 81.7
Stack-P (Wen and Ji, 2021) 78.4 85.2 81.7
TIMERS (Mathur et al., 2021) 81.1 84.6 82.3
SCS-EERE (Man et al., 2022) 78.8 88.5 83.4
RSGT (Zhou et al., 2022) 82.2 85.8 84.0
ChatGPT (Zero-shot) 26.4 24.3 25.3
ChatGPT (CoT) 48.0 57.7 52.4
LLMERE (Llama2-7b) 82.9 87.6 85.2
LLMERE (Llama3-8b) 82.6 88.7 85.5

Table 3: Experimental results (%) on MATRES.

Method P R F1
BERT (Devlin et al., 2019) 19.8 15.2 16.3
RoBERTa (Liu et al., 2019) 20.2 16.1 17.8
Hierarchical (Adhikari et al., 2019) 21.4 17.3 16.7
SIEF (Xu et al., 2022) 21.8 17.4 18.6
SCS-EERE (Man et al., 2022) 20.6 19.7 19.2
TacoERE (Guan et al., 2024) 22.6 19.5 20.8
LLMERE (Llama2-7b) 18.2 30.9 22.9
LLMERE (Llama3-8b) 20.0 35.6 25.6

Table 4: Experimental results (%) on HiEve.

4.8% on the HiEve dataset, with the recall score
increasing by 2.9% and 6.1%, respectively. This in-
dicates that LLMERE possesses more background
knowledge, allowing it to identify more potential
event relations. Compared to ChatGPT (CoT),
LLMERE achieves a 33.1% improvement in F1
score on the MATRES dataset, further demonstrat-
ing that existing general-purpose LLMs lack the
ability to accurately infer event relations and re-
quire domain-specific fine-tuning.

4.4 Ablation Studies

To demonstrate the impact of each component on
the experimental results, we conduct ablation ex-
periments on the MAVEN-ERE dataset. The exper-
imental results are shown in Table 5. coref. repre-
sents the coreference information, trans. indicates
the event relation transitive chains, partition rep-
resents the partitioning strategy. Multitask-once
indicates that LLMs extract all four types of event
relations in a single step, rather than extracting
them separately.

Impact of the Rationales. Comparing -coref.
with LLMERE, the F1 scores for temporal, causal,
and subevent relations decrease by 0.5%, 1.0%,
and 1.2%, respectively. This suggests that enabling
the model to learn coreference relations between
events helps improve the extraction of other event
relations. Comparing -trans. with LLMERE, the
F1 scores for causal and subevent relations drop
by 0.7% and 1.7%, respectively. This indicates
that the model can enhance its reasoning abilities
by learning the transitive chains of event relations,
leading to more accurate results. Moreover, the
two kinds of rationales are complementary, and
learning them together can achieve better results.

Impact of the Partitioning Strategy. Compar-
ing −Rationale & Partition with −Rationale(all),
the F1 scores for temporal, causal, and subevent re-
lations decrease by 3.4%, 1.6%, and 2.9%, respec-
tively. This indicates that the partitioning strategy
is an effective method for enhancing the extraction
performance of LLMs.

Impact of the Multi-task Training. Compar-
ing Multitask-once with −Rationale & Partition,



7491

Model Temporal Causal Subevent Coref.

P R F1 P R F1 P R F1 F1

LLMERE 51.0 58.1 54.3 34.7 36.4 35.6 24.2 30.6 27.0 90.7
-Rationale (coref.) 50.8 57.1 53.8 (-0.5) 35.5 33.6 34.6 (-1.0) 23.4 28.7 25.8 (-1.2) 90.9 (+0.2)
-Rationale (trans.) 51.2 58.0 54.4 (+0.1) 33.9 36.0 34.9 (-0.7) 22.2 29.4 25.3 (-1.7) 90.7 (-0.0)
-Rationale (all) 51.1 56.5 53.7 (-0.6) 34.4 33.6 34.0 (-1.6) 21.8 29.1 24.9 (-2.1) 90.7 (-0.0)
-Rationale & Partition 52.0 48.7 50.3 (-4.0) 31.0 34.0 32.4 (-3.2) 30.1 17.3 22.0 (-5.0) 90.7 (-0.0)
Multitask-once 51.9 41.1 45.9 (-8.4) 33.6 26.8 29.8 (-5.8) 24.7 13.3 17.3 (-9.7) 90.2 (-0.5)

Table 5: Ablation results (%) on the MAVEN-ERE dataset. The values in parentheses indicate the changes in F1
scores relative to LLMERE.
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Figure 5: Experimental results (%) on MAVEN-ERE for documents with different numbers of events.

