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Abstract

Autonomous agents powered by large lan-
guage models (LLMs) hold significant poten-
tial across various domains. The Reflection
framework is designed to help agents learn
from past mistakes in complex tasks. While
previous research has shown that reflection can
enhance performance, our investigation reveals
a key limitation: meaningful self-reflection pri-
marily occurs at the beginning of iterations,
with subsequent attempts failing to produce fur-
ther improvements. We term this phenomenon
"Early Stop Reflection," where the reflection
process halts prematurely, limiting the agent’s
ability to engage in continuous learning. To
address this, we propose the DORA method
(Dynamic and Optimized Reflection Advice),
which generates task-adaptive and diverse re-
flection advice. DORA introduces an exter-
nal open-source small language model (SLM)
that dynamically generates prompts for the re-
flection LLM. The SLM uses feedback from
the agent and optimizes the prompt generation
process through a non-gradient Bayesian Opti-
mization (BO) algorithm, ensuring the reflec-
tion process evolves and adapts over time. Our
experiments in the MiniWoB++ and Alfworld
environments confirm that DORA effectively
mitigates the "Early Stop Reflection" issue, en-
abling agents to maintain iterative improve-
ments and boost performance in long-term,
complex tasks1.

1 Introduction

Recent studies have highlighted the use of au-
tonomous agents powered by LLMs to make de-
cisions in specific tasks. However, these agents
often rely on large, frozen models, making it diffi-
cult to adapt to dynamic or changing environments.
To address this challenge, the self-improvement
framework called "Reflection" has been proposed.

* Wei Zhou is the corresponding author.
1Code are available at https://github.com/

linkseed18612254945/FineRob

Figure 1: The performance of the agent with reflection
in miniwob++ and alfworld environments shows that
successful reflections are primarily concentrated in the
early stages of the process.

This framework incorporates historical trajectories
into an additional LLM, which generates reflection
advice to help the agent continuously learn from
previous mistakes.

While numerous studies have demonstrated that
reflection can enhance performance (Shinn et al.,
2023; Huang et al., 2022; Li et al., 2023; Yao et al.,
2023b; Chen et al., 2023b; Xi et al., 2024), our
deeper investigation find an undesirable pattern
in reflection framework: effective self-reflection
occurs primarily at the start of iterations. As
shown in Figure 1, this pattern suggests that initial
reflections are impactful, but subsequent iterations
fail to drive further improvements.We refer to this
issue as "Early Stop Reflection," where the reflec-
tion process halts prematurely, limiting the agents’
ability to continuously learn from their mistakes,

https://github.com/linkseed18612254945/FineRob
https://github.com/linkseed18612254945/FineRob
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especially in complex tasks. This early termination
of reflection reduces the potential for iterative im-
provement and hinders performance in scenarios
that require deeper, ongoing adaptation.

A possible reason for this issue is that the LLM
used to generate reflection advice is driven by a
static, task-independent reflection prompt. Com-
bined with the unchanging nature of the LLM, this
often results in repetitive and unhelpful advice
after a few iterations. To address this, we intro-
duce the DORA method (Dynamic and Optimized
Reflection Advice), which aims to generate more
task-adaptive and diverse reflection advice. Specif-
ically, we introduce an external open-source small
language model (SLM) to dynamically generate
prompts for the reflection LLM. This SLM receives
feedback from the agent and optimizes the prompt
generation process using a non-gradient Bayesian
Optimization (BO) algorithm (Chen et al., 2023c).
By refining the prompts based on the agent’s perfor-
mance and advices diversity, the SLM ensures that
the reflection process becomes more task-adaptive
and effective over time.

We conducted experiments on the MiniWoB++
and Alfworld environments, covering a total of 17
different tasks. The results show that our DORA
reflection method increased the average task suc-
cess rate of agents by 19% in MiniWoB++ and
9% in Alfworld. Additionally, we performed an
in-depth analysis to confirm that our method ef-
fectively mitigates the "early stop reflection" issue.
Our contributions can be summarized as follows:

• We identify a shortfall in the previous reflec-
tion framework, which we term "early stop
reflection," where continuous improvement is
hindered, particularly in long-term or complex
tasks.

