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Abstract

Within numerical reasoning, understanding
numbers themselves is still a challenge for ex-
isting language models. Simple generalisations,
such as solving 100+200 instead of 1+2, can
substantially affect model performance (Sivaku-
mar and Moosavi, 2023). Among various tech-
niques, character-level embeddings of numbers
have emerged as a promising approach to im-
prove number representation. However, this
method has limitations as it leaves the task of
aggregating digit representations to the model,
which lacks direct supervision for this process.
In this paper, we explore the use of mathemati-
cal priors to compute aggregated digit embed-
dings and explicitly incorporate these aggre-
gates into transformer models. This can be
achieved either by adding a special token to the
input embeddings or by introducing an addi-
tional loss function to enhance correct predic-
tions. We evaluate the effectiveness of incor-
porating this explicit aggregation, analysing its
strengths and shortcomings, and discuss future
directions to better benefit from this approach.
Our methods, while simple, are compatible
with any pretrained model, easy to implement,
and have been made publicly available.1

1 Introduction

Numbers play an integral role in language
(Thawani et al., 2021), and they are crucial across
various domains such as finance (Chen et al., 2018),
medicine (Jullien et al., 2023) or even sarcasm
(Dubey et al., 2019). Despite large language mod-
els improving their capacity in many tasks, numer-
ical reasoning still poses a challenge (Hong et al.,
2024). Recent advancements in enhancing numer-
ical reasoning within language models have pre-
dominantly stemmed from using more extensive or
higher-quality training datasets (Li et al., 2022a; Yu
et al., 2024), scaling up models (Lewkowycz et al.,

1https://github.com/jasivan/Number-Embeddings

2022; Kojima et al., 2022), or integrating prompt-
based strategies such as chain-of-thought reasoning
(Wei et al., 2022b; Yue et al., 2024). The effec-
tiveness of such methods is significantly amplified
when applied in conjunction with larger model ar-
chitectures. With smaller models, the improvement
shown is often minimal, for example, Wei et al.
(2022b) use of chain-of-thought on a 20B parame-
ter model only showed a 2.5% improvement on the
MAWPS (Koncel-Kedziorski et al., 2016) dataset
whereas it jumps to 14.7% with a 137B parame-
ter model. In addition, many of these solutions are
computationally expensive or inaccessible; we seek
a low-cost approach that may have minimal impact
on small-scale models but greater effects on larger
models.

A key challenge for number understanding is that
widely used tokenisation methods, like Byte-Pair
Encoding (BPE) (Sennrich et al., 2016), work well
for common words but not for numbers. Specif-
ically, rarer numbers might be broken down into
random, meaningless pieces. In light of this, digit
tokenisation (Spithourakis and Riedel, 2018) stands
out for its simplicity and efficacy at representing
numbers. This technique involves breaking down
numbers into their individual digits, reducing vo-
cabulary size and ensuring all decimal numbers
can be accurately represented enhancing numerical
reasoning abilities across various model architec-
tures, tasks, and datasets (Geva et al., 2020; Petrak
et al., 2023; Sivakumar and Moosavi, 2023). How-
ever, the aggregation of digit embeddings into a
complete number representation is implicitly han-
dled by the model, which raises the question: Can
explicit aggregation using mathematical priors
improve numerical understanding?

In this paper, we investigate this question by in-
tegrating a mathematically grounded aggregation
of digit embeddings explicitly, rather than relying
solely on the model’s inherent capabilities. Our
findings show that this aggregated digit embedding

https://github.com/jasivan/Number-Embeddings


7686

enhances performance on small-scale models by
up to 6.17% compared to our baseline without it,
potentially leading to even greater improvements
in larger models. However, the effectiveness of our
integration strategy depends on the size, the archi-
tecture of the model used, and how these priors are
integrated in the model. Our main contributions
are as follows:

• We propose a novel approach to number
embedding that requires no changes to the
model’s architecture or additional pretraining,
by showing that an aggregation is effective
if it meets two criteria: (1) it distinguishes
between distinct numbers, ensuring unique
representations for each value, and (2) the ag-
gregated embedding reflects natural numerical
proximity.

• We explore two approaches for integrating our
aggregation: adding a special token before the
representation of individual digits to enhance
input number representations, and incorporat-
ing an additional loss function to improve the
representation of outputted digits.

2 Related Work

Numerical reasoning is the ability to interact with
numbers using fundamental mathematical proper-
ties and model an area of human cognitive thinking
(Saxton et al., 2019). Given a maths worded prob-
lem, for example “Sarah has 5 apples and eats 2.
How many apples does she have left?”, the model
needs to interpret the relation between both the
numbers and the text to then solve the problem by
means of arithmetic operations (Ahn et al., 2024).
Therefore, an accurate number representation is pri-
mordial to distinguish between different numbers
and also predict an accurate answer. The literature
focuses on five different areas to better represent
numbers.

2.1 Scaling

Increasing the number of parameters of pretrained
models has improved their numerical reasoning but
it is still nowhere near perfect. For example, Min-
erva (540B) (Lewkowycz et al., 2022) continues to
struggle with greater than seven digit multiplica-
tion. Moreover, Frieder et al. (2023) found that very
large models like ChatGPT and GPT4 are inconsis-
tent when answering mathematical questions rang-
ing from arithmetic problems to symbolic maths.

This suggests that the models lack a fundamental
understanding of numbers and thus mathematics.
One approach to improve number representation
is to scale up the vocabulary by having more indi-
vidual number tokens. For example, GPT3 (Brown
et al., 2020) has unique tokens from the numbers 0-
520, whereas GPT4 (OpenAI et al., 2023) has them
up to 999. Despite general better performance of
GPT4, it is not feasible to represent infinitely many
numbers in finite memory capacity. Making the
vocabulary larger also increases the computational
costs.