Model Temporal Causal Subevent Coref.

F1 F1 F1 F1

No Rationales 53.7 34.0 24.9 90.7
Before 54.3 33.4 25.1 90.3
After 54.3 35.6 27.0 90.7

Table 6: Experimental results (%) under different loca-
tions of rationales on MAVEN-ERE. “Before” indicates
that the rationales appear before the extracted results in
the output list, whereas "After" indicates the opposite.

the F1 scores for temporal, causal, and subevent
relationships decrease by 4.4%, 2.6%, and 4.7%,
respectively. This indicates that for LLMs, extract-
ing all four types of event relations simultaneously
is challenging. Performing each ERE subtask sepa-
rately yields better results.

4.5 Time Complexity Analysis

To demonstrate the effectiveness of LLMERE, we
compare its time complexity with that of the pair-
wise method. Assuming there are n events in the
document and t ERE subtasks to be performed.
The number of inferences for the pairwise method
is t×n(n−1), and its time complexity is O(t ·n2).
In contrast, the LLMERE requires t ×m × n in-
ferences, where m represents the number of parti-
tioned documents and m ≪ n. Therefore, the time
complexity of LLMERE is O(t · n).

We conduct experiments on 50 documents, with

the average inference times per document for the
pairwise method and our method being 90.3 sec-
onds and 14.4 seconds, respectively, which demon-
strates the effectiveness of our method.

4.6 Detail Analysis

Partitioning Strategy. To investigate the impact
of the partitioning strategy on documents with vary-
ing numbers of events, we categorize the docu-
ments into three sections based on the number of
events. As shown in Figure 5, for temporal, causal,
and subevent relations, when the number of events
in a document is large, employing the partition-
ing strategy can significantly improve extraction
results. This further demonstrates that the parti-
tioning strategy can effectively address the issue of
incomplete extraction results in LLMs. Regarding
coreference relations, due to the relatively small
variation in results, the overall F1 score remains
unchanged at 90.7%.

Location of the Rationales. To investigate the
impact of the location of rationales, we place it
either before or after the extracted results. The
“Before” format is a method resembling the CoT,
where the model initially provides some reason-
ing cues and then summarizes conclusions based
on this information. In the “After” format, the
model first presents the answer and then provides
the necessary explanations and justifications for
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LLMERE w/ RationalesLLMERE w/o RationalesGolden Document and Events

CAUSE: <e2 snowfall>, <e21 outages>; 
PRECONDITION: <e23 impacting>, <e27 postpone>

Coreference information: <e0 storm> and <e22 
storm> are identical
Transitive Chains: <e22 storm> causes <e21 
outages> to occur, <e21 outages> is a precondition 
for <e27 postpone>

CAUSE: <e21 outages>; 
PRECONDITION: <e23 impacting>

CAUSE: <e2 snowfall>, <e21 outages>, <e24 damage>;
PRECONDITION: <e23 impacting>, <e27 postpone>

Coreference information: <e0 storm> and <e22 
storm> are identical
Relevant reasoning information: <e22 storm> causes 
<e21 outages> to occur, <e21 outages> is a 
precondition for <e27 postpone>

The <e0 storm> 2011 halloween
nor‘easter, was a large low pressure area
that <e1 produced> unusually early <e2
snowfall> across the northeastern United
States and the Canadian Maritimes. ……
In all, 3.2 million U.S. residences and
businesses in 12 states experienced power
<e21 outages>, with the <e22 storm> also
<e23 impacting> three Canadian provinces,
causing property <e24 damage>. Some
customers in Connecticut did not <e25
get> power back until early November;
Many communities <e26 chose> to <e27
postpone> celebrations.

Please identify the events in the document
that have causal relations with the given
event <e22 storm>.

Rationales

New Relations
e0 e2

e21e23

e27
e24

cause

cause
precondition

precondition

precondition

cause

cause

coreference

e22

e21e23

precondition cause

e22 e0

e2

e21e23

e27

precondition
cause precondition

preconditioncoreference

cause

cause

e22

Figure 6: Results of the case study where <e22 storm> is the specified event.

these answers. The experimental results are shown
in Table 6. The performance of “Before” declines
compared to “After”. One possible reason for this
is that some of the reasoning cues generated by
the model are incorrect, which will introduce addi-
tional noise into the subsequent inference process.

