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Abstract

Moment Retrieval aims to locate specific video
segments related to the given text. Recently,
DETR-based methods, originating from Object
Detection, have emerged as effective solutions
for Moment Retrieval. These approaches fo-
cus on multimodal feature fusion and refining
Queries composed of span anchor and content
embedding. Despite the success, they often
overlook the video-text instance related infor-
mation in Query Initialization and the crucial
guidance role of span anchors in Query Re-
finement, leading to inaccurate predictions. To
address this, we propose a novel Span Aware
DEtection TRansformer (SA-DETR) that lever-
ages the importance of instance related span
anchors. To fully leverage the instance re-
lated information, we generate span anchors
based on video-text pair rather than using learn-
able parameters, as is common in conventional
DETR-based methods, and supervise them with
GT labels. To effectively exploit the corre-
spondence between span anchors and video
clips, we enhance content embedding guided
by textual features and generate Gaussian mask
to modulate the interaction between content
embedding and fusion features. Furthermore,
we explore the feature alignment across vari-
ous stages and granularities and apply denoise
learning to boost the span awareness of the
model. Extensive experiments on QVHigh-
lights, Charades-STA, and TACoS demonstrate
the effectiveness of our approach.

1 Introduce

Video has emerged as a leading form of media
with the advancement of the Internet. The pressing
need to extract valuable content from videos has
driven the development of video understanding and
retrieval tasks, including Video Action Recogni-
tion(Xu et al., 2020 Zhang et al., 2022a), Video
Retrieval(Miech et al., 2019; Xue et al., 2022), and
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Video Question Answering(Yu et al., 2019; Yang
et al., 2021). These methods enhance the retrieval
and understanding of videos, but the fundamen-
tal task of locating relevant video segments based
on specific description remains a challenge. For
this, the task of Moment Retrieval(Gao et al., 2017;
Anne Hendricks et al., 2017) has gradually devel-
oped in recent years.

As illustrated in Figure 1(a), the goal of Moment
Retrieval is to identify relevant video segments
based on textual description. The key of Moment
Retrieval hinges on achieving robust alignment and
fusion between different modalities, as well as uti-
lizing fused features to accurately locate segment
boundaries. Previous works can be divided into
proposal-based methods(Gao et al., 2017; Zhang
et al., 2020b; Qu et al., 2020) and proposal-free
methods(Yuan et al., 2019; Zhang et al., 2020a; Liu
et al., 2021). While the former typically obtains
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localization results by ranking numerous carefully
designed proposals, leading to higher precision but
causing redundant computations, the latter directly
predicts moments with fusion features, achieving
higher efficiency but lacking boundary perception.
The advent of Detection Transformer(Carion et al.,
2020) balanced the precision and efficiency. Its
Queries operate like proposals but without the com-
plexity, and Hungarian matching supplants the bur-
densome Non-Maximum Suppression(NMS) post-
processing. Consequently, it was rapidly adopted
for Moment Retrieval, inspiring a range of DETR-
based methods.

In DETR-based methods, Query typically con-
sists of span anchor and content embedding. The
former provides positional guidance, while the lat-
ter carries semantic information. In Query Initial-
ization, conventional methods(Figure 1 b) overlook
the instance related information by initializing span
anchors as learnable parameters. Unlike Object
Detection, which uses numerous anchor boxes to
match varied object sizes within a single image,
Moment Retrieval involves span anchors that are
closely tied to video-text pairs. Learnable param-
eters in this context fail to provide sufficient prior
knowledge. EaTR (Jang et al., 2023) (Figure 1 c)
addresses the initialization issue by recognizing
events in video using learnable event slots with slot
attention. They generate span anchors based on
these detected events and employ a Temporal Self-
similarity Matrix(TSM) to construct pseudo labels
for supervision. However, they assume multiple
events in the video, and the pseudo labels generated
by TSM are not accurate. In Query Refinement,
previous methods do not fully leverage the guiding
role of span anchors. They primarily utilize span
anchors only as positional encoding to guide the
refiner, overlooking the strong correspondence be-
tween span anchors and the video clip feature in
Moment Retrieval.

In this paper, we propose Span Aware DEtection
TRansformer(SA-DETR), which emphasizes the
crucial role of span anchors in Moment Retrieval.
Our method focuses on instance related Query Ini-
tialization and span aware Query Refinement. In
Multi Modal Align Encoder, we align the visual
and textual features in different granularities at
multi fusion stages. In Dual Path Query Initializer,
we initialize span anchors in direct Query group
with instance related fusion token and supervise
them with GT labels. Furthermore, we incorporate
denoise learning to generate span anchors in noise

Query group to simulate inaccurate initialization
spans and provide additional supervision informa-
tion. In Span Aware Refine Decoder, we introduce
a span based enhance block to ease the semantic
mismatch between content embedding and fusion
feature. Additionally, span anchors are used to gen-
erate Gaussian mask to modulate the interaction
between them directly in cross attention layers.

