@inproceedings{lai-etal-2025-adacqr,
title = "{A}da{CQR}: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment",
author = "Lai, Yilong and
Wu, Jialong and
Zhang, Congzhi and
Sun, Haowen and
Zhou, Deyu",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.515/",
pages = "7698--7720",
abstract = "Conversational Query Reformulation (CQR) has significantly advanced in addressing the challenges of conversational search, particularly those stemming from the latent user intent and the need for historical context. Recent works aimed to boost the performance of CQR through alignment. However, they are designed for one specific retrieval system, which potentially results in sub-optimal generalization. To overcome this limitation, we present a novel framework AdaCQR. By aligning reformulation models with both term-based and semantic-based retrieval systems, AdaCQR enhances the generalizability of information-seeking queries among diverse retrieval environments through a two-stage training strategy. Moreover, two effective approaches are proposed to obtain superior labels and diverse input candidates, boosting the efficiency and robustness of the framework. Experimental results on the TopiOCQA, QReCC and TREC CAsT datasets demonstrate that AdaCQR outperforms the existing methods in a more efficient framework, offering both quantitative and qualitative improvements in conversational query reformulation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lai-etal-2025-adacqr">
<titleInfo>
<title>AdaCQR: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yilong</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jialong</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Congzhi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haowen</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational Query Reformulation (CQR) has significantly advanced in addressing the challenges of conversational search, particularly those stemming from the latent user intent and the need for historical context. Recent works aimed to boost the performance of CQR through alignment. However, they are designed for one specific retrieval system, which potentially results in sub-optimal generalization. To overcome this limitation, we present a novel framework AdaCQR. By aligning reformulation models with both term-based and semantic-based retrieval systems, AdaCQR enhances the generalizability of information-seeking queries among diverse retrieval environments through a two-stage training strategy. Moreover, two effective approaches are proposed to obtain superior labels and diverse input candidates, boosting the efficiency and robustness of the framework. Experimental results on the TopiOCQA, QReCC and TREC CAsT datasets demonstrate that AdaCQR outperforms the existing methods in a more efficient framework, offering both quantitative and qualitative improvements in conversational query reformulation.</abstract>
<identifier type="citekey">lai-etal-2025-adacqr</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.515/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>7698</start>
<end>7720</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AdaCQR: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment
%A Lai, Yilong
%A Wu, Jialong
%A Zhang, Congzhi
%A Sun, Haowen
%A Zhou, Deyu
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F lai-etal-2025-adacqr
%X Conversational Query Reformulation (CQR) has significantly advanced in addressing the challenges of conversational search, particularly those stemming from the latent user intent and the need for historical context. Recent works aimed to boost the performance of CQR through alignment. However, they are designed for one specific retrieval system, which potentially results in sub-optimal generalization. To overcome this limitation, we present a novel framework AdaCQR. By aligning reformulation models with both term-based and semantic-based retrieval systems, AdaCQR enhances the generalizability of information-seeking queries among diverse retrieval environments through a two-stage training strategy. Moreover, two effective approaches are proposed to obtain superior labels and diverse input candidates, boosting the efficiency and robustness of the framework. Experimental results on the TopiOCQA, QReCC and TREC CAsT datasets demonstrate that AdaCQR outperforms the existing methods in a more efficient framework, offering both quantitative and qualitative improvements in conversational query reformulation.
%U https://aclanthology.org/2025.coling-main.515/
%P 7698-7720
Markdown (Informal)
[AdaCQR: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment](https://aclanthology.org/2025.coling-main.515/) (Lai et al., COLING 2025)
ACL