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Abstract
Contextualized embeddings vary by context,
even for the same token, and form a distribu-
tion in the embedding space. To analyze this
distribution, we focus on the norm of the mean
embedding and the variance of the embeddings.
In this study, we first demonstrate that these val-
ues follow the well-known formula for variance
in statistics and provide an efficient sequential
computation method. Then, by observing em-
beddings from intermediate layers of several
Transformer models, we found a strong trade-
off relationship between the norm and the vari-
ance: as the mean embedding becomes closer
to the origin, the variance increases. This trade-
off is likely influenced by the layer normaliza-
tion mechanism used in Transformer models.
Furthermore, when the sets of token embed-
dings are treated as clusters, we show that the
variance of the entire embedding set can theo-
retically be decomposed into the within-cluster
variance and the between-cluster variance. We
found experimentally that as the layers of Trans-
former models deepen, the embeddings move
farther from the origin, the between-cluster
variance relatively decreases, and the within-
cluster variance relatively increases. These re-
sults are consistent with existing studies on the
anisotropy of the embedding spaces across lay-
ers.

1 Introduction

Contextualized embedding is a method for dynam-
ically computing the embeddings of tokens in a
sentence. Unlike static embeddings such as Skip-
gram (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014), where a predefined embedding is
assigned to each word, models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019b)
compute contextualized embeddings based on the
context, leading to superior performance in vari-
ous downstream tasks. Even for the same token,

Our code is available at https://github.com/ymgw55/
Norm-and-Variance.

Figure 1: Scatter plots of PCA-transformed embeddings
for the embedding sets Xt of selected tokens. The origin
is indicated by ×. Tokens distributed near the origin
exhibit larger variance, whereas tokens farther from the
origin exhibit smaller variance. Embeddings are colored
according to token frequency nt.

the contextualized embeddings vary for sentences,
creating a distribution in the embedding space.

Research has been done to explore the rela-
tionship between word frequency and contextual-
ized embeddings. Wannasuphoprasit et al. (2023)
showed a correlation between the frequency of a
word and the mean norm of its BERT embeddings.
Liang et al. (2021) found a negative correlation
between the frequency and the norm of BERT em-
beddings. Zhou et al. (2021, 2022a) observed that
higher frequency words tend to have a larger ra-
dius of the smallest enclosing sphere of their BERT
embeddings. In particular, the larger radius value
means the broader distribution of the embeddings.
These studies reveal intriguing relationships be-
tween word frequency, the norm of embeddings,
and the spread of their distribution.

Based on these existing studies, we analyze the
distribution of embeddings using statistical mea-
sures computed from the first and second moments
of the embedding components. Let xt,i denote the

https://github.com/ymgw55/Norm-and-Variance
https://github.com/ymgw55/Norm-and-Variance
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Figure 2: Scatter plots of V (Xt) against M(Xt) for the middle-layer embeddings of six models with regression
lines, slopes, and coefficients of determination, R2. A consistent trade-off between M(Xt) and V (Xt) is observed
in the intermediate layer of each model. A summary for all the other layers can be found in Fig. 4. Only tokens with
1 ≤ log10 nt ≤ 5 were used for regressions to reduce the influence of extreme values.

d-dimensional contextualized embedding for token
type t in its i-th occurrence1. For the set of contex-
tualized embeddings Xt = {xt,1,xt,2, . . .} ⊂ Rd

corresponding to token t, we focus on three val-
ues: the mean squared norm Q(Xt), the squared
norm of the mean embedding M(Xt), and the
sum of the variances of each component V (Xt).
In particular, since the norm of an embedding rep-
resents the strength of its meaning (Oyama et al.,
2023), M(Xt) represents the strength of the mean-
ing of the token t, while V (Xt) can be interpreted
as the spread of the distribution based on the vari-
ance.

In this paper, we focus on the following identity
involving these three values:

Q(Xt) = M(Xt) + V (Xt). (1)

As can be seen by rewriting this equation as
V (Xt) = Q(Xt) −M(Xt), this is nothing more
than the well-known formula for variance in el-
ementary statistics. Furthermore, we experimen-
tally demonstrate that the variation of Q(Xt) from
the embeddings of intermediate layers in various
Transformer models is small. Therefore, according
to (1), M(Xt) and V (Xt) exhibit a strong trade-
off relationship: when the meaning of a token is
weaker, the variance of its embeddings is larger,

1Hereafter, we simply refer to “token type” as “token” for
brevity.

whereas when the meaning is stronger, the variance
is smaller.

To observe the trade-off relationship between
M(Xt) and V (Xt), Fig. 1 shows PCA-transformed
embeddings derived from the 6th layer of
bert-base-uncased. We sampled tokens with fre-
quencies evenly distributed in the range from 101

to 105 for visualization purposes (see Appendix A
for more details). Tokens whose embeddings are
distributed near the origin tend to have a mean em-
bedding closer to the origin, resulting in smaller
M(Xt) and larger V (Xt), whereas tokens whose
embeddings are distributed farther from the origin
have larger M(Xt) and smaller V (Xt). For exam-
ple, the tokens once and winked have similar Q(Xt)
values of 494.1 and 485.6, respectively. However,
the embedding set for once is closer to the origin
than that for winked, with M(Xt) values of 239.9
for once and 404.5 for winked. Conversely, the vari-
ance V (Xt) for once is 254.2, larger than 81.1 for
winked. These results are consistent with the fact
that once functions as a stopword2 with minimal
semantic content.

To examine whether the trade-off relationship
between M(Xt) and V (Xt), observed in Fig. 1,
holds across the intermediate layers of other Trans-
former models, Fig. 2 presents scatter plots of

2once is included in the stopword list provided by
NLTK (Bird, 2006).
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M(Xt) and V (Xt) for the middle-layer embed-
dings of six models. Consistently, the variation in
Q(Xt), which represents the sum of M(Xt) and
V (Xt), remains small, confirming the trade-off re-
lationship between M(Xt) and V (Xt). A detailed
layer-wise analysis of this trade-off relationship is
provided in Section 5.

We have obtained interesting insights not only
into the set of embeddings for each token, Xt,
but also into the set of embeddings for all tokens
combined, X ⊂ Rd. In addition to the identity
similar to (1), Q(X) = M(X) + V (X), we fo-
cus on the decomposition formula for variance,
V (X) = VW (X) + VB(X), where VW (X) is the
within-group variance, and VB(X) is the between-
group variance. Through the experiments in Sec-
tion 5 using these values, we demonstrate that the
embeddings in the deeper layers of Transformer
models exhibit greater anisotropy.

Our main contributions are as follows:

• We focus on three statistical measures, Q(Xt),
M(Xt), and V (Xt), to analyze the distribu-
tion of contextualized embeddings. We derive
the relationship in (1) and introduce an effi-
cient method for computing V (Xt) sequen-
tially.

• We experimentally demonstrate that the varia-
tion of Q(Xt) is small for embeddings from
intermediate layers of various models, and
that M(Xt) and V (Xt) exhibit a strong trade-
off relationship. We theoretically argue that
the Layer Normalization (LN) in BERT and
RoBERTa reduces the variation of Q(Xt).

• For the entire embedding set X , we derive re-
lationships between Q(X), M(X), VW (X),
and VB(X). We experimentally show that the
layer-wise changes in these values across var-
ious Transformer models align well with pre-
vious research that highlights the anisotropy
of embedding spaces.