We have validated SA-DETR on several Mo-
ment Retrieval benchmarks, surpassing all previ-
ous methods and achieving competitive results. In
summary, our contributions can be summarized as
follows:

• We propose a novel SA-DETR that empha-
sizes the important role of instance related
span anchors in Moment Retrieval.

• We explore the impact of feature alignment at
different stages and granularities, and enhance
the span awareness of the model with denoise
learning.

• Experiments on QVHighlights(Lei et al.,
2021), Charades-STA(Gao et al., 2017) and
TACoS(Regneri et al., 2013) have demon-
strated the effectiveness of our method.

2 Related Work

2.1 Moment Retrieval with DETR
Detection Transformer(DETR) was initially pro-
posed for Object Detection, featuring a simple
Encoder-Decoder architecture that eliminates the
need for manually designed anchor boxes and com-
plex NMS post-processing. Due to its high compat-
ibility with Moment Retrieval, Moment-DETR(Lei
et al., 2021) first introduced it to solve Moment Re-
trieval and Highlight Detection concurrently. Sub-
sequently, a series of DETR-based Moment Re-
trieval methods were developed, among them, BM-
DETR (Jung et al., 2023) enhanced background
awareness and temporal sensitivity in videos, QD-
DERT(Moon et al., 2023b) explored the significant
role of textual queries in Moment Retrieval and
Highlight Detection tasks, TR-DETR(Sun et al.,
2024) and UVCOM(Xiao et al., 2024) discussed
the differences and relations between Moment Re-
trieval and Highlight Detection tasks, EaTR(Jang
et al., 2023) concentrated on the events occurring in
the video, CG-DETR(Moon et al., 2023a) tried to
guide multi modal interaction with their correlation,
BAM-DETR(Lee and Byun, 2023) explored the dif-
ferent representation of span anchors. Our method
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Figure 2: Overall of SA-DETR. For the given video-text pair, in the Multi Modal Align Encoder, we first extract
features using frozen backbones, then align the visual and textual features at both video-text and clip-text levels
before and after modal fusion. Additionally, we enhance the fusion visual feature from the different perspectives
of Moment Retrieval and Highlight Detection tasks. In the Dual Path Query Initializer, we initialize span anchors
with fusion token in the direct Query group and introduce noise to GT spans to generate span anchors in the noise
Query group. In the Span Aware Refine Decoder, we refine the Queries using fusion feature with the guidance of
corresponding span anchors and get the final prediction spans and quality scores. Specifically, noise Queries are
used only at the training stage.

adopts DETR-based architecture, but unlike the
above methods, we focus on instance related Query
Initialization and span aware Query Refinement in
Moment Retrieval.

2.2 Denoise Learning

DN-DETR(Li et al., 2022) first introduced denoise
learning to address the slow convergence issue in
DETR-based methods. This approach involves
adding minor perturbations to GT bounding boxes
as anchor boxes, providing a bypass for model con-
vergence. DINO(Zhang et al., 2022b) expanded
denoise learning into the contrastive setting, using
varying degrees of noise as positive and negative
groups. MomentDiff(Li et al., 2024) leveraged the
generative diffusion model to recover video mo-
ments from noise, mitigating dataset biases and en-
hancing retrieval accuracy. DenoiseLoc(Xu et al.,
2023) applied denoise learning to video activity
localization tasks to mitigate boundary ambiguity.
Similar to the above methods, we employ denoise
learning with a contrastive setting. In addition to
accelerating model convergence, span anchors gen-
erated with various noise scales in the noise Query
group can effectively simulate the less precise span

anchors initialized in the direct Query group, which
can enhance the model’s ability to refine accurate
predictions from span anchors with various initial
quality.

3 Method

3.1 Objective and Overall

For a given pair of video and text, we represent the
video as Lv clips {C1, C2, ..., CLv}, and the text
as Lt word tokens {W1,W2, ...,WLt}. The objec-
tive of Moment Retrieval is to locate the spans de-
scribed in the text, denoted as {(ci, wi)

N
i=1}(ci, wi

means the center and width of the span individually,
and N is the count of spans related to the text). The
goal of Highlight Detection is to compute the cor-
relation scores {si}Lv

i=1 of each video clip with text
description. The overall of SA-DETR is illustrated
in Figure 2.