2.2 Tokenisation

A more practical approach for representing all num-
bers is digit tokenisation (Spithourakis and Riedel,
2018; Geva et al., 2020) which separates numbers
into a sequence of individual digits. This method
improves upon conventional wordpiece tokenisa-
tion as shown with GenBERT (Geva et al., 2020)
and Mistral-7B (Jiang et al., 2023) by reducing
vocabulary size and ensuring precise representa-
tion of all numbers. Despite its advantages over
conventional tokenisation algorithms, digit tokeni-
sation has limitations. It relies on the model to
aggregate digit embeddings into complete number
representations. During pretraining, models typi-
cally learn to aggregate subword tokens effectively
for common words. However, not all numbers are
encountered frequently enough during pretraining
for the model to learn accurate aggregation. As
an example, when the same question is posed with
numbers represented differently (once as an inte-
ger and once scaled to the thousands), FLAN large
with digit tokenisation shows a performance drop
of 10% (Sivakumar and Moosavi, 2023). This in-
dicates that the model struggles with numerical
consistency and accurate aggregation of digit em-
beddings.

2.3 Architectural level

Change in model architecture also aids numerical
reasoning as shown by NumNET (Ran et al., 2019)
and xVAL (Golkar et al., 2023). NumNET extracts
the numbers from the input question and passage
to create a directed graph with relative magnitude
information about each number present, e.g. which
is greater than the others. After encoding the in-
put question, this comparative information is also
passed to the model to also be leveraged in an-
swering the query. Alternatively, xVAL generates
two input encodings, a text only encoding where
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numbers are replaced by [NUM], and a number
encoding with empty space for the text but the
actual value of the number in each number’s cor-
responding position. From the number preserving
encoding, each number is converted to a vector
with each entry as the number itself. The product
of this vector with the embedding of [NUM] is
then injected into the first layer of the transformer
for each number in the input sequence. For de-
coding, a bespoke process is created to extract the
predicted number instead of outputting the [NUM]
token. Despite the positive contributions of these
papers, their methods lack versatility as they are not
adaptable off-the-shelf for any pretrained model.

2.4 Loss Functions

Another approach to improve numerical reason-
ing is for models to intrinsically learn better rep-
resentation by introducing an inductive bias in the
loss function. A simple approach is Wallace et al.
(2019)’s use of the mean squared error (MSE) loss
across the batch to directly predict floats on a sub-
set of DROP (Dua et al., 2019) which consists of
numerical answers. Unfortunately, this method is
limited to datasets that only predict numbers. Con-
trastive loss has also been used to manipulate the
representation of numbers, for instance, Petrak et al.
(2023) draws nearer the representation generated
by BPE and digit tokenisation through an auxiliary
loss during extended pretraining to improve arith-
metic reasoning in worded problems like DROP
but also tables like SciGen (Moosavi et al., 2021).
Similarly, Li et al. (2022b) use contrastive learn-
ing but on computation trees. They first generate
computation trees for the mathematical operations.
Then they use contrastive loss to pull nearer the
graph representing the same operation, e.g. addi-
tions, and push other ones further. This is then inte-
grated in the main loss and improves performance
on two maths worded problem datasets, MathQA
(Amini et al., 2019) and Math23K (Wang et al.,
2017). While these loss functions are adaptable
with different models, contrastive training is com-
putationally expensive and requires annotated data.

2.5 Input Representation

The most model agnostic method involves chang-
ing the representation of the numbers in the input
text. Wallace et al. (2019) explore worded forms
of numbers, but this approach overly relies on the
tokeniser which splits them into subwords. Muffo
et al. (2022) decompose numbers into place val-

ues in reverse order, e.g. 123 = 3 units, 2 tens, 1
hundreds which helps when working with carry-
on, e.g. when adding. However, this introduces
many more tokens in the input which is undesir-
able, and also requires new vocabulary for each
place value name. Zhang et al. (2020) convert all
numbers into scientific notation, e.g. 314.1 is repre-
sented as 3141[EXP]2, improving models’ ability
to identify the magnitude of a number. Despite
providing magnitudinal information, the number
before [EXP] still needs to be represented faithfully.
In fact, all the above strategies require the model
to implicitly compute an overall aggregation for
the numbers based on their individual components
generated by the tokeniser of the model, whether
these are digits or subwords. A simple, yet effec-
tive method is to introduce pause tokens before
predicting the answer (Goyal et al., 2024). This is
evaluated by training a 1B parameter transformer
model on C4 using [PAUSE] tokens and a 1% im-
provement is shown on the numerical reasoning
dataset, GSM8K (Cobbe et al., 2021). While this
method can be used for inference only, they con-
clude that pretraining is recommended, therefore
less applicable to existing models.

Within this line of research, our work is more
versatile. Unlike previous methods that rely on
the model to implicitly learn aggregation, we fo-
cus on the explicit aggregation of digit embeddings
using mathematical priors. This provides direct
supervision for the aggregation process, improving
the accuracy of number representation. Further-
more, our method ensures that the embedding for a
given number aligns with its numerical neighbours,
enhancing the model’s numerical reasoning capa-
bilities without altering the model architecture or
requiring extensive retraining.

3 Aggregation of Digit Embeddings

Digit tokenisation has demonstrated its efficacy in
enhancing numerical reasoning compared to BPE
tokenisation. This improvement can be attributed
to digit tokenisation’s utilisation of pretrained em-
beddings for individual digits, allowing the model
to learn the overall representation through contex-
tualised embeddings. In contrast, BPE tends to
fragment longer and less frequent numbers into
random subsequences, resulting in less meaning-
ful aggregations than those achieved through digit
tokenisation. However, the implicit aggregation
process employed by digit tokenisation remains
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Figure 1: A 2D projection of the neighbourhood of the
number token “55” in FLAN large is represented on the
left. Ideally, number embeddings should reflect natural
numerical proximity. In other words, the embedding for
any given number should closely align with those of its
immediate numerical neighbours, depicted on the right.

unclear, particularly how the model aggregates a
number’s overall representation from its digit em-
bedding.