4.7 Case Study

To illustrate how LLMERE improves ERE, a case
is studied. Figure 6 shows the specific document
content along with the events within the document.
Here, LLMERE directly identifies other events
that have relations with the specified event <e22
storm>. The model sequentially enumerates multi-
ple answers, significantly reducing the complexity
of the task from O(n2) to O(n). In this scenario,
some event relations are relatively difficult to deter-
mine. For example, <e22 storm> and <e2 snow-
fall> are distant from each other in the document,
leading the model to assume there is no relation
between them. However, (<e22 storm>, corefer-
ence, <e0 storm>) and (<e0 storm>, cause, <e2
snowfall>) are easier to detect, allowing the model
to infer the “cause” relation between e22 and e2.
Moreover, after recognizing the relations (<e22
storm>, cause, <e21 outages>) and (<e21 outages>,
precondition, <e27 postpone>), the model is able to
infer the relation between e22 and e27. Overall, us-
ing rationales forces the model to engage in deeper
reasoning, enhancing its inferential capabilities and
allowing it to identify relations more accurately.

5 Conclusions

In this paper, we proposed an LLM-based method
with rationales for ERE (LLMERE). It utilized a
question-and-answer format that enumerates mul-
tiple answers to reduce the task complexity from

O(n2) to O(n). Subsequently, a partitioning strat-
egy was introduced to improve the coverage of
extraction results. Finally, the model was required
to generate rationales beneficial for ERE, further
enhancing its extraction capabilities. Experimental
results on three widely used datasets demonstrate
that LLMERE can effectively perform ERE.

Limitations

For LLMERE, the following limitations exist: (1)
LLMERE treats the extraction tasks for differ-
ent types of event relations as separate subtasks,
without considering the interactions between these
subtasks. Further exploration is required to en-
able LLMs to understand the connections between
different types of event relations. (2) Currently,
LLMERE directly inputs all the content from a doc-
ument into the LLM, which may introduce noise
and redundant information. How to filter the in-
formation within the document to facilitate under-
standing by the LLM is also an important problem.
(3) The datasets include only English documents,
and the event relations are all within the document.
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A Task Descriptions

Detailed task descriptions are presented in Figure 7.

B Transitivity Logical Rules

Chen et al. (2024) summarize the transitivity logi-
cal rules for event relations, as shown in Table 7.

C Dataset Partitioning

For MAVEN-ERE, its test set is not publicly avail-
able. Following Chen et al. (2024), we split its
original training set into training/validation sets
with a ratio of 8:2, and then utilize its original
valid set as the new test set. For MATRES, fol-
lowing previous works (Ning et al., 2019; Wang
et al., 2022), the training, validation, and test sets
contain 182, 73, and 20 documents, respectively.
For HiEve, following previous works (Wang et al.,
2022; Guan et al., 2024), we split the 100 docu-
ments in a 60/20/20 ratio for training, validation,
and testing, respectively.

If Relation(A, B) ∧ Relation(B, C) Then Relation (A, C)

BEFORE ∧ BEFORE BEFORE
BEFORE ∧ OVERLAP BEFORE
BEFORE ∧ CONTAINS BEFORE
BEFORE ∧ SIMULTANEOUS BEFORE
BEFORE ∧ ENDS-ON BEFORE
BEFORE ∧ BEGINS-ON BEFORE
OVERLAP ∧ BEFORE BEFORE
OVERLAP ∧ SIMULTANEOUS OVERLAP
CONTAINS ∧ CONTAINS CONTAINS
CONTAINS ∧ SIMULTANEOUS CONTAINS
SIMULTANEOUS ∧ BEFORE BEFORE
SIMULTANEOUS ∧ OVERLAP OVERLAP
SIMULTANEOUS ∧ CONTAINS CONTAINS
SIMULTANEOUS ∧ SIMULTANEOUS SIMULTANEOUS
SIMULTANEOUS ∧ ENDS-ON ENDS-ON
SIMULTANEOUS ∧ BEGINS-ON BEGINS-ON
ENDS-ON ∧ CONTAINS BEFORE
ENDS-ON ∧ BEGINS-ON ENDS-ON
ENDS-ON ∧ SIMULTANEOUS ENDS-ON
BEGINS-ON ∧ SIMULTANEOUS BEGINS-ON
BEGINS-ON ∧ BEGINS-ON BEGINS-ON
CAUSE ∧ CAUSE CAUSE
CAUSE ∧ PRECONDITION PRECONDITION
PRECONDITION ∧ CAUSE PRECONDITION
PRECONDITION ∧ PRECONDITION PRECONDITION
SUBEVENT ∧ SUBEVENT SUBEVENT