2 Related work

2.1 Relationship between frequency and
contextualized embeddings

There are three studies related to our work that
deal with the relationship between word frequency
and contextualized embeddings. The first is by
Wannasuphoprasit et al. (2023), who found that
the mean norm of BERT embeddings for the same

word correlated with its frequency and proposed a
frequency-considered similarity measure. In place
of the mean norm, we use the mean squared norm
Q(Xt). The second study is by Liang et al. (2021),
who demonstrated a negative correlation between
word frequency and the norms of BERT embed-
dings. In place of the norm of the embeddings,
we use the squared norm of the mean embedding
M(Xt). The third study is by Zhou et al. (2021,
2022a), who observed that the radius of the smallest
enclosing sphere for BERT embeddings of high-
frequency words tends to be larger. In place of the
radius, we use the variance V (Xt).

Based on these existing studies, in Section 5.4,
we investigate the relationship of Q(Xt), M(Xt),
and V (Xt) against log frequency using the middle-
layer embeddings of BERT.

2.2 Norms of embeddings

The norm of an embedding is an easily computed
value and has been the focus of extensive research.
The norm of a word embedding is related to the
Kullback-Leibler divergence (Oyama et al., 2023),
and embeddings of less informative words typically
exhibit shorter norms (Schakel and Wilson, 2015;
Arefyev et al., 2018; Kobayashi et al., 2020; Yokoi
et al., 2020). Demeter et al. (2020) showed theoret-
ically that norms are dominant in the computation
of logits in the final layer. Yamagiwa et al. (2024)
shows norm-derived artifacts in unnormalized em-
beddings, focusing on the axes of the embeddings.

2.3 Distribution of embeddings

The distribution of contextualized embeddings has
been studied extensively. Contextualized embed-
ding spaces exhibit anisotropy, primarily due to the
influence of low-frequency words (Yu et al., 2022).
Based on these observations, Zhang et al. (2024)
proposed a method for constructing embeddings
that result in an isotropic distribution. Kutuzov
et al. (2022) demonstrated using ELMo (Peters
et al., 2018) that embeddings of polysemous words
such as cell form clusters according to their mean-
ings. Yamagiwa et al. (2023) discovered that the
embedding space after a whitened ICA transforma-
tion exhibits a spiky shape.

2.4 Information in layer-wise embeddings

Research focusing on the information in layer-wise
embeddings is important for understanding models.
Ethayarajh (2019); Cai et al. (2021); Godey et al.
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(2024a) showed that the anisotropy of the embed-
ding space increases as the layers of models such
as BERT and GPT-2 deepen. Liu et al. (2019a)
performed probing tasks using embeddings from
different layers of ELMo, GPT-2, and BERT to
investigate performance differences. Hewitt and
Manning (2019) showed that the BERT embed-
dings from the intermediate layers capture informa-
tion related to the syntax trees of sentences. Fayyaz
et al. (2021) observed stability in the norms of
BERT embeddings across layers. Heimersheim
and Turner (2023) showed that the norm of the
residual stream (Elhage et al., 2021) in GPT-2 in-
creases as the layers deepen. Sajjad et al. (2022)
showed that the variance of the embeddings differs
by layer and proposed an effective post-processing.

3 Token-wise embedding set Xt

In this section, we first define the token-wise em-
bedding set, Xt, for a given token t. Next, we
provide detailed definitions of the statistical mea-
sures Q(Xt), M(Xt), and V (Xt), and explain the
relationship in (1). Finally, we show that the statis-
tical measures of Xt can be efficiently computed
through sequential computation.

3.1 Definition of Xt

We provide a formal definition of Xt, expanding on
the brief explanation introduced in Section 1. Let
T be the set of token types present in the corpus.
For each token t ∈ T , let St be the set of sentences
in the corpus that contain the token t. Given a
contextualized embedding model f of dimension
d, let f(s, t) ∈ Rd be the embedding3 of token t
in a sentence s ∈ St. For the token t, the set of
embeddings derived from f and St is defined as:

Xt := {f(s, t) | s ∈ St} ⊂ Rd. (2)

We define the frequency of token t as nt := |Xt|.

3.2 Statistical measures for Xt

We provide a formal definition of Q(Xt), M(Xt),
and V (Xt) for Xt ⊂ Rd, and explain their rela-
tionships. First, we define the mean embedding
as

µ(Xt) := Ex∈Xt {x} =
1

|Xt|
∑
x∈Xt

x ∈ Rd, (3)

3When the same token type appears multiple times in a
single sentence, embeddings are actually computed for each
occurrence separately. However, for simplicity of notation, we
present it as if there is a single embedding for the token in the
sentence.

where Ex∈Xt{·} represents the sample mean over
Xt. Next, for Xt, the mean squared norm Q(Xt),
the squared norm of the mean embedding M(Xt),
and the sum of the variances of each component
V (Xt) are defined as follows:

Q(Xt) := Ex∈Xt

{
∥x∥2

}
, (4)

M(Xt) := ∥Ex∈Xt {x} ∥2 = ∥µ(Xt)∥2, (5)

V (Xt) := Ex∈Xt

{
∥x− µ(Xt)∥2

}
=

d∑
i=1

Ex∈Xt

{
(xi − µi(Xt))

2
}
,

(6)

where xi and µi(Xt) are the i-th components of
x and µ(Xt), respectively, and ∥ · ∥ denotes the
L2 norm. A larger M(Xt) indicates that Xt is far-
ther from the origin. Since the norm of an embed-
ding represents the strength of its meaning (Oyama
et al., 2023), a larger M(Xt) indicates that token
t carries greater semantic content. A larger V (Xt)
indicates a wider distribution within Xt, which
suggests greater variability in the meaning of token
t. Then, calculations (see Appendix C) yield the
identity

Q(Xt) = M(Xt) + V (Xt),

which is exactly (1) in Section 1. Thus, V (Xt) can
be determined as Q(Xt)−M(Xt), the difference
between two norm-derived values.

3.3 Efficient computation for Xt

Storing all Xt when computing Q(Xt), M(Xt),
and V (Xt) is inefficient. This inefficiency can be
addressed by sequentially computing Q(Xt) and
µ(Xt). Using the sequentially computed Q(Xt)
and µ(Xt), M(Xt) and V (Xt) can also be com-
puted4 based on (5) and (1). The procedure5 is
detailed in Algorithm 1. This algorithm requires
storing only |T | embeddings for µ(Xt) and 4|T |
scalar values, allowing for efficient handling of the
statistical measures for Xt.

4 The entire embedding set X

In Section 3, we considered the embedding set
Xt for each token. Considering the entire embed-
ding set X , which includes all embedding sets Xt,
we can also analyze the entire embedding space.

4Sequential computation methods for variance, such as
Welford’s online algorithm (Welford, 1962), have been known
for a long time.

5In practice, embeddings are usually computed in batches.
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Algorithm 1 Sequential computation of nt, µ(Xt),
Q(Xt), M(Xt), and V (Xt) for each token t

Input: A contextualized embedding model f ,
a corpus S =

⋃
t∈T St

Output: A dictionary D mapping each token t to
D[t] = (nt,µ(Xt), Q(Xt),M(Xt), V (Xt))

1: Initialize an empty dictionary D
2: for each sentence s ∈ S do
3: for each token occurrence t ∈ s do
4: // Compute the token embedding
5: x← f(s, t) ∈ Rd

6: if the token t is already a key inD then
7: // Load previous values
8: (k,u, q, _, _)← D[t]
9: // Compute new values sequentially

10: k′ ← k + 1
11: u′ ← k

k+1u+ 1
k+1x ∈ Rd

12: q′ ← k
k+1q +

1
k+1∥x∥

2

13: m′ ← ∥u′∥2
14: v′ ← q′ −m′

15: // Update the dictionary
16: D[t]← (k′,u′, q′,m′, v′)
17: else
18: // Initialize on first occurrence of t
19: D[t]← (1,x, ∥x∥2, ∥x∥2, 0)
20: end if
21: end for
22: end for

Therefore, in this section, we first provide the defi-
nition of X and then define the statistical measures
for X as we did for Xt. Furthermore, we show
that the total variance V (X) can be decomposed
into the within-group variance and the between-
group variance. Finally, we explain the efficient
computation for X .