In this paper, we investigate a natural continu-
ation of digit tokenisation, a mathematically mo-
tivated aggregation that takes into account the rel-
ative position of each digit within a number. Our
approach generates an overall embedding for the
number by considering the positional weight of
each individual digit in that number. For example,
given “123”, the common understanding of num-
bers as base-10 is “1×100+2×10+3×1”, so the
left most digits are weighted higher as they have a
larger impact on the value of the number.

We design our weighted scheme such that: (1)
the embeddings of single-digit numbers remain in-
tact, as these embeddings are effectively learned
during pretraining, evidenced by the high per-
formance of models on single-digit operations
(Sivakumar and Moosavi, 2023), (2) the weights of
consecutive place values increase exponentially to
reflect base-10, and (3) the weights do not sum to 1,
meaning that it does not normalise the sum, allow-
ing for numbers composed of the same digits, e.g.
“111” and “11”, to be represented differently. These
properties would introduce a bias towards an accu-
rate length of numbers and the correct digits from
left to right as the left most digits are amplified,
hence preserving natural numerical order.

We propose to calculate the weighted aggregated
embedding a with ai =

∑
wi · di for 1 ≤ i ≤ N

where N is the number of digits, and the weights
wi are defined as:

wi = 2N−i × 3(N + 1− i)(N + 2− i)

N(N + 1)(N + 2)
. (1)

These weights are designed to satisfy three key

properties. (1) Alignment with single-digit rep-
resentations: when N = 1, w1 = 1, ensuring
compatibility with the model’s pretraining on sin-
gle digits. (2) Exponential growth: the exponen-
tial component 2N−i mimics the base-10 system,
providing an appropriate scale without causing the
weights to grow too rapidly. This also ensures that
the weights are not normalised. (3) Regularisation
Term: the fractional component acts as a regu-
larisation term, forming a normalised triangular
number sequence. For instance, for a 3-digit num-
ber, the triangular sequence is 1,3,6, normalised
to 0.1,0.3,0.6. This ensures that the difference be-
tween consecutive digit weights increases propor-
tionally, i.e., wi − wi−1 = w0 × i, replicating the
exponential ratio between digit positions in a loga-
rithmic space.

To validate the ability of an aggregated embed-
ding to accurately represent numerical relation-
ships, we use the F1-score to compare natural
k-Nearest Neighbours (nkNN) with embedding
k-Nearest Neighbours (ekNN). This comparison
serves two purposes: firstly, to assess the embed-
dings’ capacity to distinguish between distinct num-
bers, and secondly, to evaluate how well these em-
beddings mirror the natural numerical order. By
defining nkNN as the set of mathematically adja-
cent numbers to a given integer n, and ekNN as the
set of its closest neighbours in the embedding space,
we create a direct measure of the embedding’s ef-
fectiveness in preserving numerical proximity. The
F1-score evaluates the alignment between nkNN
and ekNN, penalising both the inclusion of incor-
rect neighbours and the omission of correct ones.
A strong correlation between nkNN and ekNN,
as reflected in a high F1-score, indicates that the
embeddings faithfully capture the essence of nu-
merical data as illustrated in Figure 1.

We compare our bespoke weighted aggregation
function to more standard aggregation functions
such as sum. For a set of digit embeddings, we ap-
ply these functions along each dimension to gener-
ate a unique embedding for the number represented
by these digits. Figure 2 graphs the F1-score for
our weighted function and sum over different digit
lengths, i.e. 2-digit would be the numbers 10 to
99. Appendix A has the results for other aggrega-
tion functions: max, min, mean and median; these
have the lowest alignment with natural order with
an F1-score below 5%. These functions all have a
normalising property meaning that the length of the
number has no bearing on the aggregated embed-
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Figure 2: Average F1-score of FLAN large layer 1 num-
bers using sum and our weighted aggregation function
with neighbourhood of 10.

ding, as the functions only retrieve one entry for
each dimension therefore cases like “1111” would
be equivalent to both “11” and “1”. Contrastingly,
sum has better F1-scores for up to 3 digits as it
possesses magnitudinal information since all the
entries are summed up for each dimension distin-
guishing, for instance, a 2-digit set from a 3-digit
set as it simply adds more numbers. However, it
is position agnostic - it assigns equal weight to
all the digits irrespective of their relative positions.
Therefore, the embeddings generated from permu-
tations of the same digits will always be equivalent,
e.g. “85” and “58”. Since larger digit numbers
have more such permutations, the F1-score reduces
as the number of digits increases. Using this met-
ric, the best aggregation is our weighted sum, the
average F1-score rounds to 69% for 2 digits on-
wards suggesting that our weighted sum is closer
to the ideal depiction in Figure 1. Undoubtedly,
1-digit F1-score is better as these embeddings are
generated from pretraining, but also because the
weighted scheme ensures that they are separated
from the other number embeddings.

Despite this weighted scheme aligning the num-
ber embeddings with their natural order, the
weights generated by Equation 1 can surpass the
precision used making it too large after a certain
point. However, this behaviour is attenuated by
the regularisation term which maintains the high
F1-score of 69% for, at least, up to 6-digit long
numbers as shown in Figure 2. Theoretically, the
newly formed number representation should con-
tain numbers that beginning with the same digits
and only vary at the unit level. For example, the
neighbourhood of 4523 should contain all numbers
of the form 452X where X is a digit from 0 to 9,
therefore eight of these coincide in the 10-nearest

neighbour, namely 4520, 4521, 4522, 4524, 4525,
4526, 4527, and 4528.

4 Integrating Aggregated Embeddings

Given the construction of our mathematically
grounded aggregation, we explore two distinct
methodologies for enhancing numerical under-
standing in models, each targeting different aspects
of number representation. The first method focuses
on enriching the input data by integrating a mathe-
matical aggregation directly into the input embed-
ding as a special token. This approach requires no
changes to the model’s architecture, making it a
flexible solution compatible with various models
and suitable for a broad spectrum of tasks.