3.2 Multi Modal Align Encoder

Feature Extractor. For the given video, we divide
it into non-overlapping clips and employ a frozen
video extractor to extract feature at the clip level to
get the visual feature Fv ∈ RLv×dv . For the given
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text, we leverage a frozen text extractor to extract
word-level textual feature as Ft ∈ RLt×dt .
Multi Stage Modal Aligner. The alignment and fu-
sion of video and text are essential for the model to
perceive their relationship. Previous methods(Lei
et al., 2021; Moon et al., 2023b) directly merged vi-
sual and textual feature, neglecting their important
connection. TR-DETR(Sun et al., 2024) aligned
video and text feature at multiple levels, but over-
looked the influence of the fusion stage. To this
end, we developed a Multi Stage Modal Aligner
that aligns features at the video-text level and clip-
text level before and after the modal fusion, respec-
tively. The former ensures that semantically related
video and text are similar in semantic space, while
the latter allows the model to recognize clip feature
strongly associated with semantics. This alignment
order helps the model understand the relationship
between video and text in a coarse-to-fine path.

For visual feature Fv ∈ RLv×dv and textual fea-
ture Ft ∈ RLt×dt , we first use two separate MLPs
to project them onto the same dimension d, result-
ing in Fv ∈ RLv×d and Ft ∈ RLt×d.

To apply video-text alignment, we use mean
pooling to pool the video feature and text feature,
then adopt the contrastive loss from CLIP(Radford
et al., 2021) to obtain video-text contrastive loss
Lvtc.

Subsequently, we concatenate the visual feature
Fv with a learnable fusion token g ∈ R1×d, then
employ cross-attention layers with shared param-
eters to fuse visual and textual feature, resulting
in text-related visual feature F̂v ∈ R(Lv+1)×d and
video-related textual feature F̂t ∈ RLt×d. Specifi-
cally, we project visual feature Fv as Qv, and tex-
tual feature Ft as Kt and Vt for text-related visual
feature. The process for video-related textual fea-
ture is the reverse. Notably, we add positional
embeddings to Qv.

To perform clip-text alignment, we use atten-
tion pooling on video-related textual feature F̂t to
derive sentence token Mt ∈ Rd. Then, we calcu-
late the cosine similarity S ∈ RLv between the
visual feature F̂v without fusion token and Ms,
then we employ Llocal from TR-DETR and Lintra

from UniVTG(Lin et al., 2023) for fine-grained
alignment. Besides aligning clips with correspond-
ing text, the model also needs to learn the non-
corresponding between clips and unrelated texts.
To achieve this, we incorporate Linter from Uni-
VTG. The clip-text matching loss is composed of
three parts: Lctm = Llocal + Lintra + Linter.

Local and Global Enhance Block. Both Moment
Retrieval and Highlight Detection require video-
text understanding but from different perspectives.
Highlight Detection emphasizes the relevance dif-
ferences between various clips and text, requiring
global awareness. In contrast, Moment Retrieval
focuses on locating segments of consecutive clips,
necessitating local awareness. For this, we devise
the local/global enhance block to enhance features
according to the specific tasks.

For global awareness, we employ a standard
Transformer Encoder as the global enhance block,
resulting in M̂v ∈ R(Lv+1)×d. Following QD-
DETR(Moon et al., 2023b), we use M̂v to generate
HD scores and saliency loss LS .

For local awareness, we draw inspiration from
UVCOM(Xiao et al., 2024) and apply a simple
three-layer stacked 1D convolution with strides of
1, 3, and 1 as local enhancement block, resulting
in Mv. Finally, we split Mv into fusion feature Mv

and fusion token Mg.

3.3 Dual Path Query Initializer

Direct Query group Initializer. To obtain video-
text instance related initialization span anchors, we
employ a straightforward method. With fusion to-
ken Mg and a simple three-layer MLP, we gener-
ate Sd = MLP (Mg) ∈ {(ci, wi)}

Nq

i=1 ∈ RNq×2,
where Nq is the number of direct Queries. These
span anchors will be matched with GT spans
through Hungarian matching, producing the initial-
ization moment loss Linit. Additionally, the con-
tent embedding of direct Query group Cd ∈ RNq×d

is initialized as learnable parameters of all zeros.
Noise Query group Initializer. We construct noise
span anchors in noise Query group by perturbing
the boundaries of GT spans. Specifically, for a
given GT span(c, w) and a noise scale σ ∈ (0, 1),
we introduce random noise to generate noised span
anchor(c + ∆c, w + ∆w), ensuring that |∆c| ≤
σc
2 , |∆w| ≤ σw, and that the noise span anchor

remains valid. We use a contrastive learning ap-
proach to create positive and negative groups, sim-
ulating high-quality and low-quality span anchors
separately. The noise scale of the negative noise
group is a constant larger than that of the positive
group σp = σn + δ. For each GT, we generate Nd

positive and negative noise span anchors. Addi-
tionally, the content embedding of the noise Query
group is initialized as learnable parameter of all
ones to distinguish from the direct Query group.
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3.4 Span Aware Refine Decoder
Span Aware Query Refiner. To fully leverage
the guidance of span anchors, we introduce the
Span Aware Query Refiner, as depicted in Fig-
ure 3. We take the i-th refine process of direct
Query group as an example. The input includes
i-th span anchors Si

d ∈ RNq×2, i-th content embed-
ding Ci

d ∈ RNq×d, fusion feature Mv ∈ RLv×d

and sentence token Mt ∈ Rd.
Following previous methods, we use self-

attention layers to exchange information between
Queries and eliminate redundancy. Specifically,
Ci
d is projected as QCi

d
, KCi

d
and VCi

d
. Addi-

tionally, we convert Si
d into positional embedding

PSi
d
= MLP (PE(Si

d)) ∈ RNq×d.The specific
process is as follows:

Ĉi
d = softmax(

(QCi
d
+ PSi

d
)(KCi

d
+ PSi

d
)T

√
d

)VCi
d
+ Ci

d

(1)

We introduce the Span Based Enhance Block to
enhance each content embedding with video clips
from the corresponding span anchor, guided by tex-
tual memory. The goal is to mitigate the mismatch
between content embedding and fusion feature in
the cross-attention layers. First, we sample the fu-
sion feature Mv based on span anchors Si

d using
Temporal Align(Xu et al., 2020), obtaining the sam-
ple feature Ms = TemporalAlign(Mv, S

i
d) ∈

RNq×Ns×d, where Ns is the number of clips sam-
pled. Next, we modulate Ms with the sentence
token Mt to enhance the Ms relevant to the text:

s =
WvMs ∗ (WtMt)

T

√
d

M̂s = mean(Ms ⊙ s)

(2)

where s ∈ RNq×Ns , Ws,Wt are learnable param-
eters, and ⊙ represents element-wise multiplica-
tion. After obtaining the text-related sample feature
M̂s ∈ RNq×d, we use gate fusion(Jang et al., 2023)
to fuse it with Ĉi

d:

ĝ = diag(sigmoid(Ĉi
d ∗ M̂s))

Ci
d = Wf ((M̂s + Ĉi

d)⊙ ĝ) + Ĉi
d

(3)

where ĝ ∈ RNq , Wf is learnable parameters.
Next, we use cross-attention layers to fuse the

content embedding and fusion feature Mv. We
project Ci

d as Q
Ci

d

, and Mv as KMv and VMv , then

apply positional encoding PMv = PE(Mv) ∈
RLv×d to Mv. We directly concatenate the feature
and positional encoding instead of adding them

C W
C W
(C,W)
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Anchor-Based 
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Figure 3: The structure of Span Aware Query Refiner

to decouple the interaction of position and con-
tent(Liu et al., 2022), we get the attention map as:

map =
(Q

Ci
d

||PSi
d
)(KMv ||PMv )

T

√
2d

(4)

After obtaining the attention map map ∈ RNq×Lv ,
inspired by CNM(Zheng et al., 2022), we use span
anchors to generate Gaussian masks. i.e. for a span
anchor (c, w):

mask = exp(−α(i/Lv − c)2

w2
), i = 1, ..., Lv (5)

where α is a hyperparameter to control the scale
of the Gaussian mask. These masks are used to
modulate the attention map:

C̃i
d = softmax(Map⊙mask)VMl +Q

Ci
d

(6)

Finally, we obtain the refined content embed-
ding Ci+1

d = FFN(C̃i
d) + C̃i

d with a simple feed-
forward network.
Prediction Head. We use a simple three-layer
MLP to predict the offset of the span anchor
∆Si+1

d
= MLP (Ci+1

d ) ∈ RNq×2 and obtain the

refined span anchor Si+1
d = Si

d+∆Si+1
d

. Following
BAM-DETR(Lee and Byun, 2023), we use a single-
layer Linear to predict the Query quality QSi+1

d
=

sigmoid(Linear(Ci+1
d )) ∈ RNq .

3.5 Matching, Objective and Inference
Matching. For initialized spans and prediction
spans in direct Query group, as there is no one-
to-one correspondence with GT spans, we employ
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Hungarian matching to match them with GT spans.
For prediction spans in noise Query group, we di-
rectly match prediction spans with their correspond-
ing GT spans.
Moment Loss. Taking Direct query group as an ex-
ample, for a real span m and its matched prediction
span m̂, we use L1 loss and giou loss(Rezatofighi
et al., 2019) to measure their difference:

Ldirect =

N∑
j=1

(λl1Ll1(mj , m̂j) + λgiouLgiou(mj , m̂j))

(7)

where N is the number of GT spans, λl1, λgiou are
balance parameters for Ll1 and Lgiou. In addition,
the Linit and the Lnoise can be obtained in the
same way. Note that only the prediction spans in
the positive noise Query group produce moment
loss. The total moment loss is LM = Ldirect +
Lnoise + Linit.
Quality Loss. The quality scores measure the qual-
ity of predictions directly. For the direct Query
group, following BAM-DETR, we compute the
maximum intersection ratio between each predic-
tion span with all GT spans to determine the quality
score. Additionally, to emphasize matched pairs,
we assign a higher weight to those spans:

Lquality =

M∑
j=1

cj |qj −max
∀n

|mj ∩mn

mj ∪mn
|| (8)

If mj matches any GT spans, cj = wq, otherwise
cj = 1.