4.1 Definition of X
With Xt, the entire embedding set X ⊂ Rd is
defined as follows:

X :=
⋃
t∈T

Xt ⊂ Rd, (7)

where the number of embeddings in X is defined
as n := |X| =

∑
t∈T nt.

Replacing Xt in (3) with X , we can define
the mean embedding µ(X) ∈ Rd for X . Sim-
ilarly, replacing Xt in (4), (5), and (6) with X ,
we can define Q(X), M(X), and V (X), respec-
tively. A larger M(X) indicates that µ(X) is far-

𝑂

𝑋 =ራ

𝑡∈𝑇

𝑋𝑡 ⊂ ℝ
𝑑

𝝁(𝑋)

𝝁 𝑋𝑡

𝑉𝐵(𝑋)

𝑉𝑊(𝑋) 𝑉(𝑋𝑡)

𝑀(𝑋)

𝑀(𝑋𝑡)

𝑋𝑡

𝑉(𝑋)

Figure 3: Illustration of the token-wise embedding sets
Xt, t ∈ T , and the entire embedding set X . The val-
ues µ(Xt), M(Xt), and V (Xt) are computed for each
Xt, while µ(X), M(X), and V (X) are for X . In addi-
tion, V (X) is decomposed into the within-group vari-
ance VW (X) and the between-group variance VB(X).
VW (X) is the frequency-weighted mean of V (Xt),
while VB(X) represents the spread of µ(Xt) around
µ(X). Although M and V are illustrated as a norm and
a standard deviation, respectively, they are actually the
squared versions as shown in (5) and (6).

ther from the origin, making the embedding space
more anisotropic. A larger V (X) indicates a wider
spread within the embedding space. Replacing Xt

with X in (1), the following identity also holds:

Q(X) = M(X) + V (X). (8)

4.2 Within-group variance and
between-group variance

In general, variance can be decomposed into within-
group variance, which represents the spread within
clusters, and between-group variance, which repre-
sents the spread between clusters (Muthén, 1991).
Accordingly, by treating {Xt}t∈T as clusters, we
consider the decomposition of the variance V (X)
of the entire embedding set X into the within-group
variance VW (X) and the between-group variance
VB(X) as follows:

V (X) = VW (X) + VB(X). (9)

In the context of clustering, these can also be re-
ferred to as the within-cluster variance and the
between-cluster variance, respectively. Calcula-
tions (see Appendix D) show that:

VW (X) =
∑
t∈T

ptV (Xt), (10)

VB(X) =
∑
t∈T

pt∥µ(Xt)− µ(X)∥2, (11)
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where

pt := |Xt|/|X| = nt/n. (12)

Thus, VW (X) is the frequency-weighted mean of
V (Xt) and indicates the spread within each Xt. On
the other hand, VB(X) is the frequency-weighted
mean of ∥µ(Xt)−µ(X)∥2 and indicates the spread
between µ(Xt) around µ(X).

From (8) and (9), the values Q(X), M(X),
VW (X), and VB(X) satisfy:

Q(X) = M(X) + VW (X) + VB(X). (13)

Figure 3 illustrates the relationships among these
values computed from Xt and X . While the values
for Xt are computed for each token, the values for
X are computed from the entire embedding space.

4.3 Efficient computation for X

In Section 3.3, we showed that the statistical mea-
sures for Xt can be computed efficiently using a
sequential method. Similarly, the statistical mea-
sures for X can also be computed efficiently by
using the statistical measures for Xt.

As seen in Section 4.1, n can be obtained as
the sum of nt. Additionally, simple calculations
(see Appendix E) show that µ(X) and Q(X) can
be expressed as the frequency-weighted means of
µ(Xt) and Q(Xt), respectively:

µ(X) = Ex∈X {x} =
∑
t∈T

ptµ(Xt), (14)

Q(X) = Ex∈X
{
∥x∥2

}
=

∑
t∈T

ptQ(Xt). (15)

These expressions enable efficient computation of
the statistical measures for X . Furthermore, using
these values, M(X), V (X), VW (X), and VB(X)
can also be computed efficiently.

5 Experiments

In this section, we conduct experiments using
contextualized embedding models to calculate the
statitical measures for Xt and X as described in
Sections 3 and 4. First, we explain the experimental
settings, and then present the results for Xt and X .
Note that in this study, we focus on token embed-
dings instead of word embeddings6, and we do not
distinguish between whether a token corresponds
to a complete word or a part of a word7.

6This is because we found artifacts in the experimental
results when representing a word embedding as the mean of
the token embeddings. For details, refer to Appendix J.

7For example, in BERT tokenization, both the ing token
and the ##ing token are treated the same as the ing token.

Model Layers Dims. Params.

bert-base-uncased
13 768

110M
roberta-base 125M
gpt2 117M

bert-large-uncased
25 1024

340M
roberta-large 355M
gpt2-medium 345M

Table 1: The number of layers including the input layer,
the dimensions, and the parameter size for each model.

5.1 Settings

5.1.1 Models
We used the transformers library (Wolf et al.,
2020) in our experiments. Following Liang
et al. (2021); Zhou et al. (2022a); Wannasupho-
prasit et al. (2023), we used the BERT (De-
vlin et al., 2019) models bert-base-uncased
and bert-large-uncased. Additionally, we also
used the RoBERTa (Liu et al., 2019b) mod-
els roberta-base and roberta-large, and the
GPT-2 (Radford et al., 2019) models gpt2 and
gpt2-medium. The number of layers, the dimen-
sions, and the size of the parameters for each model
are shown in Table 1.

5.1.2 Dataset
Similar to Wannasuphoprasit et al. (2023), we used
the BookCorpus (Zhu et al., 2015). For efficiency,
we randomly sampled 1% of the sentences from
the corpus and selected those containing fewer than
64 words for the embedding computations. The
total number of sampled sentences was 739,106.
Details of the number of tokens, |T | ≈ 24k, and
the number of embeddings, |X| ≈ 12M, are pro-
vided in Table 3 in Appendix B. The histograms
of sentence lengths and the frequency of log10 nt

are also shown in Figs. 9 and 10, respectively, in
Appendix B.

5.2 Results for the token-wise embedding sets

Figure 2 shows scatter plots of V (Xt) against
M(Xt) from the middle-layer embeddings of the
six models. Each scatter plot shows the regression
line and displays its slope and the coefficient of de-
termination, R2. Consistently, the sum of M(Xt)
and V (Xt), namely Q(Xt), exhibits small varia-
tion, confirming the trade-off relationship between
M(Xt) and V (Xt). Furthermore, the slopes of the
regression lines are negative, with large R2 val-
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Figure 4: For each layer across the six models, the coefficient of variation (C.V.) of Q(Xt) on the left, the slope
of the regression line of V (Xt) on M(Xt) in the middle, and the corresponding coefficient of determination R2

on the right are shown. For all models, the C.V. approximately reaches its minimum in the intermediate layers.
Consequently, the slope and R2 approximately reach their minimum and maximum, respectively, in the intermediate
layers. Only tokens with 1 ≤ log10 nt ≤ 5 were used to reduce the influence of extreme values.

ues. For example, in the case of roberta-large,
the slope of the regression line is −1.008 and
R2 = 0.999, indicating a nearly perfect trade-off
relationship with a constant sum.