In contrast, the second approach aims to refine
the model’s output by improving how numbers
are represented in the learned outcomes. This is
achieved by incorporating the aggregation in the
loss function, encouraging the model to generate
number embeddings that align more closely to the
correct numerical values. Specifically, this method
includes an additional term in the loss calculation,
which accounts for the distance between the ag-
gregated embedding of the predicted number and
that of the true number. This targeted intervention
is particularly effective in tasks requiring precise
numerical predictions, helping the model develop a
more nuanced and accurate representation of num-
bers.

The baseline implementation for both methods
is the same as Petrak et al. (2023) with digit tokeni-
sation surrounded by [F] and [/F] tokens to mark
the start and end of the number identified using the
regular expression “(\d*\.)?\d+”.

4.1 Aggregation in Input Embeddings

In our first approach, we enhance the input embed-
ding by incorporating the computed aggregation
directly. This is achieved by first digitising num-
bers and delineating them with special tokens as
done by Petrak et al. (2023). Additionally, we intro-
duce a special token, [AGG], positioned as follows
where di represent the digit tokens: [F] [AGG] [d1]
... [dn] [/F]. The embedding for this [AGG] to-
ken is initialised with the aggregation of the digit
embeddings based on Equation 1.

4.2 Aggregation in Loss Function

Language generation models typically use a cross-
entropy loss function (LCE) (Lewis et al., 2020;
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Raffel et al., 2020). To improve the model’s ability
to predict numbers accurately, we introduce an aux-
iliary loss (LAUX ) to calculate the mean squared
error between the aggregate embedding of the gold
and predicted numbers. Understanding and pre-
dicting numbers is inherently more complex than
predicting a single word or sub-word because they
consist of multiple digits, each carrying different
significance. For example, in answering the ques-
tion “Mary’s salary is £900 a month, but she pays
£579 in rent. How much salary does she have
left?”, the answers 320, 230, 32, or 456 are all in-
correct. However, 320 is more accurate compared
to others because its magnitude is closer to the cor-
rect answer, 321. Incorporating this new auxiliary
loss would help the model predict digits that are
closer to the gold answer, enhancing its precision
in numerical predictions by recognising the relative
significance of each digit within a number.

Given a prediction p and the gold label l, we
compute the weighted sum of the digits2 for both p
and l. This process generates two single embedding
representations: W (p) for the prediction, and W (l)
for the gold label. The distance between these two
embeddings is then calculated using the log3 mean
squared error (equivalent to the euclidean distance):

LAUX = log2 ( ∥W (p)−W (l)∥2 ) (2)

Finally, the two losses are linearly interpolated by
a hyperparameter, λ:

L = λ× LCE + (1− λ)× LAUX (3)

5 Experimental Setup

Both methods are evaluated on two different pre-
trained models, BART base (140M) (Lewis et al.,
2020) and FLAN base (250M) (Wei et al., 2022a).
Additionally, we evaluate on FLAN large (780M)
to explore the effect of model size. BART is an
encoder-decoder pre-trained on five corrupted docu-
ment tasks from books and Wikipedia data. FLAN
is an instruction-finetuned version of T5 (Raffel
et al., 2020) which is trained on C4 using transfer
learning.

We evaluate our proposed methods on two differ-
ent test sets: FERMAT (Sivakumar and Moosavi,
2023), and MAWPS (Koncel-Kedziorski et al.,
2016). Both FERMAT and MAWPS consist of

2Should the answers not be numerical, the model is pe-
nalise by arbitrarily setting LAUX to 20.

3Log base 2 is used to regularise the auxiliary loss.

English maths worded problem that can be tackled
by BART and FLAN, as shown by Sivakumar and
Moosavi (2023) and where the answer is a single
number. This enables us to evaluate our method
strictly on numerical outputs reducing the interfer-
ence of other difficulties such as predicting words
and units, or extracting spans. FERMAT is a multi-
view evaluation set which has different test sets
with different number representations while keep-
ing the maths problem fixed. The different test
sets distinguish different number types of which
we select the ones that separate integers into digit
length (2-digit, 3-digit, 4-digit), contain a mixture
of integers less than 1000, contain a mixture of
integers greater than 1000, the sets of one and two
decimal place numbers, and a test set that takes
the original set and scales the number to more than
4-digit numbers; these allow us to evaluate which
number representation the models support better.
FERMAT’s training set is augmented from differ-
ent templates making it independent to its test sets.
MAWPS, on the other hand, has the same domain
for both training and testing. It is a widely used
dataset to evaluate numerical reasoning, chiefly
because it is small and easy to train with small
models. We finetune the models on each dataset’s
respective training data (see Appendix B) using the
hyperparameters described in Appendix C.

Accuracy is the general metric used to evalu-
ate these datasets, however, since it is sometimes
too stringent and neglects to reflect some improve-
ments of the model, we also use a variation of edit
distance (Levenshtein, 1966) as a supplementary
metric. Edit distance helps see improvement in the
predictions despite being incorrect; it calculates
how many insertions, deletions or substitutions is
required for the prediction to be transformed into
the gold label number on a string level. In this pa-
per, we will use Character Error Rate (CER) which
is a character level (digit level) edit distance as a
percentage over the string length of the target. The
lower the CER, the closer the prediction is to the
gold label.