• We propose a novel reflection framework,
DORA, that dynamically generates task-
adaptive and diverse reflection advice, improv-
ing agents’ ability to learn from iterative re-
flection.

• Extensive experiments validate our method
can resolve the premature halting of reflec-
tion in complex tasks, allowing for deeper and
more effective iterative learning.

2 Related Works

2.1 LLM Agent Reflection

Recent studies highlight that Large Language
Models (LLMs) have the potential to create
autonomous agents, such as ReAct(Yao et al.,
2023a), WebAgent(Nakano et al., 2021), Genera-
tive Agents(Park et al., 2023), Voyager(Wang et al.,
2023a). Moreover, the reflection strategy enables
agents to distill insights from their feedback with
LLM as a reflector, including single-step genera-
tion (Madaan et al., 2023; Miao et al., 2023; Paul
et al., 2023; Xi et al., 2023; Welleck et al., 2023),
trajectories analyzing(Shinn et al., 2023; Huang
et al., 2022; Li et al., 2023; Yao et al., 2023b;
Chen et al., 2023b; Xi et al., 2024). However,
recent studies have questioned the effectiveness
of LLMs’ self-reflection capabilities (Valmeekam
et al., 2023), particularly in scenarios lacking ex-
ternal feedback(Huang et al., 2023). The reflection
advice from LLMs often appears overconfident or
inconsistent with the agent environment(Stechly
et al., 2023).In this paper, we also reveal a shortfall
of vanilla reflection and deploy a prompter to dy-
namically build and optimize the reflection prompt
to address it.

2.2 Prompt Optimization

When dealing with huge or closed-source LLMs,
gradient-descent approaches become less feasible,
leading to a shift toward gradient-free prompt op-
timization methods.These methods typically use
iterative sampling, starting with an initial prompt
and repeatedly sampling and evaluating candidates
to select the most effective one. Various methods
have been employed, including: evolutionary al-
gorithms(Xu et al., 2022; Guo et al., 2023; Chen
et al., 2023a; Fernando et al., 2023; Yang and Li,
2023), which adaptively evolve prompts over gen-
erations; text editing search method (Prasad et al.,
2023) that iteratively refine prompts through tar-
geted editing; and reinforcement learning strategy
(Deng et al., 2022), where prompts are optimized
through interactive feedback.Additionally, recent
methodologies directly leveraging the generative
capabilities of LLM themselves for prompt opti-
mization(Pryzant et al., 2023; Wang et al., 2023b;
Yang et al., 2023). In this paper, We follow the
work (Chen et al., 2023c) which employs an open-
source language model for prompt generation and
applies Bayesian optimization.
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Figure 2: DORA method overview, left-side shows the basic framework of reflection, Agent thoughts(t) and chooses
actions(a) based on what it observes(o) as trajectories. In the reflection stage, the reflector reviews the agent’s
trajectories based on a reflection prompt and then generates reflection suggestion for the agent’s future actions
and decisions. Right-side shows the process for reflection prompt auto optimization which includes controlled
generating, agent running rewards calculating, and Bayesian Optimization for soft prompt

3 Methodology

3.1 Overview

Figure 2 presents an overview of our method. The
lower-left section of the figure depicts the standard
reflection process for an LLM agent. The key en-
hancement in the DORA reflection framework is
the transition from using a static, manually crafted
reflection prompt to a dynamic, generated one. This
is achieved through a small open-source language
model called Prompter.

This model employs techniques from controlled
text generation using a few examples of reflection
suggestions and a low-dimensional soft-prompt.
With the dynamically generated reflection prompt,
Reflector can analyze the agent’s history and
produce new reflection suggestions, guiding the
agent’s decisions in subsequent iterations. Then,
we can measure the diversity of reflection sugges-
tions and collect the overall performance of the
agent across various similar tasks. These metrics
serve as the objectives for optimizing. Finally, we
use Bayesian optimization (BO) to update soft-
prompt thus controlling the generation of reflection
prompts for the next iteration.

