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Abstract
Text-to-speech (TTS) has seen significant ad-
vancements in high-quality, expressive speech
synthesis. However, achieving diverse and
natural prosody in synthesized speech re-
mains challenging. In this paper, we propose
ProsodyFlow, an end-to-end TTS model that
integrates large self-supervised speech mod-
els and conditional flow matching to model
prosodic features effectively. Our approach
involves using a speech LLM to extract acous-
tic features, mapping these features into a
prosody latent space, and then employing con-
ditional flow matching to generate prosodic
vectors conditioned on the input text. Ex-
periments on the LJSpeech dataset show that
ProsodyFlow improves synthesis quality and
efficiency compared to existing models, achiev-
ing more prosodic and expressive speech syn-
thesizing. 1

1 Introduction

Text-to-Speech (TTS) aims to synthesize high-
quality, natural-sounding speech from input text.
Recent advancements in TTS have led to the devel-
opment of non-autoregressive models capable of
generating high-quality speech (Kim et al., 2021;
Ren et al., 2020). However, as TTS models are ap-
plied to more complex scenarios, generating speech
that captures natural and diverse prosodic attributes
remains a significant challenge. Although vari-
ous strategies have been proposed, such as explicit
pitch and energy prediction (Valle et al., 2020;
Ren et al., 2020), variational inference methods
(Lee et al., 2020), and using reference prosody en-
coder (Oh et al., 2024; Li et al., 2024; Ren et al.,
2022). They share common issues: difficulty in
fully extracting rich prosodic information and a
tendency for models to learn the average distribu-
tion to generate speech without diversity. Recent

*Corresponding author.
1The audio demos are available at https://szczesnys.

github.io/prosodyflow/

advances in self-supervised speech language mod-
els, such as wav2vec 2.0 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021) and WavLM (Chen
et al., 2021), have demonstrated substantial im-
provements in various aspects of speech processing,
including understanding speech content, capturing
semantic information and extracting prosodic fea-
tures from speech. These models leverage large-
scale pre-training on diverse and unlabeled speech
data, enabling them to learn robust and comprehen-
sive speech representations. Such representations
are highly effective in prosody modeling, as they
capture both local and global variations in speech,
such as pitch, rhythm, and intonation, which are
key components of prosody representations. Fur-
thermore, flow matching-based TTS models have
emerged as a promising approach to achieving both
high-quality and fast-speed synthesis. Unlike tradi-
tional diffusion methods (Popov et al., 2021; Huang
et al., 2022) that rely heavily on complex proba-
bilistic frameworks, flow matching-based models
simplify the training process by learning to match
distributions more directly (Lipman et al., 2022),
leading to significant improvements in training sta-
bility. These models (Le et al., 2023; Guo et al.,
2023; Mehta et al., 2024) achieve higher efficiency
and reduce overall training costs without compro-
mising the quality of the generated speech.

Therefore, to address these challenges in prosody
modeling, we propose ProsodyFlow, an end-to-
end TTS model that combines self-supervised pre-
trained models and conditional flow matching. Our
work contributes in two main ways:

1. We leverage the self-supervised WavLM
model to extract acoustic features and map
them into the prosody latent space.

2. We use conditional flow matching to learn the
distribution of prosody and sample prosody
vectors conditioned on texts.

https://szczesnys.github.io/prosodyflow/
https://szczesnys.github.io/prosodyflow/
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Figure 1: Training diagram of the ProsodyFlow model. The pitch extractor and ASR modules are pre-trained with
frozen parameters. The prosody encoder utilizes the outputs from each layer of WavLM.
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Figure 2: Inference diagram of the ProsodyFlow model.

Our experimental results demonstrate that on the
single-speaker LJSpeech dataset (Ito and Johnson,
2017), ProsodyFlow achieves human-level TTS,
with a MOS score of 4.23 (±0.08). Additionally,
ProsodyFlow exhibits significantly faster synthesis
speed compared to autoregressive and diffusion-
based TTS models.

2 Methods

ProsodyFlow is a non-autoregressive, end-to-
end TTS architecture that leverages a pre-trained
WavLM model to extract prosody and style in-
formation s from the recording. The prosody
s is integrated into the decoder, duration, and
pitch predictor by Adaptive Instance Normaliza-
tion (AdaIN)(Huang and Belongie, 2017). Fur-
thermore, conditioned flow matching generates the
predicted prosody vector s′. This approach enables
the synthesis of high-quality speech with diverse
prosodic styles. The training and inference struc-
tures of ProsodyFlow are illustrated in Figure 1 and

Figure 2.

2.1 Overview
ProsodyFlow improves upon the StyleTTS2 frame-
work which supports end-to-end training, however,
to ensure stable training and accelerate the process,
the training is divided into two stages followed by
StyleTTS2.