Next, we examine the variation of Q(Xt) and
the trade-off between M(Xt) and V (Xt) across
layers. Figure 4 shows the coefficient of variation8

(C.V.) of Q(Xt), the slope of the regression line
of V (Xt) on M(Xt), and the corresponding R2

value for each layer of the six models. The C.V. of
Q(Xt) is generally low and it reaches its minimum
value approximately in the intermediate layers of
each model, where the trade-off between M(Xt)
and V (Xt) becomes more pronounced. In the inter-
mediate layers of BERT and RoBERTa, the slope
of the regression line reaches a minimum value of
approximately −1, and the R2 value approaches
its maximum of 1. However, in the case of GPT-2,
the minimum C.V. of Q(Xt) is larger than those
of BERT and RoBERTa, with a minimum slope
of approximately −0.2 and a maximum R2 value
of around 0.5. These differences are likely due to
architectural differences, which will be discussed
in Section 6.

5.3 Results for the entire embedding set

As seen in (13), Q(X) can be decomposed into
M(X), VW (X), and VB(X). Figure 5 illustrates
the changes in the ratios of M(X), VW (X), and
VB(X) normalized by Q(X) across the layers of
the six models. Generally, as the layers deepen, the
ratio of M(X) increases, which means that the ra-
tio of the sum VW (X) + VB(X) (equal to V (X))

8C.V. is defined as the ratio of the standard deviation to the
mean, representing the relative variability in the data.

decreases. Additionally, a comparison between
VW (X) and VB(X) shows that the ratio of VW (X)
increases as the layers deepen. Figure 19 in Ap-
pendix G presents the original layer-wise values of
Q(X), M(X), and V (X).

According to (9), VW (X) + VB(X) = V (X).
To investigate the value of VW (X) relative to
VB(X), Fig. 6 shows the ratio VW (X)/V (X).
Consistent with the results in Fig. 5, the ratio
of VW (X) increases in each model as the layers
deepen, i.e., the ratio of VB(X) decreases.

Previous studies on the anisotropy of embedding
spaces across layers (Ethayarajh, 2019; Cai et al.,
2021; Godey et al., 2024a) showed that for BERT,
RoBERTa, and GPT-2, the average cosine similar-
ity between randomly sampled words increases as
the layers deepen. This finding is consistent with
our results in Fig. 5, where the ratio of M(X) in-
creases and the ratio of V (X) decreases as the lay-
ers deepen, and in Fig. 6, where the ratio of VB(X)
decreases. These studies also found that the cosine
similarity between embeddings of the same word in
different sentences decreases as the layers deepen.
This observation is also consistent with our results
in Fig. 6, where the ratio of VW (X) gradually in-
creases. While previous work such as Ethayarajh
(2019) computed cosine similarities by randomly
sampling 1,000 embeddings, we computed the val-
ues using all embeddings in the dataset.

5.4 Relationship of Q(Xt), M(Xt), and V (Xt)
against token frequency

In Section 2.1, we discussed three related studies
that examined the relationship between word fre-
quency and values associated with Q(Xt), M(Xt),
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Figure 5: The ratios of M(X), VW (X), and VB(X), each normalized by Q(X), for each layer across the six
models. As the layers deepen, the ratio of M(X) tends to exceed that of VW (X) + VB(X)(= V (X)). Meanwhile,
the ratio of VW (X) increases relative to VB(X). Figure 6 shows detailed comparisons between VW (X) and VB(X).
Further plots of the ratios of these values and those of the original values are shown in Figs. 18 and 19, respectively,
in Appendix G. Only tokens with 1 ≤ log10 nt ≤ 5 were used to reduce the influence of extreme values.

0 6 12 18 24
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V W
(X

)/
V(

X)

bert-base-uncased
bert-large-uncased

roberta-base
roberta-large

gpt2
gpt2-medium

Figure 6: The ratio VW (X)/V (X) in Fig. 5 for each
layer across the six models. As the layers deepen, the
ratio of VW (X) increases. Further plots of these values
are shown in Fig. 20 in Appendix G.

and V (Xt). In this section, we examine the cor-
relations between these three proposed values and
token frequency.

Figure 7 presents scatter plots of Q(Xt), M(Xt),
and V (Xt) against log frequency, using embed-
dings from the 6th layer of bert-base-uncased
as a representative example. The slope of Q(Xt)
remains stable and close to zero. In contrast, the
negative slope of M(Xt) and the positive slope of
V (Xt) indirectly suggest a trade-off relationship
between M(Xt) and V (Xt). Similar trends were

observed across different layers and models (see
Appendix F).

6 Discussion

6.1 Why does the C.V. of Q(Xt) reach its
minimum in the intermediate layers?

In this study, we discovered that the C.V. of Q(Xt)
decreases in the intermediate layers of various
Transformer models, as shown in Fig. 4. While
further investigation into the reasons behind this
phenomenon remains as future work, we present
our hypothesis here.

In the input layer (layer 0), pre-trained embed-
dings are used, whereas in the final layer, embed-
dings are influenced by the objective function and
the computation of logits. As a result, embeddings
in these two layers are expected to exhibit different
characteristics compared to those in other layers.
Indeed, as shown in Fig. 19 in Appendix G, the
plots of Q(X), M(X), and V (X) for each layer
indicate that the values in the input and output lay-
ers differ significantly from those in other layers.
This suggests that the influence of these special-
ized layers is reduced in the intermediate layers,
possibly reflecting a property inherent to the model
architecture or language — namely, the reduced
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Figure 7: Scatter plots of (left) Q(Xt), (middle) M(Xt), and (right) V (Xt) against log10 nt for the middle-
layer embeddings of bert-base-uncased. Each plot includes a regression line, its slope, and the coefficient of
determination (R2). While the slope of Q(Xt) is close to zero, those of M(Xt) and V (Xt) are negative and positive,
respectively. Only tokens with 1 ≤ log10 nt ≤ 5 were used for regressions to reduce the influence of extreme values.
Appendix F presents the results for embeddings from multiple layers of several models based on log-scaled values.

variation in Q(Xt).

6.2 Why does GPT-2 behave differently from
BERT and RoBERTa in Fig. 4?

In Fig. 4, although GPT-2 shows similar trends
to BERT and RoBERTa, the minimum C.V. of
Q(Xt), the minimum slope of the regression line,
and the maximum R2 differ from those of BERT
and RoBERTa. Furthermore, for GPT-2, the val-
ues of Q(Xt), M(Xt), and V (Xt) in Fig. 2, as
well as Q(X), M(X), and V (X) in Fig. 19 in Ap-
pendix G, differ significantly in magnitude from
those for BERT and RoBERTa.

This is likely due to the different placement of
layer normalization (LN) within the Transformer
layer. In general, as shown in Fig. 21 in Ap-
pendix H, Post-LN Transformers such as BERT
and RoBERTa apply the LN after the feed-forward
network (FF), while Pre-LN Transformers such
as GPT-2 apply it before the FF (Xiong et al.,
2020). Consequently, the embeddings x ∈ Xt

of BERT and RoBERTa are outputs of the LN, and
the squared norm ∥x∥2 is controlled with small
variation.