For the quality scores QSP
n

and QSN
n

generated
by the positive noise Query group and correspond-
ing negative noise Query group, we use the margin
loss to enhance the model‘s ability to perceive the
quality of Queries:

Lqmargin =
1

Ngt

Ngt∑
j=1

max(qnj − qpj + δq, 0) (9)

where Ngt is the count of GT spans in a batch, δq
is the margin between positive quality and negative
quality, the total quality loss is LQ = Lquality +
Lqmargin.
Total Loss. Total loss of the model is composed of
the following four parts: Moment loss LM , Quality
loss LQ, Align loss LA = Lvtc+Lctm and Saliency
loss LS :

LTOTAL = λALA + λSLS + λMLM + λQLQ (10)

whereλ∗ is the balance weights.

Inference. Noise Query group is only enabled at
the training stage. During the inference stage, we
take the span with highest quality score as the final
prediction.

4 Experiments

4.1 Datasets and Metrics

Datasets. We conduct experiments on QVHigh-
lights, TACoS, and Charades-STA. Due to the
space limitation, more details related to the datasets
can be found in the Appendix A.1.
Metrics. We evaluate the model following previ-
ous works (Lei et al., 2021, Moon et al., 2023b).
For Moment Retrieval, we default to reporting
Recall@1 at IOU thresholds of 0.5 and 0.7, for
QVHighlights with multiple GT spans, we record
the mAP at IOU thresholds of 0.5 and 0.75, and
also report the average mAP at IOU thresholds
of [0.5:0.05:0.95], for TACoS, we also report the
mIOU of the Top-1 Prediction. For Highlight De-
tection, we report the mAP and HIT@1 on the
QVHighlights dataset.

4.2 Implement Details

Frozen Backbone. For a fair comparison,
we choose pre-trained SlowFast(Feichtenhofer
et al., 2019), CLIP(Radford et al., 2021), and
VGG(Simonyan and Zisserman, 2014) as video ex-
tractor, and CLIP, Glove(Pennington et al., 2014) as
text extractor. Specifically, for QVHighlights and
TACoS, we cut the videos into 2-second clips then
extract video feature using CLIP+SlowFast, and
extract word tokens with CLIP. For Charades-STA,
when using CLIP+SlowFast visual backbone, we
cut the videos into 1-second clips and use CLIP for
word tokens extraction. When utilizing the VGG
feature, we divide the video into 1/8-second clips
and encode the text using GloVe to obtain word
tokens.
Training Settings. Among all experiments, we
configure the Shared Parameter Fusion Encoder,
Global Aware Enhance Block, and Span Aware
Query Refiner with 2 layers each. We set
the model dimension to 256 and the heads to
8 for all Transformer-like structures. We use
AdamW(Loshchilov and Hutter, 2017) as the opti-
mizer. All experiments were conducted on a single
RTX3090 with torch2.2.1+cu118. Due to space
limitation, more hyperparameters and loss settings
will be found in Appendix A.2.
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Method
MR HD

R1 mAP ≥ V eryGood

@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

M-DETR 52.89 33.02 54.82 29.40 30.73 35.69 55.60
UniVTG 58.86 40.86 57.60 35.59 35.47 38.20 60.69

MH-DETR 60.05 42.28 60.75 38.13 38.38 38.22 60.51
QD-DETR 62.40 44.98 62.52 39.88 39.86 38.94 62.40

EaTR 61.36 45.79 61.86 41.91 41.74 37.15 58.65
TR-DETR 64.66 48.96 63.98 43.73 42.62 39.91 63.42
CG-DETR 65.43 48.38 64.51 42.77 42.86 40.33 66.21
UVCOM 63.55 47.47 63.37 42.67 43.18 39.74 64.20

BAM-DETR 62.71 48.64 64.57 46.33 45.36 - -

SA-DETR 64.96 49.09 65.30 47.80 47.40 40.02 65.69

Table 1: Joint results of Moment Retrieval and Highlight Detection on QVHighlights online test split 1

Method feat R1@0.5 R1@0.7

2D-TAN VGG 40.94 22.85
QD-DETR VGG 52.77 31.13
TR-DETR VGG 53.47 30.81
MH-DETR VGG 55.47 32.41

SA-DETR VGG 55.59 37.1

2D-TAN SF+C 46.02 27.40
M-DETR SF+C 52.07 30.59

QD-DETR SF+C 57.31 32.55
TR-DETR SF+C 57.61 33.52
UniVTG SF+C 58.01 35.65

CG-DETR SF+C 58.44 36.34
UVCOM SF+C 59.25 36.64

BAM-DETR SF+C 59.95 39.38

SA-DETR SF+C 61.16 41.51

Table 2: results on Charades-STA test split, SF denotes
SlowFast, C denotes CLIP.