Table 7: Logical Constraints for the transitivity rules
among three events, where ∧ denotes "AND".

D Detailed Baselines

For MATRES, CSE+ILP (Ning et al., 2019) con-
ducts global inference via Integer Linear Program-
ming (ILP); Deep (Han et al., 2019) is a deep
structured support vector machine model; Stack-
P (Wen and Ji, 2021) is a Stack-Propagation frame-
work; TIMERS (Mathur et al., 2021) utilizes tem-
poral, rhetorical, and syntactic information; SCS-
EERE (Man et al., 2022) selects the optimized sen-
tences for event relation inference; RSGT (Zhou
et al., 2022) models the syntactic and semantic
graphs.

For HiEve, Hierarchical (Adhikari et al., 2019)
encodes different chunks of the document and ag-
gregates their representations; SIEF (Xu et al.,
2022) randomly removes the useless sentences for
prediction; TacoERE (Guan et al., 2024) utilizes
document clustering and cluster summarization to
spotlight important text.
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The current task is an event temporal relation extraction task, which aims to identify temporal relations
among events in texts. The temporal relation between events refers to the chronological order in which they
occur, involving six subtypes, namely, SIMULTANEOUS, ENDS-ON, BEGINS-ON, OVERLAP, CONTAINS, and
BEFORE. In the provided document, event trigger words are annotated within angle brackets (<>). The desired
outcome is a list of events in the document that have temporal relations with the given event. The prescribed
output format should follow this structure: 'relation1: event1, event2; relation2: event3, event4'. The output
'relation: none' indicates that the given event lacks this particular type of relation with other events.

Event temporal relation extraction

The current task is an event causal relation extraction task, which aims to identify causal relations among
events in texts. The causal relation between events denotes that the occurrence of the first event precipitates
the happening of the second event, delineated into two subtypes: CAUSE and PRECONDITION. In the provided
document, event trigger words are annotated within angle brackets (<>). The desired outcome is a list of
events in the document that have causal relations with the given event. The prescribed output format should
follow this structure: 'relation1: event1, event2; relation2: event3, event4'. The output 'relation: none'
indicates that the given event lacks this particular type of relation with other events.

Event causal relation extraction

The current task is a subevent relation extraction task, which aims to identify subevent relations among events
in texts. The subevent relation, labeled as SUBEVENT, denotes a hierarchical relation where the first event is
contained by the second. In the provided document, event trigger words are annotated within angle brackets
(<>). The desired outcome is a list of events in the document that have a subevent relation with the given
event. The prescribed output format should follow this structure: 'relation1: event1, event2; relation2: event3,
event4'. The output 'relation: none' indicates that the given event lacks this particular type of relation with
other events.

Subevent relation extraction

The current task is an event coreference relation extraction task, which aims to identify coreference relations
among events in texts. The coreference relation, labeled as COREFERENCE, denotes that two events are the
same one. In the provided document, event trigger words are annotated within angle brackets (<>). The
desired outcome is a list of events in the document that have a coreference relation with the given event. The
prescribed output format should follow this structure: 'relation1: event1, event2; relation2: event3, event4'.
The output 'relation: none' indicates that the given event lacks this particular type of relation with other events.

Event coreference relation extraction

Figure 7: Detailed task descriptions on the MAVEN-ERE dataset.


	Introduction
	Related Work
	The LLMERE Model
	Document Partitioning
	Context Input
	Model Output
	Extraction Result
	Rationales

	Instruction Tuning and Evaluation

	Experiments
	Datasets and Metrics
	Experimental Setup
	Experimental Results
	Ablation Studies
	Time Complexity Analysis
	Detail Analysis
	Case Study

	Conclusions
	Task Descriptions
	Transitivity Logical Rules
	Dataset Partitioning
	Detailed Baselines