3.2 Controlled Reflection Prompt Generation

In the DORA framework, the Prompter com-
ponent is responsible for generating reflection
prompts. This module uses an open-source lan-
guage model with fewer parameters, such as
LLama3-8B, which efficiently handles embedding-
level inputs. Directly optimizing Prompter dur-
ing the iteration process is not feasible because
the final feedback is generated by a black-box
agent. Therefore, we employ a non-gradient op-
timization approach to update the soft-prompts.
This method allows us to influence the reflection
prompts through a controllable generation process.
Specifically, we concatenate the soft-prompt ps

with input-output examples in the embedding layer
of Prompter. This process can be represented as
follows:

prompt ∼ LLMopensource(ps;E), (1)

where ps represents the soft-prompt used for
generation control, and E represents the demonstra-
tion examples that contain old reflection prompts
and suggestions used for generation.

As input tokens to an open-source LLM,
ps ∈ Rd usually has a too-high dimension (8192
for llama3) to be handled by black-box optimiza-
tion approaches. Hence, we instead optimize a
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lower-dimensional vector v ∈ Rd′
, where d′ ≪ d

and project it to Rd using a simple projection. Sim-
ilar to other black-box optimization methods, we
sample the projection matrix Rd′×d from Normal
or Uniform distribution(Wang et al., 2016). So the
whole controlled reflection prompt generation can
be represented as:

prompt ∼ LLMopensource(Wproj · v;E). (2)

where Wproj represents a linear projection matrix
initialized with a normal distribution and v repre-
sents low dimension vector used for optimization.
We investigated how the choice of vector dimen-
sions affects experimental results, refer to Figure
7.

For every generation, we randomly select two
example from history pairs of reflection prompts
and suggestions as demonstrations and concate-
nate them with updated soft-prompt to control new
prompt generation. Soft-prompt can be considered
as an additional "virtual word" connected in front
of the embedding of examples. The specific for-
mula is:

prompt = LLM
(
Wproj · v ⊕ Embed(texample)

)
(3)

where eexample is the example string, Embed(·)
is the embedding function of the LLM, ⊕ denotes
concatenation, LLM(·) represents the forward pass
through the large model to generate the prompt.

3.3 Agent Running Rewards

Through the above step, we generate a new reflec-
tion prompt that guides the Reflector to produce
suggestions, shaping the agent’s future actions.

suggestion = Reflector(prompt, ⟨ai−1, oi−1⟩),
(4)

ai = Agent(suggestion, oi), (5)

Where a and o represent the agent’s actions and
observations in iteration i for the task.

Similar to using loss values in gradient optimiza-
tion, non-gradient methods use the reward values
of agent as prompt optimization target.Firstly, we
focus on the agent’s performance in the environ-
ment as the primary optimization target. In some
environments, the agent’s actions result in binary
outcomes of success or failure (1 or 0), making
single-task performance an ineffective reward mea-
sure. Therefore, we also consider the agent’s suc-
cess rate across multiple similar tasks as the reward

value. The insight here is that an agent’s experi-
ences in similar tasks are transferable. This perfor-
mance reward can be represented as:

Rperfomance = Environment(⟨ai, oi⟩ , task),
(6)

Secondly, we calculate the textual distance between
reflection suggestions generated in two consecutive
iterations as an auxiliary reward. This effectively
increases the diversity of reflections and avoids rep-
etition. Additionally, this auxiliary reward ensures
that prompt optimization can still proceed even
when the performance reward is zero. The diversity
reward can be represented as:

Rdiversity = Cosine(vector(Ri), vector(Ri−1)),
(7)

Where Ri represents the reflection suggestion text
in iteration i.

Finally, we sum the two reward values to form
the optimization goal, incorporating an adjustable
weight α. We also discuss the influence of α in
Figure 8.

R = (1− α)Rperformnce + αRdiversity. (8)

3.4 Bayesian Optimization for Soft Prompt
Bayesian Optimization (BO) iteratively selects the
most promising points (soft prompts) to evaluate
a black-box function (the entire agent with reflec-
tion can be regarded as a black-box function) by a
surrogate model (usually a Gaussian process). The
BO process can be divided into four steps:
Surrogate Model Initialization. Firstly, we
model the relationship between lower-dimensional
vector V = {v1,v2, . . . ,vn} and their corre-
sponding reward values R = {r1, r2, . . . , rn} us-
ing Gaussian Process Regression (GPR), where
each vi is a vector in d′-dimensional space and
ri is a scalar reward. We hypothesize the exis-
tence of a black-box function f such that ri =
f(vi) + ϵi, where ϵi represents independently and
identically distributed Gaussian noise, specifically
ϵi ∼ N (0, σ2

n). Then

f(v) ∼ GP(m(v), k(v,v′)) (9)