4.3 Main Results

Results on QVHighlights. As shown in Table
1, we compare the Moment Retrieval and High-
light Detection performance of SA-DETR with
other DTER-based methods on the test split of
QVHighlights. For the fair comparison, all mod-
els are trained from scratch with only video and
text pairs without any pre-training. For Moment
Retrieval, SA-DETR significantly outperforms pre-
vious methods on almost all metrics, which high-
lights the importance of the awareness of instance
realted span guidance. Although the HD task is
not the main focus of our method, the multi-stage
feature alignment and fusion enables the model to
achieve competitive results.
Results on Charades-STA & TACoS. We test the
MR performance of our model on the test splits of
Charades-STA and TACoS datasets. As shown in

1CodaLab online test server

Method R1@0.3 R1@0.5 R1@0.7 mIOU

2D-TAN 40.01 27.99 12.92 27.22
VSLNet 35.54 23.54 13.15 24.99
M-DETR 37.97 24.67 11.97 25.49
UniVTG 51.44 34.97 17.35 33.60

CG-DETR 52.23 39.61 22.23 36.48
UVCOM - 36.39 23.32 -

BAM-DETR 56.69 41.54 26.77 39.31

SA-DETR 58.16 42.56 27.87 40.03

Table 3: results on TACoS test split

Table 2, on Charades-STA, regardless of whether
we use VGG or SlowFast+CLIP backbone, our
model achieves better performance. Particularly at
a high IOU of R1@0.7, we surpass MH-DETR(Xu
et al., 2024) by 4.69% and BAM-DETR by 1.13%.
As shown in Table 3, on the TACoS dataset, our
model outperforms all previous methods by a sig-
nificant margin.

4.4 Ablation Studies

Main Components Ablation. As shown in Table
4, we conduct ablation experiments on QVHigh-
lights and report the results on val split. Feature
Align(FA) represents the multi-stage feature align-
ment, Query Initialization(QI) denotes the instance
related Query initialization, Span Aware(SA) in-
dicates the span aware Decoder, Denoise Learn-
ing(DN) signifies the contrastive denoise learn-
ing. Setting(a) serves as the baseline, consisting
of a fusion Encoder with shared parameters and
local/global enhance blocks, along with a decoder
similar to DAB-DETR(Liu et al., 2022). In con-
trast, setting(j) represents the complete model with
all components. The experiment results are as fol-
lows: 1) For settings (b) to (e), we verified that
each components have a positive effect on model

https://codalab.lisn.upsaclay.fr/competitions/6937##results


7641

settings FA QI AD DN
MR HD

R1 R1 mAP mAP HIT@1@0.5 @0.7 Avg.

(a) 62.39 46.77 40.71 39.33 62.13

(b) ! 65.16 49.23 44.26 40.24 67.29
(c) ! 63.74 50.32 45.39 39.42 62.90
(d) ! 63.35 48.19 42.85 39.45 62.65
(e) ! 65.03 48.39 43.69 39.50 62.39

(f) ! ! 63.35 50.06 46.27 39.53 63.03
(g) ! ! 63.87 50.13 45.96 39.63 64.13
(h) ! ! ! 63.74 50.52 47.01 39.75 63.55
(i) ! ! ! 65.29 51.35 47.54 40.59 66.32

(j) ! ! ! ! 67.03 52.52 48.84 40.81 67.61

Table 4: Components ablation on QVHighlights val split.

Method R1@0.5 R1@0.7 mAP

baseline 64.58 49.61 44.69
+Dynamic Anchor 64.97 51.16 47.19
+Init Loss 67.03 52.52 48.84

Table 5: Ablation on Query Initializer

performance. 2) Compared to setting(c), setting(f)
introduces DN, the noise Query group simulates
the inaccurate span anchors in the direct Query
group, and the combination of the two modules
achieves a boost effect. Compared to setting(d),
setting(g) adds QI , compared to the learnable in-
stance unrelated span anchor, the instance related
span anchor provided by QI plays a better guiding
role in the Span Aware Decoder. 3) Compared to
setting(j), setting(h) removes FA, and both Moment
Retrieval and Highlight Detection performance sig-
nificantly decreased, indicating that well-aligned
feature plays an important role in both tasks. Com-
pared to setting(j), setting(i) removes the AD. With-
out guidance in the refinement process of the span
anchor, the model cannot locate accurate results,
leading to a decline in MR performance.
Ablation on Query Initializer. As shown in Table
5, we set up ablation experiments on QVHighlights
to verify the important role of Query Initialization.
We replace the instance related span anchors with
learnable parameters and remove the Linit as the
baseline, the model‘s performance significantly de-
creased. After adding dynamic span anchors, the
performance improved. Subsequently, by adding
Linit to supervise the initialization of span anchors,
the performance further enhanced.
Ablation on Span Aware Query Refiner. We
conduct ablation experiments on the components

modulate enhance R1@0.5 R1@0.7 mAP

65.29 51.35 47.54

! 66.84 52.77 48.14
! 66.58 52.58 47.97

! ! 67.03 52.52 48.84

Table 6: Ablation on Span Aware Query Refiner

Lvtc Lctm

MR HD

R1 R1 mAP mAP HIT@1@0.5 @0.7 Avg.