In the first stage, the encoder-decoder structure
of the model is trained through the loss function
given by Lfirst = Lmel + LGAN. Let t denote
the text inputs, x the mel-spectrograms, and w
the waveforms. The text encoder processes the
phonemes into hidden representations htext. Simul-
taneously, a pre-trained ASR model is used to ob-
tain the ground-truth alignment align = ASR(t, x)
and the aligned phoneme encoding halign = align ·
htext. Concurrently, the WavLM prosody encoder
extracts the prosody vector s from the waveform.
A pre-trained pitch extractor retrieves the ground
truth F0 (pitch) and energy N from the mel-
spectrogram. The improved decoder then generates
the waveform as Decoder(s, F0, N, halign). Multi-
Period Discriminator (MPD) and Multi-Resolution
Discriminator (MRD) (Lee et al., 2022) are em-
ployed as discriminators to enhance the quality of
the synthesized speech.

In the second stage, we jointly train all mod-
ules through the loss function given by Ljointly =
Lmel + Ldur + LF0 + LN + LCFM + LGAN. we
leverage the pre-trained language model PLBert
(Li et al., 2023) to extract rich semantic informa-
tion from the text, which allows us to decouple
the Text Encoder and Predictor, following the ap-
proach in StyleTTS2. We denote the output of
PLBert as hBert = PLBert(t). Both hBert and s
are used as inputs to train the predictors. The
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predictors generate the predicted duration, pitch,
and energy as d′, F ′

0, and N ′ respectively, where
d′, F ′

0, N
′ = Predictor(hBert, s). The predicted

aligned text embedding is computed as hpred =
htext · d′, and the synthesized speech is then pro-
duced as waveform = Decoder(s, F ′

0, N
′, hpred).

Additionally, conditional flow matching is em-
ployed to learn ordinary differential equations
(ODEs) that flow between a noise distribution and
the target distribution in latent prosody space, to
predict the prosody vector s′.

This two-stage process stabilizes training and
improves the ability to capture prosody.

2.2 WavLM Prosody Encoder
WavLM is a self-supervised speech model that
learns rich representations from large-scale unla-
belled data. WaveLM uses a 12-layer Transformer
(Vaswani, 2017) architecture. We take the output
from each layer and average it along the sequence
length dimension. These averaged outputs are then
processed through a self-attention module, result-
ing in a feature vector for the input speech. Sub-
sequently, a convolutional mapping layer applies
a series of downsampling convolutional blocks to
transform these attended features into a fixed-size
prosody vector space. This mechanism enhances
the representation by capturing complex patterns
and relationships within the semantic information.
This process effectively extracts and condenses the
most relevant information, resulting in a compact
prosody representation that can be used for expres-
sive speech synthesis.

2.3 Conditional Flow Matching
Conditional Flow Matching (CFM) extends the
flow matching framework by incorporating condi-
tioning information (hbert) into the generative pro-
cess. Instead of learning a flow that transforms a
base distribution to a target distribution uncondi-
tionally, CFM learns a conditional vector field that
effectively maps input conditions and target data
characteristics. Given a conditional vector field
v(x, t | c), where c is the condition (e.g., text or
phonetic input), the flow can be expressed as an
ODE:

dx(t)

dt
= v(x(t), t | c), (1)

where x(t) represents the sample state at time
t, and v is learned to minimize the transport cost
between distributions.

To train the conditional flow model, we define a
loss function that ensures the learned vector field
v(x, t | c) approximates the true conditional vector
field u(x | c) along the probability path. The loss
function for Conditional Flow Matching (CFM) is
given by:

LCFM(θ) = Et,q(x1),pt(x|x1) ∥u(x | x1)− v(x; θ)∥2 ,
(2)

where t ∼ U [0, 1] is uniformly sampled from
the interval [0, 1], q(x1) is the data distribution,
and pt(x | x1) is the conditional probability den-
sity function at time t. Here, v(x; θ) is a neural
network parameterized by θ. This loss replaces
the intractable marginal probability densities and
vector fields with conditional probability densities
and conditional vector fields, making the learning
process more tractable. Importantly, the gradients
of LCFM(θ) with respect to θ are identical to those
of the original Flow Matching loss LFM(θ). Defini-
tions mainly follow Lipman et al. (2022).

3 Experiments and Results

3.1 Experimental Settings
We trained a single-speaker model on the LJSpeech
dataset, containing approximately 13,100 audio
clips (24 hours). The dataset was split into training
(12,500), validation (100), and testing (500) sets.
Texts were converted to phonemes using Phone-
mizer (Bernard and Titeux, 2021). We used the
improved iSTFTNet (Kaneko et al., 2022) as the
decoder to generate waveforms directly. The model
was first trained for 150 epochs, followed by joint
training of all modules for another 100 epochs. we
chose the WavLM-Base-plus version, which is pre-
trained on 94,000 hours of unlabelled speech data,
and the parameters of WavLM are fixed throughout
the entire training process. Both stages utilized the
AdamW optimizer (Loshchilov, 2017) with β1 = 0,
β2 = 0.99, weight decay λ = 10−4, learning rate
γ = 5 × 10−5, and batch size of 8. For training
the CFM, we applied a first-order Euler method
to solve ordinary differential equations (ODEs).
The number of function evaluations (NFE) was
randomly sampled from 5 to 10 during training
for computational efficiency and fixed at 8 during
inference for higher quality.