6 Impact of Integrating Aggregations

Table 1 presents the results of our exploration into
the effects of integrating mathematical aggregation
into the three models across two distinct settings.
The bold values indicate the stronger improvement
between the two incorporation strategies. For the
majority of the test splits, the strongest perfor-
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[AGG] + Digits +2.00 +0.63 +1.53 -1.17 -0.90 -2.16 -0.27 +0.09 +0.09 +1.08 -0.27 -3.90 -0.74 +1.77 0.00

BART base
(140M)

Digits + Aux Loss +1.40 +1.89 +1.80 +0.54 +0.81 0.00 +0.81 +1.17 -1.26 +0.18 +0.63 +2.01 +0.19 +4.25 -1.27
Digits 23.00 28.35 17.82 17.10 22.86 17.37 13.77 10.35 18.72 25.83 18.45 63.38 19.57 12.92 11.27
[AGG] + Digits +0.80 +2.79 +0.27 +2.52 +0.81 +1.80 +2.79 +1.80 +0.90 +0.45 -0.09 +4.48 +3.21 -0.27 +1.08

FLAN base
(250M)
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Digits + Aux Loss +1.00 +0.99 -0.18 +1.62 +2.88 +2.79 +0.72 +1.53 +1.26 +1.26 +0.63 -0.39 +1.79 +0.18 -1.08

Table 1: Results change in Accuracy from baseline after including aggregate embeddings in input embedding
([AGG] + Digits) and auxiliary loss (Digits + Aux Loss) for BART base, FLAN base and FLAN large. Darker
shades of green and red indicate an absolute change greater than 1%.
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Digits 67.71 75.32 169.52 67.37 67.68 67.94 67.86 68.86 50.95 43.77 47.80 39.84 87.81 60.96 91.52
[AGG] + Digits -0.98 -1.40 -0.29 -1.11 -1.41 -1.19 -1.67 -0.96 +1.26 -1.33 -0.39 -1.64 -1.94 -0.17 -0.50

FLAN base
(250M)

Digits + Aux Loss -1.54 -0.83 -1.09 -1.09 -1.15 -0.80 -1.39 -1.23 -2.09 -1.82 -0.30 -1.25 -3.15 -0.72 -0.93
Digits 63.13 69.71 76.46 63.02 62.69 63.53 63.96 66.67 49.90 37.63 42.31 39.00 58.84 52.84 70.49
[AGG] + Digits -2.57 -44.77 -10.81 -1.02 -0.10 -1.63 -0.65 -0.89 +1.78 -0.93 -1.23 -6.16 -7.80 -5.49 -7.19FLAN large

(780M)
Digits + Aux Loss -3.45 -45.42 -2.72 -1.20 -0.24 -1.09 -1.23 -1.31 -2.57 -1.11 -1.27 -3.47 -6.14 -2.93 -4.74

Table 2: Results in Character Error Rate (CER) as a percentage over the target string with change from baseline
after including aggregate embeddings in input embedding ([AGG] + Digits) and auxiliary loss (Digits + Aux Loss)
for BART base, FLAN base and FLAN large. With CER, a lower value indicates a better performance. Green
highlight reduced CER (negative change), while red indicates the opposite. Darker shades of green and red indicate
an absolute change greater than 1%.

mance of the examined models is observed when
the aggregation is incorporated into the auxiliary
loss. This suggests that incorporating aggregation
at the output level is more effective than incorpo-
rating it in the input embedding. However, this
may be due to the fact that adding a new token in
the input might require more than just fine-tuning,
such as an extended pretraining phase. This aligns
with the observations made by Goyal et al. (2024),
who found that the addition of the pause token only
became effective from pretraining.

FLAN large, on the other hand, has a more bal-
anced performance but an overall higher improve-
ment when the aggregation is incorporated in the
input as shown particularly from all the green cells
in the row [AGG] + Digits. Therefore, a certain
model size may be required to learn a new token
and leverage the information it provides. This re-
inforces that an aggregated embedding provides
useful signal to improve number understanding but

how it is integrated is also crucial.
For the operations, the improvements is gener-

ally positive across all of them, however, evidently
greater for addition and subtraction than multipli-
cation and division. This resonates with the fact
that digits positions are more informative for the
first two operations, especially when, for instance,
aligning them to perform calculations.

When focusing on smaller integers (columns
“Integers 0 to 1000” to “4-digit integers”), incor-
porating the weighted embedding in the auxiliary
loss consistently yields better performance, with all
cells being green and showing the highest scores.
For smaller integers, models likely already possess
a strong implicit representation, making the explicit
[AGG] token less impactful. However, at the de-
coding stage, the auxiliary loss enhances precision
by penalising incorrect predictions.

For the 1000+ columns, using accuracy, the pat-
tern is not evident, however, Table 2 presents the
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Digits 19.20 16.65 8.73 10.26 13.41 10.89 7.74 5.58 10.89 17.82 8.37 40.91 10.62 9.56 11.76
Digits + [AGG] -1.40 -14.76 -7.74 -8.82 -10.98 -8.73 -6.75 -5.58 -10.35 -14.76 -7.83 -36.82 -9.38 -8.94 -9.51
[AGG] + Digits +2.00 +0.63 +1.53 -1.17 -0.90 -2.16 0.27 +0.09 +0.09 +1.08 0.27 3.90 0.74 +1.77 0.00

BART base
(140M)

[PAUSE] + Digits -1.40 +0.18 -0.45 -0.18 -0.63 -0.90 -0.36 -0.27 -3.87 -0.90 0.00 -8.51 -0.31 +1.68 -2.06
Digits 23.00 28.35 17.82 17.10 22.86 17.37 13.77 10.35 18.72 25.83 18.45 63.38 19.57 12.92 11.27
Digits + [AGG] +1.80 -1.53 -2.07 +0.99 -1.89 -0.36 +0.63 +1.35 -0.63 -1.98 -0.99 +0.45 +3.89 -2.39 -0.10
[AGG] + Digits +0.80 +2.79 +0.27 +2.52 +0.81 +1.80 +2.79 +1.80 +0.90 +0.45 -0.09 +4.48 +3.21 -0.27 +1.08

FLAN base
(250M)

[PAUSE] + Digits +1.00 +2.07 -0.54 +1.98 +1.44 +1.80 +2.61 +2.52 +2.16 +2.61 +1.71 +3.18 +5.99 1.95 +3.43
Digits 28.80 42.39 21.06 25.65 31.32 24.30 21.87 16.47 23.31 36.36 25.83 63.12 39.88 18.23 18.14
Digits + [AGG] -2.80 -2.16 +1.35 +1.89 +1.08 +1.44 +1.62 +2.16 +5.40 -1.17 +0.54 +8.57 -8.15 -0.97 +1.18
[AGG] + Digits +1.20 +0.45 +0.45 +0.81 +2.07 +2.79 +0.99 +1.35 +2.88 +0.27 +0.54 +6.17 +3.83 +0.53 +1.47