before before 66.71 52.71 48.24 40.89 66.58
after after 65.42 51.74 47.56 40.20 65.94
after before 65.55 51.87 47.85 40.65 65.81

before after 67.03 52.52 48.84 40.81 67.61

Table 7: Ablation on Align Stage, before denotes before
modal fusion, and after denotes after modal fusion

of the Span Aware Query Refiner, as shown in Ta-
ble 6, the result indicate that utilizing span anchors
to enhance content embedding and modulating the
interaction both have positive impacts on the model
performance. Notably, when both techniques are
used together, they lead to the highest performance
improvement.
Ablation on Align Stage. As shown in Table 7,
we investigated the impact of video-text level(Lvtc)
and clip-text level(Lctm) alignment on model per-
formance during different stages of modal fusion.
The experiments indicate that performing video-
text level feature alignment before modal fusion,
specifically before the share-parameter encoder, al-
lows us to project paired video-text pairs into closer
semantic space from a global perspective. This



7642

Figure 4: Qualitative Results.

Method R1@0.5 R1@0.7 mAP

w/o contrastive groups 66.52 52.32 47.88
course learning 67.55 52.19 48.36
fixed margin 67.03 52.52 48.84

Table 8: Ablation on Contrastive Denoise Learning

facilitates their fusion and subsequent local align-
ment of clip-text level.
Ablation on Contrastive Denoise Learning. Neg-
ative noise Query group provides span anchors with
high noise, which helps the model better evaluate
the quality of different Queries. We conducted ex-
periments, as depicted in Table 8, to ascertain the
efficacy of contrastive setting. The model‘s per-
formance significantly deteriorates when negative
groups are not utilized. However, by implement-
ing a coarse learning strategy that progressively di-
minishes the noise scale margin between negative
groups and positive groups throughout the training
process, the model‘s performance is enhanced. Fur-
thermore, by maintaining a constant noise margin
between negative and positive groups, the model
can consistently discern the differences between
them, leading to the most substantial performance
improvement.
Convergence Speed. We compare the convergence
speed and quality with other methods on QVHigh-
lights and report the mAP on val split. As shown
in Figure 5, when denoise learning is not used,
although the performance of the model surpasses
other methods, the early convergence of SA-DETR
is comparable to other models. When denoise learn-
ing is added, the convergence speed and quality of
the model significantly improve.
Due to space constraints, more ablation experi-
ments can be found in Appendix A.3 .

4.5 Qualitative Results
As shown in Figure 4, we compare our prediction
results with CG-DETR. In the left case, our method

Figure 5: Comparison with other methods on conver-
gence speed and quality, all models are trained from
scratch with the official code on QVHighlights, we re-
port mAP on val split here.

can precisely determine the segment related to the
text and obtain correct saliency scores. In the right
case, our method successfully locates the repetitive
and complex segments without overlap.

5 Conclusion

We propose the Span Aware DEtection
TRansformer(SA-DETR), an effective method
to address Moment Retrieval. In SA-DETR, we
explore the importance of span anchors during the
Query Initialization and Refinement. Specifically,
we initialize span anchors using instance related
fuse token and supervise them with GT labels.
Additionally, we guide the Query refinement with
span anchors to achieve more accurate localization.
Furthermore, we investigate the impact of feature
alignment at different granularities and stages on
model performance and verify the boost effec-
tiveness of denoise learning in the model‘s span
awareness. Our approach achieves competitive
results on QVHighlights, Charades-STA and
TACoS, demonstrating its effectiveness.
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Limitation

Although our method effectively addresses the mo-
ment retrieval task with awareness of span anchors,
there are still certain limitations in the following
aspects:

• We use Hungarian matching for both initial-
ized spans and refined spans. However, we do
not consider the stability of matching between
different layers of span anchors and the GT la-
bels. Consequently, there may be cases where
a GT label matches different span anchors
from different layers, leading to a decrease in
model performance.

• While our method addresses Modal Fusion
and Align, Highlight Detection, and Moment
Retrieval within a unified framework, these
three problems have distinct emphases and op-
timization goals. We simply optimize them
simultaneously without considering their dif-
ferences or the order of optimization.