In our model, the mean function m(v) is set
to zero, and the covariance function k(v,v′) is
defined using the Matérn kernel:

kMatern(v,v
′) =

21−ν

Γ(ν)

(√
2νd

ℓ

)ν

Kν

(√
2νd

ℓ

)
(10)
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Here, d = ||v − v′||2 represents the
Euclidean distance between points v and v′.
The length scale parameter ℓ is sampled from
a GammaPrior(3.0, 6.0) distribution, and the
smoothness parameter ν is set to 2.5. The func-
tion Kν denotes the modified Bessel function of
the second kind.
Training Dataset Build. Secondly, we start with
an initial dataset Dtrain = {(vi, ri)}ni=1, where vi

represents the ith soft prompt, and ri is its associ-
ated reward. To enhance optimization efficiency
from the onset, we randomly initialize 10 soft
prompts and obtain their respective rewards to form
our initial optimization set. Subsequently, we con-
tinuously augment the Bayesian Optimization (BO)
training dataset with newly collected pairs of soft
prompts v′ and their corresponding rewards r′.
Fitting Surrogate Model. Thirdly, in fitting the
Gaussian Process (GP) model to the described data,
the objective is to identify a set of hyperparame-
ters θ that maximize the marginal log-likelihood,
log p(rtrain|vtrain, θ). This is mathematically repre-
sented as:

log p(rtrain|vtrain, θ) = −1

2
rTtrain(K+ σ2

nI)
−1rtrain

−1

2
log |K+ σ2

nI| −
n

2
log 2π

(11)

Here, K is the covariance matrix computed from
the training inputs Dtrain using the covariance func-
tion k(v,v′), σ2

n represents the noise variance, and
θ denotes the model’s hyperparameters. n is the
number of training data points.For practical im-
plementation, we use botorch2 Python library to
facilitate this process.
Acquisition Next Point. Finally, based on the
above model, we need to decide where to sample
next. We use the Expected Improvement (EI) ac-
quisition function, which quantifies the expected
improvement over the current best reward value.
For a maximization problem:

EI(x) = E
[
max(0, f(v)− f(v+))

]
(12)

where f(v+) is the reward of the current best
soft-prompt. The next point to evaluate is chosen
by maximizing the EI:

2https://github.com/pytorch/botorch

vnext = argmax
v

EI(v) (13)

To identify the next point for optimization, we
employ the standard Covariance Matrix Adaptation
Evolution Strategy (CMA-ES)(Hansen and Oster-
meier, 2001; Hansen et al., 2003), a widely rec-
ognized algorithm for evolutionary optimization.
Through these four steps, we predict a new optimal
point, setting the stage for the next iteration in the
optimization cycle.

4 Experiments

4.1 Settings

Environment. In our experiments, we select
MiniWoB and Alfworld, environments that closely
mimic real-world agent operations and better repre-
sent the intricate and diverse nature of tasks agents
face.MiniWob++3 is a web-based simulation for
diverse computer tasks ranging from simple clicks
to complex, reasoning-based tasks like booking
flight tickets. This environment allows for sys-
tematic assessment due to the varying complex-
ity of tasks. It features a unified action space for
both keyboard and mouse inputs, centered around
HTML code, making it ideal for comprehensive
agent evaluation. Alfworld4 offers a collection
of over 3,000 text-based interactive environments,
challenging agents with multi-step tasks. Agents
choose actions from a given list, gaining observa-
tions and binary rewards that determine their next
state. The suite includes six varied tasks such as
locating hidden objects, moving items, and object
manipulation. These tasks have been applied in
134 different daily living environments, involving
activities like finding a spatula, moving a knife, or
chilling a tomato.
Baselines. We compared three major LLM-based
agent frameworks as our baseline. Notably, we
employ the zero-shot setting to ensure broader ap-
plicability and to more effectively showcase the
actual capabilities of agents. ReAct(Yao et al.,
2023a) utilizes the COT(Chain of thought) rea-
soning capabilities of large language models for
agent construction, which doesn’t involve reflec-
tion or any iterative optimization process. This
agent will constantly interact with the environment,
analyze the observation results, and make action
decisions. RCI(Kim et al., 2023) starts with a