FLAN large
(780M)

[PAUSE] + Digits -1.40 -0.45 -0.45 +1.89 +3.69 +2.88 +3.06 +2.25 +5.04 +1.17 +2.61 +6.17 +1.17 -1.77 +3.53

Table 3: Comparing the aggregated embedding at the input level with a pause token and positioning the token after
the digits. Darker shades of green and red indicate an absolute change greater than 1%.

character error rate (CER) comparing both incor-
porating strategies for all three models, and high-
lights that using the auxiliary loss clearly reduces
the CER more than explicitly using the aggrega-
tion in the input. The auxiliary loss encourages the
model to predict the correct answer as the CER is
lower. However, since the weights assigned to each
digit position is lower as it gets closer to the units,
the auxiliary accounts less for it, reducing preci-
sion. As a consequence, despite the CER reducing,
since the entire number is not predicted correctly,
improvement fails to be reflected in the accuracy.

7 Analysis of Aggregation Embedding in
the Input

The first integration method relies on prepending
the aggregated embedding token, [AGG], before
the digits. The position of the token is before what
it represents, similar in nature to BERT’s (Devlin
et al., 2019) [CLS] token, which is an aggregation
token of the entire input. However, Goyal et al.
(2024) use a [PAUSE] token posteriori to the digit
tokens to act as processing time after concluding
that prepending it had less impact. Consequently,
we also evaluate our proposed method by append-
ing the aggregation token, i.e. Digits + [AGG]. Ta-
ble 3 clearly shows that this configuration for both
base models underperforms compared to [AGG]
+ Digit as rows have more red entries. In fact, it
performs worse than the baseline with only digit
tokenisation. For FLAN large, the results between
[AGG] prepended and appended are closer to one
another, but prepended, the impact is positive for
each test set and on average better by 1% than
[AGG] used posteriori. Seeing the token before

the digits might provide magnitude information of
the overall number which would indicate the im-
portance of each digit to come, whereas having it
after might interfere with the representation that
the model has already started to create implicitly
from seeing the digits first.

Additionally, we test the impact of providing
the aggregated token by replacing it with a ran-
domly initialised [PAUSE] token akin to Goyal
et al. (2024). From Table 3, we observe that for
BART, neither [AGG], nor [PAUSE] have a great
positive impact on the performance. This confirms
that BART struggles to learn new tokens from fine-
tuning alone. The FLAN models are more adapt-
able to the new tokens as seen by the greener rows.
However, the overwhelming bold entries with the
[PAUSE] token indicate that both FLAN base and
large perform better with a [PAUSE] token acting
as a blank space for the model to process the in-
formation. It is possible that that the model uses
this token to create an implicit representation of
the number. Nevertheless, the average improve-
ment between the [PAUSE] and [AGG] differs by
less than 0.5% implying that a different aggrega-
tion function or a full hyperparameter search could
reverse the trend.

8 Future Work

Our proposed aggregation strategy has shown en-
couraging steps towards better number representa-
tion. However, as with observations made in previ-
ous work, the effect of new strategies report min-
imal improvement on smaller models but greater
impact on larger models (Cobbe et al., 2021; Wei
et al., 2022b). Therefore, an evaluation of our pro-
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posed method on larger scale models would verify
the scalability of this approach.

The weighting scheme, presented in Equation 1,
offers a straightforward method for aggregating
digit embeddings. However, as numbers increase
in length, their aggregated embeddings tend to drift
away from the original numerical embedding sub-
space. This divergence could be addressed by en-
abling the model to adapt to this new embedding
space by exploring extended pretraining, or con-
structing weighting schemes that remain closer to
the numerical subspace while satisfying the criteria
outlined in Section 3.

Our auxiliary loss, grounded in Mean Squared
Error, shows promising results for penalising the
model’s erroneous predictions and nudging it to-
wards more accurate outcomes. Given that the
values resulting from standard cross-entropy and
the MSE of the aggregated embeddings may span
vastly different value ranges, crafting a loss func-
tion that aligns more closely in magnitude with the
output of cross-entropy could mitigate the risk of
exerting excessive regularisation pressure.

9 Conclusion

Improving numerical reasoning is a challenging
task, increasing model sizes or focusing on data
augmentation helps but at the cost of a substan-
tial additional training time or computations. Digit
tokenisation has been a pioneering in improving
how models encode and decode numbers; however
the aggregation of the digit is performed implicitly.
We advance this idea by explicitly providing an
aggregated number embedding that is more math-
ematically sound. These embeddings are gener-
ated as weighted sums of the digit embeddings by
accounting for the digits relative position in the
number. We then incorporate them in two model
agnostic forms: in the input level as an additional
token, and in an auxiliary MSE loss. Our promis-
ing results demonstrate that, as a proof-of-concept,
even a straightforward aggregation with simple in-
corporation techniques can positively impact num-
ber understanding. Therefore, testing it at a larger
scale, developing sophisticated aggregation func-
tions, and refining the integration of the auxiliary
loss presents valuable avenues for future research.