For Post-LN Transformers, under certain spe-
cific conditions assuming an ideal scenario, it can
be shown that the C.V. of Q(Xt) is sufficiently
small. As shown in Appendix I,

C.V.(Q(Xt)) = O

(
1
√
n0

)
, (16)

where n0 = mint∈T nt. This result indicates that
the C.V. approaches zero as all nt increase.

On the other hand, ∥x∥2 for GPT-2 is not con-
trolled by the LN, yet it is interesting to observe
similar trends in Figs. 5 and 6. Although it is not

necessarily desirable for embeddings to be arti-
ficially constrained directly by LN, as in BERT
and RoBERTa, the trade-off between M(Xt) and
V (Xt) is also observed in the GPT-2 model, which
is not directly constrained in this way. This obser-
vation suggests that the constraints imposed by LN
reflect reality to some extent and did not cause a
significant issue in the model’s language learning
process.

7 Conclusion

In this study, we focused on the distribution of con-
textualized embeddings and analyzed three values:
the mean squared norm Q(Xt), the squared norm
of the mean embedding M(Xt), and the sum of the
variances of each component V (Xt). In Section 3,
we showed that the values of Q(Xt), M(Xt), and
V (Xt) are related by (1) and can be efficiently com-
puted using a sequential method. We also found
that, in the intermediate layers of several models,
the variation of Q(Xt) is small, which results in a
strong trade-off between M(Xt) and V (Xt). We
explained in Section 6 that the small variation in
Q(Xt) can be attributed to the placement of LN.
The values of Q(Xt), M(Xt), and V (Xt) can also
be applied to the entire embedding set X , and we
demonstrated that the total variance V (X) can be
decomposed into within-group variance VW (X)
and between-group variance VB(X). As seen in
Figs. 5 and 6, the experimental results from relative
comparisons show that as the layers deepen, M(X)
increases, while V (X) and VB(X) decrease, and
VW (X) increases. These results are consistent with
existing studies on the anisotropy of embedding
spaces across layers.
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Limitations

• Due to computational resource limitations,
we used relatively small models with param-
eter sizes fewer than 1B, as shown in Ta-
ble 1. Since anisotropy in embedding spaces
is affected by parameter size (Godey et al.,
2024b), verification with larger models would
be desirable. Note that previous studies on
the relationship between word frequency and
embeddings (Liang et al., 2021; Zhou et al.,
2022a; Wannasuphoprasit et al., 2023) have
only examined the final layer of BERT mod-
els. In contrast, we conducted experiments
with BERT, RoBERTa, and GPT-2, following
the settings from previous work on layer-wise
anisotropy (Ethayarajh, 2019; Cai et al., 2021;
Godey et al., 2024a).

• In order to run the experiments efficiently, we
did not use the full BookCorpus. The num-
ber of sentences used in the experiments was
739,106, and the total number of embeddings
|X| exceeded 10 million, which we consid-
ered sufficient.

• This study deals only with English models.
The analysis of the values of Q, M , and V for
different languages using multilingual models
is left for future work.

• In this study, we analyzed high-dimensional
distributions using scalar values such as norms
and the sum of variances, prioritizing ease
of interpretation, as discussed in Sections 3
and 4.

• Ethayarajh (2019); Cai et al. (2021); Godey
et al. (2024a) used cosine similarity to exam-
ine layer-wise anisotropy, which facilitates
comparisons across models and layers. In con-
trast, the values of Q, M , and V are not nor-
malized, and these values vary significantly
across models and layers. Therefore, appro-
priate adjustments may be necessary for such
comparisons. Based on this, in Figs. 5 and 6,
we have normalized the values using Q(X)
and V (X) to allow comparisons across mod-
els and layers. This normalization shows, for
example, that while the value of V (X) in-
creases as the layers deepen in GPT-2 (Fig. 19
in Appendix G), the ratio of V (X)/Q(X) de-
creases, as shown in Fig. 5.

• In our experiments, only tokens with 1 ≤
log10 nt ≤ 5 were used when computing val-
ues such as the regression line, to reduce the
influence of extreme values. The choice of
this frequency range is ad hoc, and the influ-
ence of token frequency on the results has not
been examined in detail.

• The probability distribution settings assumed
in the theory of the C.V. of Q(Xt) (Ap-
pendix I) do not necessarily reflect reality, and
the derived formulas have only limited value.

• A more detailed experimental and theoretical
analysis is needed to understand why the C.V.
of Q(Xt) becomes smaller in the intermedi-
ate layers and why GPT-2 behaves differently
from BERT and RoBERTa in Fig. 4.
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Figure 8: Scatter plots of M(Xt) and V (Xt) using the 6th layer of bert-base-uncased, along with the regression
line and selected tokens from Fig. 1. The tokens are close to the regression line, indicating that the tokens have
similar Q(Xt) values.

token t nt Q(Xt) M(Xt) V (Xt)

his 94718 441.0 273.9 167.1
had 56623 454.8 245.7 209.1
just 22619 485.4 271.9 213.5
your 20307 458.2 299.9 158.3
off 12005 492.7 256.3 236.4
because 8484 471.2 334.7 136.5
though 5085 484.1 273.7 210.4
once 5022 494.1 239.9 254.2
pretty 2082 496.7 304.7 192.0
clear 1479 490.7 279.4 211.3
six 1302 479.2 287.6 191.6
hunter 770 478.9 298.5 180.4
jeans 727 500.3 406.6 93.7
stronger 435 480.6 348.6 132.0
department 233 487.0 303.7 183.3
winked 229 485.6 404.5 81.1
changes 214 475.7 303.4 172.3
frowning 210 479.8 379.8 100.0
jewel 157 500.2 292.7 207.5
rusty 124 484.3 325.5 158.8
eagerly 122 488.0 380.4 107.6
passes 118 490.9 266.6 224.3
limit 88 496.9 315.5 181.4
elli 61 501.3 275.2 226.1
hedge 59 499.4 333.5 165.9
francis 57 480.8 354.5 126.3
achieved 35 465.4 325.1 140.3
ironically 33 483.0 388.2 94.8
beaver 26 497.3 348.0 149.3
leonardo 23 488.5 384.1 104.4
immigration 17 485.3 374.0 111.3
anarchy 12 484.7 391.3 93.4
retail 10 482.1 344.5 137.6
wisconsin 10 488.7 401.6 87.1

Table 2: Values of nt, Q(Xt), M(Xt), and V (Xt) for the tokens in Fig. 1. See Appendix A for details on the token
selection method.
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Figure 9: Histograms of sentence lengths for the dataset we used. See Appendix B for details on how the sentences
were selected.
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Figure 10: Histograms of log10 nt for each model. For differences in tokenization for each model, see Appendix B.

A Details of Fig. 1

In this section, we explain the selection process of the tokens used in Fig. 1. To account for the
effect of frequency, we used only tokens with 1 ≤ log10 nt ≤ 5, and for readability, we limited
the selection to tokens with at least 3 characters. Based on these conditions, we defined the interval
[mint log10 nt,maxt log10 nt] and divided it into 10 equal subintervals. Let Ir denote the r-th subinterval,
where r ∈ {1, . . . , 10}. From each Ir, we defined the set of tokens as:

Tr := {t ∈ T | log10(nt) ∈ Ir}.

Let |Tr| denote the number of tokens in Tr. For each Tr, we ramdomly sampled

Nr := 2 +

⌊√
4 |Tr|

maxr |Tr|

⌋
tokens. Here, ⌊·⌋ represents the floor function. The definition of Nr is ad hoc, ensuring that at least two
tokens are sampled from each Tr, with additional tokens sampled proportionally to |Tr|.