3https://miniwob.farama.org/index.html
4https://github.com/alfworld/alfworld

https://github.com/pytorch/botorch
https://miniwob.farama.org/index.html
https://github.com/alfworld/alfworld
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1-screen-1-step 1-screen-n-step n-screen-n-step
click-color click-shape click-checkboxes-soft click-option find-word navigate-tree click-collapsible-2 use-autocomplete click-pie click-menu Average

Vicuna-7b
React 0.33 0.56 0.67 0.11 0.33 0.67 0.0 0.22 0.11 0.33 0.33
RCI 0.33 0.44 0.67 0.0 0.22 0.78 0.0 0.11 0.0 0.22 0.28
Reflexion 0.44 0.67 0.78 0.44 0.33 0.78 0.0 0.89 0.11 0.33 0.48
DORA(w/o BO) 0.33 0.56 0.56 0.33 0.22 0.89 0.22 0.67 0.11 0.33 0.42
DORA(BO) 0.56 0.78 0.89 0.56 0.44 1.00 0.89 1.0 0.11 0.33 0.66

Llama3-8b
React 0.44 0.67 0.78 0.22 0.33 0.78 0.0 0.22 0.11 0.33 0.39
RCI 0.33 0.44 0.78 0.11 0.22 0.78 0.0 0.11 0.0 0.33 0.30
Reflexion 0.44 0.78 1.0 0.56 0.44 0.78 0.0 1.00 0.11 0.33 0.54
DORA(w/o BO) 0.44 0.56 0.78 0.56 0.56 0.89 0.22 0.78 0.11 0.33 0.52
DORA(BO) 0.56 0.89 1.0 0.67 0.56 1.0 0.89 1.0 0.11 0.33 0.70

Table 1: Experiment results in MiniWoB++ environment, each task was tested across 11 specific scenarios to
calculate the task success rate, with the best results highlighted in bold. W/o BO means removing the Bayesian
optimization process, which means that the prompts used to control the generation of reflection instructions will no
longer be updated based on feedback. We conduct the experiment with both Vicuna-7b and LLama3-8b as the SLM
prompter.

language model generating a first response with
zero-shot prompting. Essentially, RCI is a process
where the model improves its work, similar to the
Refiner method, but done in a step-by-step manner.
Reflexion(Shinn et al., 2023) is the state-of-the-art
language agent architecture, Unlike RCI, the agent
benefits from comprehensive trajectory feedback
in the environment. But, its optimization goal stays
the same and doesn’t adapt to the environment. We
use this as the baseline method for our primary
comparisons and optimization efforts.
Implementation Details. The DORA method
utilizes the llama3-8b/Vicuna-7b model as SLM
prompter5 and uses gpt-3.5-turbo-01256 to drive
agent, selecting two examples from the history re-
flection pool for input and output. For each task,
the React method conducts 40 trials, the Reflex-
ion method undergoes 40 trials, and the DORA
method starts with 4 initial instructions. Bayesian
optimization is conducted over 5 rounds up to 40
trials.

4.2 Metric
We use success rate and agent rewards as evalua-
tion metrics, and use rliable7library to calculate the
aggregate metrics for agent rewards, which include
the median, IQM, Mean and Optimality Gap of
task rewards. IQM(interquartile mean) measures
the degree of dispersion in data distribution which
interpolates between mean and median across runs.
Optimality Gap represents the gap between the
performance of the current strategy and the poten-

5https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct

6https://platform.openai.com/docs/models/
gpt-3-5-turbo-0125

7https://github.com/google-research/rliable?
tab=readme-ov-file

tial optimal strategy performance(Agarwal et al.,
2021).