10 Limitations

Some of the limitations of this work are discussed
in the Future Work section. However, we give de-

tails of further limitations relating to the size of the
models used, and the compatibility and growth of
our proposed weighted aggregation function.
Due to financial and resource constraints the hy-
pothesis that the methods for incorporating the ag-
gregated embedding in larger architectures would
lead to greater performance based on the improve-
ment observed on smaller model is not verified.
In addition, while the weighted scheme is designed
using mathematical priors, it is specifically created
for integers, therefore it may not be compatible
with decimals or alternative representation of num-
bers such as 01 for 1. Nonetheless, from Table 2,
we note that CER reduces for both 1dp and 2dp;
therefore our aggregated embedding method has
promising scope for all numbers.
Furthermore, the weight function described in
Equation 1 does not converge, therefore for a suffi-
ciently large number of digit it would grow beyond
the accuracy provided by the model. However, we
explain in Section 3 with the aid of Figure 2 that,
for up to 6-digits, the weighted scheme functions
well with no signs of deterioration. Moreover, in
natural text, very large numbers tend to be shorten
using a more appropriate unit, for example, the
world population of 8114693010 is more often ex-
pressed as 8 billion reducing the numbers of digits
needed considerably. But this raises the question
of predicting the correct unit which would lead to
future work.
Nonetheless, our weighting scheme leverages digit
embedding, therefore it is heavily dependent on
them, particularly on the relative distance of the
digit embedding to one another. In FLAN large,
the embedding of the digit 0 is more distant from
the embeddings of other digits, which causes it to
frequently include numbers ending in 0 when the
target contains a 0, or to exclude them otherwise.
As explained in Section 3, the optimal neighbour
would include all numbers with different unit value,
and this alone would achieve an F1-score of at least
70%.
Lastly, the experiments were conducted using a
single random seed. While this ensures consis-
tency and reproducibility, having access to better
resources would have enabled us to run the ex-
periments with multiple seeds. This would have
allowed us to calculate the average improvement
achieved by using aggregated digit embeddings to
represent numbers.



7694

Acknowledgements

This work was supported by the Centre for Doc-
toral Training in Speech and Language Tech-
nologies (SLT) and their Applications funded
by UK Research and Innovation [grant number
EP/S023062/1]. We also acknowledge IT Services
at The University of Sheffield for the provision of
services for High Performance Computing. Addi-
tional thanks to the reviewers for their encourag-
ing comments and discussion, and particularly to
Danae Sanchez Villegas, Mugdha Pandya, Valeria
Pastorino, Huiyin Xue and Constantinos Karouzos
for their continued feedback throughout the re-
search.

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui

Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 225–237, St. Julian’s, Malta. Association for
Computational Linguistics.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Chung-Chi Chen, Hen-Hsen Huang, Yow-Ting Shiue,
and Hsin-Hsi Chen. 2018. Numeral understanding
in financial tweets for fine-grained crowd-based fore-
casting. In 2018 IEEE/WIC/ACM International Con-
ference on Web Intelligence (WI), pages 136–143.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias

Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Abhijeet Dubey, Lakshya Kumar, Arpan Somani,
Aditya Joshi, and Pushpak Bhattacharyya. 2019.
“when numbers matter!”: Detecting sarcasm in nu-
merical portions of text. In Proceedings of the Tenth
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages
72–80, Minneapolis, USA. Association for Computa-
tional Linguistics.

Simon Frieder, Luca Pinchetti, Alexis Chevalier,
Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas
Lukasiewicz, Philipp Christian Petersen, and Julius
Berner. 2023. Mathematical capabilities of chatGPT.
In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 946–958, Online. Association for Computa-
tional Linguistics.

Siavash Golkar, Mariel Pettee, Michael Eickenberg,
Alberto Bietti, Miles Cranmer, Geraud Krawezik,
Francois Lanusse, Michael McCabe, Ruben Ohana,
Liam Parker, Bruno Régaldo-Saint Blancard, Tiberiu
Tesileanu, Kyunghyun Cho, and Shirley Ho. 2023.
xval: A continuous number encoding for large lan-
guage models. arXiv preprint arXiv:2310.02989.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Kr-
ishna Menon, Sanjiv Kumar, and Vaishnavh Nagara-
jan. 2024. Think before you speak: Training lan-
guage models with pause tokens. In The Twelfth
International Conference on Learning Representa-
tions.

Pengfei Hong, Navonil Majumder, Deepanway Ghosal,
Somak Aditya, Rada Mihalcea, and Soujanya Poria.

https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/WI.2018.00-97
https://doi.org/10.1109/WI.2018.00-97
https://doi.org/10.1109/WI.2018.00-97
https://arxiv.org/pdf/2110.14168.pdf?curius=520
https://arxiv.org/pdf/2110.14168.pdf?curius=520
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/N19-1246
https://doi.org/10.18653/v1/W19-1309
https://doi.org/10.18653/v1/W19-1309
https://openreview.net/forum?id=xJ7YWXQOrg
https://doi.org/10.18653/v1/2020.acl-main.89
https://doi.org/10.18653/v1/2020.acl-main.89
https://arxiv.org/abs/2310.02989
https://arxiv.org/abs/2310.02989
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC


7695

2024. Evaluating llms’ mathematical and coding
competency through ontology-guided interventions.
arXiv preprint arXiv:2401.09395.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Maël Jullien, Marco Valentino, Hannah Frost, Paul
O’regan, Donal Landers, and André Freitas. 2023.
SemEval-2023 task 7: Multi-evidence natural lan-
guage inference for clinical trial data. In Proceedings
of the 17th International Workshop on Semantic Eval-
uation (SemEval-2023), pages 2216–2226, Toronto,
Canada. Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In ICML 2022
Workshop on Knowledge Retrieval and Language
Models.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152–1157, San
Diego, California. Association for Computational
Linguistics.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
physics. Doklady, 10:707–710.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Aitor Lewkowycz, Anders Johan Andreassen,
David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem
Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.
2022. Solving quantitative reasoning problems with
language models. In Advances in Neural Information
Processing Systems.

Ailisi Li, Yanghua Xiao, Jiaqing Liang, and Yunwen
Chen. 2022a. Semantic-based data augmentation for
math word problems. In Database Systems for Ad-
vanced Applications: 27th International Conference,
DASFAA 2022, Virtual Event, April 11–14, 2022, Pro-
ceedings, Part III, page 36–51, Berlin, Heidelberg.
Springer-Verlag.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2022b. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2486–2496, Dublin,
Ireland. Association for Computational Linguistics.

Nafise Sadat Moosavi, Andreas Rücklé, Dan Roth,
and Iryna Gurevych. 2021. Scigen: a dataset for
reasoning-aware text generation from scientific ta-
bles. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 2).