In Fig. 8, the selected tokens (i.e., the tokens shown in Fig. 1) are plotted in scatter plots of M(Xt) and
V (Xt).

Table 2 shows the values of nt, Q(Xt), M(Xt), and V (Xt) for these tokens. Despite large differences
in frequency, these tokens have similar values for Q(Xt).

For the PCA transformation used in Fig. 1, we also transformed the origin 0 ∈ Rd to better under-
stand the positional relationship between each distribution of embeddings and the origin. After the
transformation, we translated all 2D points so that the transformed origin coincided with the new origin.

B Details of the dataset

As described in Section 5.1.2, we randomly sampled 1% of the sentences from the BookCorpus (Zhu
et al., 2015) and used sentences with fewer than 64 words for embedding calculations. The histogram of
sentence lengths for the sampled sentences is shown in Fig. 9.
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Model |T | |X|

BERT 24,149 12,384,011
RoBERTa 24,719 12,238,028
GPT-2 24,718 12,238,028

Table 3: Values of |T | and |X| by tokenization for each model. While RoBERTa uses the same tokenizer as GPT-2,
it distinguishes between the beginning-of-sentence and end-of-sentence tokens, unlike GPT-2.

The tokenization of BERT differs from that of RoBERTa and GPT-2. RoBERTa uses the same tokenizer
as GPT-2 but differs in that it distinguishes between beginning-of-sentence (BOS) and end-of-sentence
(EOS) tokens. RoBERTa uses <s> for BOS and </s> for EOS, while GPT-2 uses <|endoftext|> for both
BOS and EOS. Table 3 shows |T | and |X|. The histograms of log-scale token frequencies, log10 nt, for
each model are shown in Fig. 10.

C Details of the statistical measures for an embedding set Xt in Section 3

In this section, as discussed in Section 3, we explain the values Q(Xt), M(Xt), and V (Xt) for an
embedding set Xt, as well as the relationship between them, given by (1). First, we explain the statistical
measures for each component, and then we provide the proof of (1).

C.1 Values for each component
Using the i-th component xi of an embedding x ∈ Rd, we define the following values for Xt:

qi(Xt) := Ex∈Xt

{
x2i

}
, (17)

µi(Xt) := Ex∈Xt {xi} , (18)

vi(Xt) := Ex∈Xt

{
(xi − µi(Xt))

2
}
, (19)

where µi(Xt) is the i-th component of µ(Xt) in (3), and vi(Xt) is the variance of the i-th component of
the embeddings in Xt, {xi | x ∈ Xt}. Then, the following relationship holds between qi(Xt), µi(Xt),
and vi(Xt):

qi(Xt) = µi(Xt)
2 + vi(Xt). (20)

Proof.

vi(Xt) = Ex∈Xt

{
(xi − µi(Xt))

2
}

= Ex∈Xt

{
x2i − 2µi(Xt)xi + µi(Xt)

2
}

= Ex∈Xt

{
x2i

}
− µi(Xt)

2

= qi(Xt)− µi(Xt)
2.

This is nothing more than the well-known formula for variance in elementary statistics.
Thus, Q(Xt), M(Xt), and V (Xt) are the sums of qi(Xt), µi(Xt)

2, and vi(Xt) across all components,
as follows:

Q(Xt) =
d∑

i=1

qi(Xt), (21)

M(Xt) =
d∑

i=1

µi(Xt)
2, (22)

V (Xt) =

d∑
i=1

vi(Xt). (23)
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Proof. From the definition of the L2 norm:

∥x∥2 =
d∑

i=1

x2i .

Then we obtain:

Q(Xt) = Ex∈Xt

{
∥x∥2

}
= Ex∈Xt

{
d∑

i=1

x2i

}

=
d∑

i=1

Ex∈Xt

{
x2i

}
=

d∑
i=1

qi(Xt),

M(Xt) = ∥Ex∈Xt {x} ∥2

= ∥µ(Xt)∥2

=

d∑
i=1

µi(Xt)
2,

V (Xt) = Ex∈Xt

{
∥x− µ(Xt)∥2

}
= Ex∈Xt

{
d∑

i=1

(xi − µi(Xt))
2

}

=

d∑
i=1

Ex∈Xt

{
(xi − µi(Xt))

2
}

=
d∑

i=1

vi(Xt).

C.2 Proof of (1) related to Q(Xt), M(Xt), and V (Xt)

We prove (1) given by:

Q(Xt) = M(Xt) + V (Xt).

Proof. By summing both sides of (20) from i = 1 to d:

d∑
i=1

qi(Xt) =
d∑

i=1

µi(Xt)
2 +

d∑
i=1

vi(Xt).

Then we obtain the result using (21), (22), and (23). Alternatively, the result can be derived directly as
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follows:

V (Xt) = Ex∈Xt

{
∥x− µ(Xt)∥2

}
= Ex∈Xt

{
(x− µ(Xt))

⊤(x− µ(Xt))
}

= Ex∈Xt

{
∥x∥2 − x⊤µ(Xt)− µ(Xt)

⊤x+ ∥µ(Xt)∥2
}

= Ex∈Xt

{
∥x∥2

}
− Ex∈Xt {x}

⊤µ(Xt)− µ(Xt)
⊤Ex∈Xt {x}+ ∥µ(Xt)∥2

= Ex∈Xt

{
∥x∥2

}
− ∥µ(Xt)∥2

= Q(Xt)−M(Xt).

D Proof of (9) decomposing V (X) into VW (X) and VB(X)

In this section, we will prove (9). To do so, we first prove the following equation for vi(X), where vi(X)
is the value obtained by replacing Xt with X in vi(Xt) as defined in (19) in Appendix C:

vi(X) =
∑
t∈T

pt
{
vi(Xt) + (µi(Xt)− µi(X))2

}
. (24)

Proof.

vi(X) = Ex∈X
{
(xi − µi(X))2

}
=

1

|X|
∑
x∈X

(xi − µi(X))2

=
1

|X|
∑
t∈T

∑
x∈Xt

(xi − µi(X))2

=
∑
t∈T

|Xt|
|X|
· 1

|Xt|
∑
x∈Xt

(xi − µi(X))2

=
∑
t∈T

ptEx∈Xt

{
(xi − µi(Xt) + µi(Xt)− µi(X))2

}
=

∑
t∈T

ptEx∈Xt

{
(xi − µi(Xt))

2 − 2(xi − µi(Xt))(µi(Xt)− µi(X)) + (µi(Xt)− µi(X))2
}

=
∑
t∈T

pt
{
Ex∈Xt

{
(xi − µi(Xt))

2
}
+ (µi(Xt)− µi(X))2

}
(∵ µi(Xt) = Ex∈Xt {xi})

=
∑
t∈T

pt
{
vi(Xt) + (µi(Xt)− µi(X))2

}
.

Based on (24), we prove (9) given by:

V (X) = VW (X) + VB(X).
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Proof.

V (X) =
d∑

i=1

vi(X) (from (23), where Xt is replaced by X)

=
d∑

i=1

∑
t∈T

pt
{
vi(Xt) + (µi(Xt)− µi(X))2

}
=

∑
t∈T

pt

d∑
i=1

vi(Xt) +
∑
t∈T

pt

d∑
i=1

(µi(Xt)− µi(X))2

=
∑
t∈T

ptV (Xt) +
∑
t∈T

pt∥µ(Xt)− µ(X)∥2 (∵ (23))

= VW (X) + VB(X).