4.3 Main Results

In this subsection, we compare DORA with the
baselines on the miniwob++ and Alfworld envi-
ronments. The task success rates are presented in
Table 1 and Table 2. In the experimental evaluation
within the miniwob++ environment, our proposed
DORA method demonstrated consistently superior
performance compared to the baseline methods
(React, RCI, and Reflexion). As illustrated in Ta-
ble 1, DORA achieved the highest success rate
in both simple(such as ’click-tab-2’) and difficult
tasks(such as ’use-autocomplete’). We can see the
100% success rate in some task types. As the num-
ber of iterations increases, reflections guided by
dynamically optimized prompts enable the Agent
to complete all tasks within a category (10 of 10).
This result is rarely achieved with baseline meth-
ods. For the Alfworld environment, The DORA
method outperforms or is comparable to the basic
reflexion method in most tasks, with an average
success rate improvement of 11% across all six
tasks. Notably, similar to the results in Miniwob++,
the RCI method performs poorly, even worse than
the original ReACT method. Through careful ex-
amination of the agent’s historical trajectories, we
found that the single-step critic in the RCI method
often rejects the original correct reasoning results,
leading to suboptimal behavior selection. We also
conducted ablation experiments without using BO,
the results indicate that the prompts used to con-
trol the generation of reflection instructions will no
longer be updated based on feedback without the
Bayesian Optimization process.

Furthermore, we calculated the aggregation mea-

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://platform.openai.com/docs/models/gpt-3-5-turbo-0125
https://platform.openai.com/docs/models/gpt-3-5-turbo-0125
https://github.com/google-research/rliable?tab=readme-ov-file
https://github.com/google-research/rliable?tab=readme-ov-file
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pick heat then place look at obi pick clean then place pick two obi pick and place pick cool then place Average

Vicuna-7b
React 0.33 0.44 0.22 0.11 0.11 0.11 0.22
RCI 0.11 0.11 0.22 0.0 0.11 0.0 0.10
Reflexion 0.33 0.67 0.44 0.11 0.22 0.11 0.24
DORA(w/o BO) 0.33 0.33 0.33 0.11 0.22 0.11 0.24
DORA(BO) 0.44 0.78 0.44 0.11 0.33 0.22 0.39

Llama3-8b
React 0.33 0.56 0.33 0.11 0.11 0.11 0.26
RCI 0.22 0.11 0.33 0.0 0.11 0.11 0.15
Reflexion 0.44 0.89 0.33 0.11 0.22 0.11 0.37
DORA(w/o BO) 0.44 0.67 0.33 0.11 0.22 0.22 0.33
DORA(BO) 0.67 1.0 0.44 0.11 0.33 0.33 0.48

Table 2: Experiment results in Alfworld environment, each task was tested across 11 specific scenarios to calculate
the task success rate, with the best results highlighted in bold. W/o BO means removing the Bayesian optimization
process, which means that the prompts used to control the generation of reflection instructions will no longer be
updated based on feedback.We conduct the experiment with both Vicuna-7b and LLama3-8b as the SLM prompter.

0.6 0.7 0.8 0.9
React

RCI
Reflection

DORA
Median

0.60 0.75 0.90

IQM

0.64 0.72 0.80 0.88

Mean

0.16 0.24 0.32

Optimality Gap

0.08 0.16 0.24 0.32
React

RCI
Reflection

DORA
Median

0.1 0.2 0.3

IQM

0.16 0.24 0.32

Mean

0.72 0.80 0.88

Optimality Gap

MiniWoB++

Reward
ALFWorld

Reward

Figure 3: Aggregate metrics for agent rewards on MiniWoB++ and ALFWorld with 95%CIs(Confidence Intervals).
The colored rectangle in the figure represents interval estimation, and the black line represents point estimation. The
wider the rectangle, the greater the uncertainty of the estimated value. Higher mean, median and IQM scores and
lower optimality gap are better.

sure of agent rewards on MiniWoB++ and ALF-
World environments, including the median, mean,
interquartile mean (IQM), and optimality gap. Ag-
gregate metrics on MiniWoB++ and ALFWorld
with 95%CIs are as shown in Figure3. The median,
mean, and IQM of the DORA method are higher
than those of other methods, and the optimization
gap of the DORA method is also the lowest, which
means that the DORA method is more effective and
stable. And in the Figure 3 and Appendix A, we
provide detailed rewards distribution and compare
the probability of improvement of DORA.