Matteo Muffo, Aldo Cocco, and Enrico Bertino. 2022.
Evaluating transformer language models on arith-
metic operations using number decomposition. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 291–297, Mar-
seille, France. European Language Resources Asso-
ciation.

R OpenAI et al. 2023. Gpt-4 technical report. ArXiv,
2303:08774.

Dominic Petrak, Nafise Sadat Moosavi, and Iryna
Gurevych. 2023. Arithmetic-based pretraining im-
proving numeracy of pretrained language models. In
Proceedings of the 12th Joint Conference on Lexical
and Computational Semantics (*SEM 2023), pages
477–493, Toronto, Canada. Association for Compu-
tational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Qiu Ran, Yankai Lin, Peng Li, Jie Zhou, and Zhiyuan
Liu. 2019. NumNet: Machine reading comprehen-
sion with numerical reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2474–2484, Hong Kong,
China. Association for Computational Linguistics.

David Saxton, Edward Grefenstette, Felix Hill, and
Pushmeet Kohli. 2019. Analysing mathematical rea-
soning abilities of neural models. In International
Conference on Learning Representations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Jasivan Sivakumar and Nafise Sadat Moosavi. 2023.
FERMAT: An alternative to accuracy for numerical

https://arxiv.org/abs/2401.09395
https://arxiv.org/abs/2401.09395
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.semeval-1.307
https://doi.org/10.18653/v1/2023.semeval-1.307
https://openreview.net/forum?id=6p3AuaHAFiN
https://openreview.net/forum?id=6p3AuaHAFiN
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=IFXTZERXdM7
https://openreview.net/forum?id=IFXTZERXdM7
https://doi.org/10.1007/978-3-031-00129-1_3
https://doi.org/10.1007/978-3-031-00129-1_3
https://doi.org/10.18653/v1/2022.findings-acl.195
https://doi.org/10.18653/v1/2022.findings-acl.195
https://doi.org/10.18653/v1/2022.findings-acl.195
https://openreview.net/forum?id=Jul-uX7EV_I
https://openreview.net/forum?id=Jul-uX7EV_I
https://openreview.net/forum?id=Jul-uX7EV_I
https://aclanthology.org/2022.lrec-1.30
https://aclanthology.org/2022.lrec-1.30
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.starsem-1.42
https://doi.org/10.18653/v1/2023.starsem-1.42
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://doi.org/10.18653/v1/D19-1251
https://doi.org/10.18653/v1/D19-1251
https://openreview.net/forum?id=H1gR5iR5FX
https://openreview.net/forum?id=H1gR5iR5FX
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2023.acl-long.838


7696

reasoning. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 15026–15043,
Toronto, Canada. Association for Computational Lin-
guistics.

Georgios Spithourakis and Sebastian Riedel. 2018. Nu-
meracy for language models: Evaluating and improv-
ing their ability to predict numbers. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2104–2115, Melbourne, Australia. Association
for Computational Linguistics.

Avijit Thawani, Jay Pujara, Filip Ilievski, and Pedro
Szekely. 2021. Representing numbers in NLP: a
survey and a vision. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–656, Online. As-
sociation for Computational Linguistics.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do NLP models know num-
bers? probing numeracy in embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5307–5315, Hong
Kong, China. Association for Computational Linguis-
tics.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022a. Finetuned language
models are zero-shot learners. In International Con-
ference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022b. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2024. Meta-
math: Bootstrap your own mathematical questions
for large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2024.
Mammoth: Building math generalist models through
hybrid instruction tuning. In The Twelfth Interna-
tional Conference on Learning Representations.

Xikun Zhang, Deepak Ramachandran, Ian Tenney,
Yanai Elazar, and Dan Roth. 2020. Do language

embeddings capture scales? In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4889–4896, Online. Association for Computa-
tional Linguistics.

Appendix

A Aggregation functions

Figure 3 shows that F1-score for numbers with up
to 6-digits across six different aggregation func-
tions. The F1-score for max, min, mean and me-
dian are all below 5%.

B Datasets

The datasets’ split is given in Table 4. MAWPS
is a dataset generated by combining different ones
ranging from addition and subtraction to simul-
taneous equations. The collation of questions is
split to create the train, development and test set.
FERMAT is a large dataset which has a training
and development set automatically generated from
100 templates using different numbers from the fol-
lowing four categories: small integers (less than
1000), large integers (between 1000 and 100000),
1 decimal place and 2 decimal place numbers. The
test set is independently generated from two maths
worded problem datasets, and then augmented to
create 21 test sets of which we use 11.

Datasets Train Dev Test
MAWPS 1500 373 500
FERMAT 200000 1000 1111x11

Table 4: Train, development, and test splits of MAWPS
and FERMAT.

C Hyperparameters

All experiments were conducted using an Nvidia
Tesla A100 with 80G and with a weight decay
of 0.005, warm-up of 100, float32 and 3 gener-
ation beams, max input length = 128, max target
length=16, and seed=42. Due to limited compu-
tational resources, a full grid search of hyperpa-
rameter was impossible, however, we do a lambda
search in the range 0.4 to 0.8 in 0.05 increments.
Specific hyperparameters as well as computation
time for dataset and model combinations can be
found in Table 5.
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Figure 3: Average F1-score of FLAN large layer 1 numbers using max, min, median, mean sum and our weighted
aggregation function with neighbourhood of 10. The bars are in the order of the legend top to bottom, reflected left
to right.

Datasets Models Learning Rate Epochs Batch Size Lambda Training Time

MAWPS
BART base

1.00E-04
150 128 0.6 1h

FLAN base 150 64 0.6 1h
FLAN large 100 16 0.65 1.5h

FERMAT
BART base

1.00E-05
50 128 0.6 37h

FLAN base 50 64 0.65 48h
FLAN large 50 16 0.4 87h

Table 5: Specific hyperparameters for MAWPS and FERMAT based on the models trained. Training time is also
provided as a rounded figure.
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