E Details of the statistical measures for the entire embedding set X in Section 4.3

In this section, as discussed in Section 4.3, we explain the values n, µ(X), and Q(X) for the entire
embedding set X .

E.1 Calculation of n
We define n = |X| as the total number of embeddings in X . We assume that Xt and Xt′ are disjoint for
t, t′ ∈ T , i.e., Xt ∩Xt′ = ∅. Then

n =

∣∣∣∣∣⋃
t∈T

Xt

∣∣∣∣∣ = ∑
t∈T
|Xt| =

∑
t∈T

nt.

Thus, n can be expressed using nt.

E.2 Calculation of µ(X)

By replacing Xt with X in µ(Xt) in (3), the mean embedding µ(X) ∈ Rd for X is defined. We prove
(14) given by:

µ(X) = Ex∈X {x} =
∑
t∈T

ptµ(Xt).

Proof.

µ(X) = Ex∈X{x}

=
1

|X|
∑
x∈X

x

=
1

|X|
∑
t∈T

∑
x∈Xt

x

=
∑
t∈T

|Xt|
|X|
· 1

|Xt|
∑
x∈Xt

x

=
∑
t∈T

ptEx∈Xt{x}

=
∑
t∈T

ptµ(Xt).
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E.3 Calculation of Q(X)

By replacing Xt with X in Q(Xt) in (4), Q(X) for X is defined. We prove (15) given by:

Q(X) = Ex∈X
{
∥x∥2

}
=

∑
t∈T

ptQ(Xt).

To do so, we first prove the following equation for qi(X), where qi(X) is the value obtained by replacing
Xt with X in qi(Xt) as defined in (17) in Appendix C:

qi(X) =
∑
t∈T

ptqi(Xt). (25)

Proof.

qi(X) = Ex∈X{x2i }

=
1

|X|
∑
x∈X

x2i

=
1

|X|
∑
t∈T

∑
x∈Xt

x2i

=
∑
t∈T

|Xt|
|X|
· 1

|Xt|
∑
x∈Xt

x2i

=
∑
t∈T

ptEx∈Xt{x2i }

=
∑
t∈T

ptqi(Xt).

Using (25), we then show (15):

Q(X) =
d∑

i=1

qi(X) (from (21), where Xt is replaced by X)

=
d∑

i=1

∑
t∈T

ptqi(Xt) (∵ (25))

=
∑
t∈T

pt

d∑
i=1

qi(Xt)

=
∑
t∈T

ptQ(Xt) (∵ (21)).

F Relationships between frequency and Q(Xt), M(Xt), and V (Xt)

Similar to previous work (Wannasuphoprasit et al., 2023; Liang et al., 2021; Zhou et al., 2021, 2022a),
We shows scatter plots9 that represent the relationships between frequency and the values of Q(Xt),
M(Xt), and V (Xt) for some layers of BERT in Fig. 11, RoBERTa in Fig. 12, and GPT-2 in Fig. 13,
respectively. Regression lines are also shown for these plots. The slopes of the lines for Q(Xt) increase as
the layers deepen, while those for M(Xt) and V (Xt) are consistently negative and positive, respectively.
These trends are consistent with those observed in previous work. Additionally, the rightmost columns of

9Unlike previous work, log10 scales are used for Q(Xt), M(Xt), and V (Xt) to address the large value differences.
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Figs. 11, 12, and 13 show the scatter plots and regression lines for M(Xt) and V (Xt). In the intermediate
layer, the slope is smaller and the R2 value is larger than that of other layers. These results indicate a
strong trade-off relationship between M(Xt) and Q(Xt) in the intermediate layer.

Additionally, histograms of Q(Xt), M(Xt), and V (Xt) for the layers of the models are shown in
Fig. 14 for BERT, Fig. 15 for RoBERTa, and Fig. 16 for GPT-2.

Based on Figs. 11, 12, and 13, Fig. 17 shows the slopes of the regression lines for frequency and Q(Xt),
M(Xt), and V (Xt) across the six models and layers. The slopes for Q(Xt) remain stable and close to
0 across layers, although an increase is observed in GPT-2. As the layers deepen, the slopes for M(Xt)
and V (Xt) remain approximately negative and positive across all layers. The variation in slopes remains
small and stable for all values.

G Detailed results of the statistical measures for X

In this section, we present detailed results from Section 5.3. Using the data from the bar graphs in
Fig. 5, Fig. 18 shows the normalized values of M(X), V (X)(= VW (X)+VB(X)), VW (X), and VB(X)
relative to Q(X) for each layer of each model. As observed in Fig. 5, M(X)/Q(X) increases as the layers
deepen, while V (X)/Q(X) decreases. Furthermore, VW (X)/Q(X) increases, whereas VB(X)/Q(X)
decreases. Figure 19 shows the values of Q(X), M(X), and V (X) for each layer across the six models.
As seen in Fig. 18, where M(X)/Q(X) increases as the layers deepen, we observe that M(X) also
increases, although the increase varies among the models. In contrast, while V (X)/Q(X) decreases in
GPT-2 as the layers deepen, the value of V (X) itself increases monotonically, except in the final layer. It
is known that in GPT-2, the norm and standard deviation of the residual stream increase exponentially as
the layers deepen (Heimersheim and Turner, 2023), and the results in Fig. 19 are consistent with previous
work.

Figure 20 shows the values of VW (X), VB(X), and VB(X)/V (X) for each layer across the six models.
As observed in Fig. 6, where VW (X)/V (X) increases as the layers deepen, we can also see that the value
of VW (X) increases. In contrast, in GPT-2, VB(X)/V (X) decreases as the layers deepen, while the
value of VB(X) itself increases monotonically, except in the final layer.

H Explanation of the differences in Transformer layers

This section introduces the Transformer layers based on the explanation by Kobayashi et al. (2024). A
single Transformer layer (Vaswani et al., 2017) consists of four components: multi-head attention (ATTN),
feed-forward network (FF), residual connection (RES), and layer normalization (LN), as shown in Fig. 21.
Following Xiong et al. (2020); Kobayashi et al. (2024), we classify the layers into Post-LN and Pre-LN
Transformer layers based on the position of the LN. In the models we used, BERT and RoBERTa have
Post-LN layers, while GPT-2 has Pre-LN layers.

A single Transformer layer can be divided into two parts: the Attention Block (ATB), consisting of
ATTN, RES1, and LN1, and the Feed-Forward Block (FFB), consisting of FF, RES2, and LN2. In this
study, we focus on the FFB because we are analyzing the output of each layer. For a detailed explanation
of the ATB, see Kobayashi et al. (2024). The FF, RES, and LN functions take h ∈ Rd as input and are
defined as follows:

FF (h) = W2 g(W1h+ b1) + b2 ∈ Rd, (26)

(RES ◦ v)(h) = v(h) + h ∈ Rd, (27)

LN(h) =
h−Mean(h)

Std(h)
⊙ γ + β ∈ Rd, (28)

where W1 ∈ Rd′×d and b1 ∈ Rd′ are the weight and bias of the input layer in the FF, W2 ∈ Rd×d′ and
b2 ∈ Rd are the weight and bias of the output layer in the FF, and γ and β are the weight and bias of
the LN. In addition, g : Rd′ 7→ Rd′ , v : Rd 7→ Rd, Mean : Rd 7→ R, and Std : Rd 7→ R represent the
activation function, arbitrary vector-valued functions, the mean of the elements, and the standard deviation
of the elements, respectively. The operator ⊙ denotes element-wise multiplication.
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(a) bert-base-uncased

(b) bert-large-uncased

Figure 11: Scatter plots across some layers from the input to the output layer of (a) bert-base-uncased and
(b) bert-large-uncased, plotting log10(1+Q(Xt)), log10(1+M(Xt)), and log10(1+V (Xt)) against log10 nt,
and plotting V (Xt) against M(Xt). Each plot includes a regression line, its slope, and the coefficient of determina-
tion, R2. Only tokens with 1 ≤ log10 nt ≤ 5 were used for regressions to reduce the influence of extreme values.
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(a) roberta-base

(b) roberta-large

Figure 12: Results of the same experiments as in Fig. 11 for (a) roberta-base and (b) roberta-large.