5 Analysis

In this section, we thoroughly analyze the reflection
details and evaluate the effectiveness of our method
under different settings. We want to answer the
following for research questions.
RQ 1: Does DORA help alleviate the "Early
Stop Reflection" issue? To address this ques-
tion, we examined the distribution of successful
reflection iterations within the MiniWoB++ envi-
ronment, as shown in Figure 4. Our analysis reveals
that, consistent with our observations, successful
reflections using the standard reflection method are
concentrated in the early stages, typically succeed-
ing after one or two reflections. In contrast, the
distribution of successful reflection rounds with
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Iteration Prompt Suggestion

turn 1
The goal of reflection is to promote
personal growth,self-improvement,
and self-discovery.

For screen index=0, you should take a moment to reflect on the task
at hand, your current progress, and any potential obstacles
you may encounter.Consider how you can approach the task with
a clear mind and a positive attitude to achieve the best results.

turn 2

The instruction for reflection is a process in which
an individual consciously reflects on their thoughts, feelings,
and actions to gain a deeper understanding of themselves
and their experiences.

For screen index=0, you should consider using the arrow keys to navigate
through the file tree and locate the "Deneen" folder or file.

turn 3
The instruction for reflection was suggest it to click on the element
with the reference 8 to access the folders.

For screen index=0, you should click on the \’Alan\’ folder
in the file tree to find the file or folder named \’Agustina\’.

turn 4
The instruction for reflection was to navigate through the file tree
and find and click on the folder or file named "Alan"

For screen index=0, you should consider using the "click_element"
action on the folder named "Alan" to navigate deeper into the file tree.

Table 3: Case study for the generated reflection prompt and corresponding reflection suggestions in for turns.

the DORA method is more uniform.We believe
that while the randomly initialized prompts used
in DORA may not perform as well as manually set
static prompts in the initial few rounds of reflection,
the iterative feedback from the agents ensures that
the DORA method maintains effective reflection
and improves overall success rates in subsequent
iterations.

Figure 4: The success reflection rounds distribution in
miniwob++. Compared to the baseline method, Dora
can achieve a uniform result.

RQ 2: Does DORA help improve the perfor-
mance of agents on difficult tasks? . The tasks
in miniwob++ can be categorized into three levels
based on their complexity: 1-screen-1-step tasks,
which are completed with a single action within
one screen, such as "click-color" and "click-shape";
1-screen-n-steps tasks, which require multiple ac-
tions on a single screen to complete, including oper-
ations like "click-checkboxes-soft", "click-option",
"find-word"; and n-screen-n-steps tasks, which
involve navigating through multiple screens and
performing several steps, including "navigate-tree",
"click-collapsible-2". The difficulty of these tasks
increases progressively across the categories. In
our study, we compared the success rates of the
baseline reflection method and the DORA method
across different levels of task complexity shown
in Figure 5. We found that our method shows im-
provements in success rates across all levels, with
the most significant improvement observed in the
most challenging n-screen-n-steps scenarios.

Figure 5: The success rate in three-level task categories.

Question 3: Does DORA also lead to toxic re-
flection, better or worse? Previous studies have
identified a phenomenon called "toxic reflection,"
which leads to worse performance. To explore this,
we compared the REACT baseline method, which
involves multiple attempts without reflection, to
scenarios involving reflection. Reflection is consid-
ered "effective" if it reduces the steps needed for
success, "ineffective" if the number of steps stays
the same, and "toxic" if the steps increase.The dis-
tribution of these three outcomes is shown in Figure
6. The findings reveal that while the DORA method
can sometimes result in toxic reflection, its main
advantage lies in turning many instances of ineffec-
tive reflection into effective ones, thus improving
overall performance.