3.2 Results
We conducted a subjective evaluation: mean opin-
ion score (MOS) to measure human perception of
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Model MOS(CI) MCD↓ WER↓ RTF↓
Ground-truth 4.25(±0.10) — 1.27% —
FastSpeech 2 3.83(±0.09) 5.77 5.47% 0.0143
VITS 3.92(±0.09) 5.49 3.61% 0.0376
Diffprosody 4.05(±0.10) 5.27 2.25% 0.0543
GradTTS (n=8) 3.97(±0.09) 5.41 2.13% 0.0532
StyleTTS 2 (n=8) 4.18(±0.09) 4.93 1.71% 0.0231
Proposed (n=8) 4.23(±0.08) 4.63 1.33% 0.0191

Table 1: Metrics comparing with other models. We
measure the performance with MOS(↑) with 95% confi-
dence intervals, MCD(↓) , WER(↓), and RTF(↓). The
Mel-spectrograms are converted to waveforms using
iSTFTnet. Diffusion and flow steps are set to 8.

speech quality. We randomly selected 50 samples
from the test set. 20 professional raters were em-
ployed to rate these samples on a scale from 1 to 5.
In addition, we used three objective evaluations to
assess speech quality: the Mel-Cepstral Distortion
(MCD)2 calculated through Dynamic Time Warp-
ing (DTW), the Word Error Rate (WER) computed
using the ASR system Whisper Medium (Radford
et al., 2023), and the Real-Time Factor (RTF). All
metrics were computed on randomly selected sam-
ples. Specifically, it achieves the highest MOS of
4.23 and the lowest MCD of 4.63 among baseline
models, indicating higher speech quality. Addi-
tionally, the lowest WER of 1.33% indicates the
intelligibility of the generated speech, and the RTF
of 0.0191 reflects the efficiency of ProsodyFlow.
Overall, the results outlined in Table 1 demonstrate
that our method significantly improves the speed
while synthesizing speech with rich prosodic fea-
tures.

3.3 Prosody Flow Matching

We conducted comparative experiments to evalu-
ate the performance of the proposed method with
different NFEs and all other model configurations
are identical. Table 2 details the results. The ex-
periments show even with n = 1, the proposed
model can achieve results that are competitive with
baseline models, which demonstrates the high ef-
ficiency of flow matching. Therefore, we chose
n = 8 as a balance between speed and quality.

3.4 Ablation Study

We conducted ablation studies to validate the ef-
fectiveness of the proposed method, with results
converted into Comparative Mean Opinion Scores
(CMOS) to assess differences in speech quality, as

2https://github.com/SamuelBroughton/
Mel-Cepstral-Distortion

Model MOS(CI) MCD↓ WER↓ RTF↓
proposed-1 3.92(±0.09) 5.11 2.61% 0.0114
proposed-4 4.17(±0.09) 4.83 1.97% 0.0154
proposed-8 4.23(±0.08) 4.63 1.33% 0.0191
proposed-16 4.23(±0.10) 4.58 1.29% 0.0456

Table 2: Metrics comparing with different NFEs.
We denote different NFE conditions as proposed-n.

shown in Table 3. Replacing prosody flow match-
ing with a reference encoder as in Ren et al. (2022)
resulted in a CMOS of -0.27, emphasizing the im-
portance of flow matching for prosody diversity.
Removing WavLM led to a CMOS of -0.18, demon-
strating the capability of speech LLMs in capturing
prosody. Substituting flow matching with diffusion
caused only a slight CMOS change, suggesting that
flow matching performs comparably to diffusion in
prosody modeling but with greater efficiency.

Model CMOS
w/o prosody flow -0.27
w/o wavlm -0.18
w/o flow w/ diffusion -0.04

Table 3: Ablation study of the proposed method.

4 Conclusion

In this paper, we introduce ProsodyFlow, an end-
to-end TTS model that combines self-supervised
speech models and conditional flow matching to
model prosodic features effectively. ProsodyFlow
achieves expressive prosodic speech synthesis
while reducing computational costs. Ablation stud-
ies highlight the importance of flow matching and
WavLM in achieving these results. ProsodyFlow
addresses the challenge of diverse and natural
prosody in TTS, and we believe that this approach
shows promising potential for prosodic speech syn-
thesis.

5 Limitation

ProsodyFlow demonstrates excellent performance
on single-speaker datasets, but it has yet to be val-
idated in multi-speaker scenarios. Additionally,
the model’s architecture is relatively complex. Fu-
ture work will focus on extending its application to
multi-speaker settings and simplifying the model
to enhance its efficiency and usability.

https://github.com/SamuelBroughton/Mel-Cepstral-Distortion
https://github.com/SamuelBroughton/Mel-Cepstral-Distortion
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