• Our experiments only involve video and text
modalities. We have not designed a general
multimodal fusion structure to incorporate
other modalities, such as audio.
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Datasets vid feat. txt feat. hyperparameters loss
bs epoch lr Nq Nn Ns α σp σn λl1 λgiou wq δq λA λS λM λQ

QVHighlights SF+C CLIP 32 200 1e-4 10 5 10 2 0.2 0.6 10 1 1 0.4 1 1 1 1
TACoS SF+C CLIP 32 200 2e-4 10 5 15 2 0.2 0.6 10 1 10 0.4 0 4 1 1
Charades-STA SF+C CLIP 32 200 2e-4 10 5 15 2 0.2 0.6 10 1 10 0.4 0 4 1 1
Charades-STA VGG GloVe 16 100 1e-4 10 5 10 2 0.2 0.6 10 1 10 0.4 0 4 1 1

Table 9: Implementation details. From left to right: bs denotes batch size,lr denotes learning rate,Nq denotes the
number of Queries,Nn denotes the number of noise groups,Ns denotes the sample frames in Temporal Align,α
denotes the hyperparameter of Gaussian mask generation,σp and σn denote the noise scale of positive and negative
noise groups,wq denotes the weight of matched spans in Lquality,δq denotes the margin in Lqmargin,λA, λS , λM

and λQ denote the weight of LA, LS , LM and LQ separately.

A Appendix

A.1 Details of Datasets

QVHighlights. QVHighlights dataset was con-
structed to address both Moment Retrieval and
Highlight Detection tasks simultaneously. It covers
a range of content including daily activity vlogs
and news reports. In this dataset, a single query
may correspond to multiple moments, comprising
10148 videos, 10310 queries and their associated
18367 moments.
Charades-STA. Charades-STA was derived from
the Charades(Sigurdsson et al., 2016) dataset,
Charades-STA focuses on indoor activities, encom-
passing 6672 videos and 16124 video-query pairs.
TACoS. TACoS was built from the MPII Cook-
ing Composite Activities dataset(Rohrbach et al.,
2012), TACoS captures human activities in the
kitchen, featuring 127 videos and 18818 video-
query pairs.

A.2 More Implementation Details

To ensure stable convergence, we gradually decay
the learning rate to 0 after 40 epochs for QVHigh-
lights. For additional hyperparameter and loss set-
tings, please refer to table 9.

A.3 More Ablation Studies

Ablation on Noise Group Nums. We investigate
the impact of the number of noise groups in denoise
learning on QVHighlights. As shown in Figure 6.
When the number of noise groups is small, the
model cannot obtain sufficient additional supervi-
sory information. Conversely, when the number
of noise groups is large, the persistent noise af-
fects the model‘s convergence and disrupts its orig-
inal learning path. Empirical evidence shows that
the model performs optimally when the number of
noise groups is set to 5.

Figure 6: Ablation on noise group nums

Lvtc Lctm

MR HD

R1 R1 mAP mAP HIT@1@0.5 @0.7 Avg.

63.74 50.52 47.01 39.75 63.55
! 65.68 50.77 47.19 40.03 64.39

! 65.29 52.58 47.77 39.97 63.42

! ! 67.03 52.52 48.84 40.81 67.61

Table 10: Ablation on Feature Align Loss

Method R1@0.5 R1@0.7 mAP

QD-DETR 62.52 46.84 41.35
+dynamic anchor 62.06 47.42 42.09
+Gaussian mask 62.0 48.13 42.84

Table 11: Ablation on Component Generalizability.

Method R1@0.5 R1@0.7 mAP

M-DETR 53.33± 1.4 34.16± 1.4 31.18± 1.1
QD-DETR 61.94± 0.4 47.02± 1.0 41.13± 0.5
SA-DETR 66.02± 0.8 51.72± 0.8 47.87± 0.6

Table 12: Performance Statistical Analysis.
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Ablation on Feature Align Loss. As shown in Ta-
ble 10, we investigated the impact of Feature Align
Loss Lvtc and Lctm on QVHighlights. The experi-
ments show that Lvtc aligns the video with the text
in global aware, significantly improving the per-
formance of Highlight Detection. Lctm aligns the
clips and the text in local aware, improving the per-
formance of Moment Retrieval. The combination
of the two produces a boost effect.
Ablation on Component Generalizability. As
shown in Table 11, we investigated the general-
izability of our instance related span anchor and
Gaussian mask modulate. We add them to QD-
DETR and report the results on QVHighlights val
split. These results demonstrate that our compo-
nents can be effectively integrated into existing
models and improve performance, confirming their
generalizability.
Performance Statistical Analysis. we conducted
experiments to verify the robustness and statistical
significance of our results. Specifically, we repeat
experiments on QVHighlights val set using seeds 0,
1, 2, 3 and 2018. The mean and standard deviation
of Moment Retrieval metrics are shown in the table
12.
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