Figure 6: The proportion of effective, failed, and toxic
reflections. While DORA did not significantly reduce
the proportion of toxic reflections, it effectively ad-
dressed the issue of failed reflections.
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Question 4: What features of the reflec-
tion prompts and suggests produced by the
DORA method? We showcased several reflec-
tion prompts and corresponding suggestions gener-
ated by the DORA framework during its iterative
process in Table 3. Initially, the reflection prompts
are similar to those set manually, offering general
guidance. With the progression of the iteration
process, these prompts increasingly relate to the
specific context of the task, finally pointing towards
targeted solutions. Additionally, by setting diver-
sity as an optimization objective, we observe a de-
crease in the occurrence of repetitive or redundant
suggestions for reflection. However, the limita-
tions of Bayesian optimization may lead to certain
iterations producing entirely irrelevant reflection
prompts, as shown in Figure 4.
Question 5: What should be the dimension size
of soft prompt for Bayesian optimization? The
size of the soft prompt used to control the gener-
ation of reflective prompts can impact the effec-
tiveness of the method. Generally, when optimiz-
ing with non-gradient methods like BO, setting
the dimensionality of the soft prompt too high can
make optimization challenging and increase com-
putational costs. However, setting it too low risks
oversimplifying the problem, and missing critical
interactions between variables. We conducted an
ablation study on three tasks where improvements
are significant, to explore the impact of soft prompt
size on the experimental results. The findings of
this study are depicted in Figure 7. It is observed
that when the dimensionality of the soft prompt is
high, the performance of the agent tends to decline.
This could be attributed to the long length and com-
plexity of the optimization process, making it more
challenging. In the context of the DORA method,
optimizing smaller soft prompts appears to be more
suitable. Furthermore, when the soft prompt di-
mensionality is extremely low, such as 2, there is a
noticeable decrease in performance, especially in
the task "click-color."
Question 6: How do hyperparameters affect the
performance of DORA methods? We discov-
ered that relying solely on task completion can lead
to very low or even zero rewards in early iterations,
causing the loss of the optimization goal. Incorpo-
rating diversity rewards helps guide the model to
explore a broader range of reflective instructions.
In our main experiment, we set alpha to 0.5. Recog-
nizing the importance of systematically evaluating
different weights, we conduct additional experi-

Figure 7: Ablation study results (three task’s success
rate) on miniwob++. The horizontal axes represent
different soft prompt dimensions.

Figure 8: The hyper-parameter alpha balances the
weight between diversity rewards and task performance
rewards.

ment, as shown in Figure8.

6 Conclusion

In this work, we introduces the Dynamic Opti-
mization Reflection prompt for LLM-based Agent
(DORA), addressing the "Early Stop Reflection"
issue in autonomous agents driven by LLMs. By
replacing static reflection prompts with dynami-
cally generated ones and refining these prompts
via Bayesian Optimization, DORA significantly
improves agents’ ability to learn from history mis-
takes. Our experiments across two environments
and 16 distinct tasks have empirically demonstrated
DORA’s effectiveness in overcoming the "Early
Stop Reflection" issue.

Limitations

Firstly, our approach was tested in only two envi-
ronments, suggesting the potential for future ex-
periments to extend to a broader range of settings.
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Secondly, our approach is still affected by the issue
of toxic reflections, which we plan to address in the
future.

Ethics Statement

The methods presented in this work involve agent
operating environments and corresponding datasets
that are publicly available. The goal of this research
is to enhance the self-improvement ability of agents
during long-term operations. In the context of such
AGI applications, it is also important to focus on
their long-term stability and controllability, ensur-
ing that they do not produce unexpected behaviors
that could lead to adverse effects.
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Appendix

A Probability of Improvement

Probability of improvement shows how likely it is
for X to outperform Y on a randomly selected task.
Specifically, P(X > Y ) = 1

M

∑M
m=1P(Xm >

Ym), where P(Xm > Ym) is the probability that
X is better than Y on task m. As shown in Figure9,
each row shows the probability of improvement,
with 95% bootstrap CIs, given that DORA was
claimed to be better than Y . For all algorithms,
results are based on multiple runs per task.

B Extra Analysis
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Figure 9: Average Probability of Improvement for agent rewards on MiniWoB++ and ALFWorld. Each subplot
shows the probability of improvement of DORA compared to all other algorithms.
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Figure 10: MiniWoB++ agent rewards distributions. Histogram plot with kernel density estimate of reward of
DORA on 10 games in the MiniWoB++ benchmark.

Figure 11: ALFWorld agent rewards distributions. Histogram plot with kernel density estimate of reward of DORA
on 6 games in the ALFWorld benchmark.