7801

(a) gpt2

(b) gpt2-medium

Figure 13: Results of the same experiments as in Fig. 11 for (a) gpt2 and (b) gpt2-medium.
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(a) bert-base-uncased

(b) bert-large-uncased

Figure 14: Histograms of Q(Xt), M(Xt), and V (Xt) for each layer of (a) bert-base-uncased and
(b) bert-large-uncased.
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(a) roberta-base

(b) roberta-large

Figure 15: Histograms of Q(Xt), M(Xt), and V (Xt) for each layer of (a) roberta-base and (b) roberta-large.
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(a) gpt2

(b) gpt2-medium

Figure 16: Histograms of Q(Xt), M(Xt), and V (Xt) for each layer of (a) gpt2 and (b) gpt2-medium.
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Figure 17: Regression slopes between log10(nt) and each of log10(1 +Q(Xt)), log10(1 +M(Xt)), and log10(1 +
V (Xt)) across the six models and layers. As the layers deepen, the slopes for Q(Xt) tend to increase. Across all
layers, the slopes for M(Xt) generally remain negative, while those for V (Xt) remain positive. Only tokens with
1 ≤ log10 nt ≤ 5 were used for regressions to reduce the influence of extreme values.
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Figure 18: The values of M(X), V (X)(= VW (X) + VB(X)), VW (X), and VB(X) normalized by Q(X) for each
layer of each model, based on Fig. 5.
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Figure 19: Values of Q(X), M(X), and V (X) for each layer across the six models. For GPT-2, refer to the right
vertical axis, as the scale of the values differs from those of BERT and RoBERTa.
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Figure 20: Values of VW (X), VB(X), and VB(X)/V (X) for each layer across the six models. For GPT-2, refer to
the right vertical axis for VW (X) and VB(X), as the scale of the values differs from those of BERT and RoBERTa.
Since VB(X)/V (X) = 1−VW (X)/V (X), similar to Fig. 6, where VW (X)/V (X) increases as the layers deepen,
VB(X)/V (X) decreases.
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Figure 21: Figure of the Post-LN and Pre-LN Transformer layer based on Kobayashi et al. (2024). BERT and
RoBERTa have Post-LN layers, while GPT-2 has Pre-LN layers.

We denote the FFB of the Post-LN Transformer layer as FFBPost, that of the Pre-LN Transformer layer
as FFBPre, and the output of the ATB as hATB ∈ Rd, then we have:

FFBPost(hATB) = (LN2 ◦ RES2 ◦ FF)(hATB), (29)

FFBPre(hATB) = (RES2 ◦ FF ◦ LN2)(hATB). (30)

I Variation of Q(Xt) for the embeddings from the Layer Normalization

Following the definition in (28), we consider the case that embedding is expressed as

x = LN(h)

= z ⊙ γ + β ∈ Rd,

where

z :=
h−Mean(h)

Std(h)
. (31)

Corresponding to the sampling x ∈ Xt for the token-wise embedding set, we define the sampling z ∈ Zt,
and assume that Zt is sampled from a distribution Ft. Thus

Ez∈Zt{zki } = Ez∼Ft{zki }+Op(n
−1/2
t ), (32)

where nt = |Zt| is the sample size. Here we introduce an assumption that the marginal distributions of
the elements z1, . . . , zd of z ∼ Ft are the same; Although this setting does not necessarily reflect reality,
we assume it as an ideal scenario. Since (31), the sample mean and the sample variance of the elements
z1, . . . , zd are zero and one, respectively, we can assume that, for a sufficiently large d, the population
mean and the population variance of each element zi in Ft is also zero and one, respectively. Therefore,
(32) with k = 0 and k = 1 gives

Ez∈Zt{zi} = Op(n
−1/2
t ), Ez∈Zt{z2i } = 1 +Op(n

−1/2
t ).
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Now we look at Q(Xt) for the embeddings from the layer normalization.

Q(Xt) = Ex∈Xt{∥x∥2}
= Ez∈Zt{∥z ⊙ γ + β∥2}

= Ez∈Zt

{ d∑
i=1

(γizi + βi)
2
}

=
d∑

i=1

{
γ2i Ez∈Zt{z2i }+ 2βiγiEz∈Zt{zi}+ β2

i

}
=

d∑
i=1

{
γ2i (1 +Op(n

−1/2
t )) + 2βiγiOp(n

−1/2
t ) + β2

i

}
= ∥γ∥2 + ∥β∥2 + (∥γ∥2 + β⊤γ)Op(n

−1/2
t ).

This implies that Q(Xt) ≈ ∥γ∥2 + ∥β∥2 is nearly constant, with variation proportional to n
−1/2
t . Since

we evaluate the variation of Q(Xt) when sampling t ∈ T , the worst case is n0 = mint∈T nt. Therefore,
the coefficient of variation (C.V.) is

C.V.(Q(Xt)) =
(∥γ∥2 + β⊤γ)O(n

−1/2
0 )

∥γ∥2 + ∥β∥2
= O(n

−1/2
0 ).

This C.V. approaches zero as both d and all nt become larger.

J Artifacts of word embeddings represented by the mean of token embeddings

In this study, we used token embeddings in our experiments. In contrast, some previous work investigating
the relationship between frequency and embeddings has used word embeddings represented by the mean
of token embeddings (e.g., Wannasuphoprasit et al. (2023)). This section explains the artifacts that can
arise when using such word embeddings.

Let Sw be the set of sentences containing the word w in the corpus, and Tw be the set of tokens when
word w is tokenized. Similar to the token embedding set Xt defined in (2), we define the embedding set
of word w using the d-dimensional contextualized embedding model f and Sw as follows:

Xw :=

{
1

|Tw|
∑
t∈Tw

f(s, t)

∣∣∣∣∣ s ∈ Sw

}
. (33)

Using bert-base-uncased as the embedding model, we performed the same experiments on Xw as those
in Fig. 11a, and we show the results in Fig. 22, with words colored by |Tw|. Here, unlike Fig. 11a, we
plotted the actual values of Q(Xt), M(Xt), and V (Xt) instead of using a log scale for better visualization.
As shown in Fig. 22, words with the same number of tokens tend to form clusters, especially in the shallow
layers. Additionally, the values of Q(Xw), M(Xw), and V (Xw) become smaller as the number of tokens
increases. This is likely because, as the number of tokens increases, the averaged component values tend
to approach zero. These results are consistent with previous research (Zhou et al., 2022b), which showed
that the mean norm tends to become smaller as the number of subwords increases. With this in mind, we
conducted our analysis in this study using token embeddings.

Interestingly, this artifact diminishes as the embeddings become more contextualized in the deeper
layers. Therefore, in the experiments conducted by Wannasuphoprasit et al. (2023), where only the final
layer of bert-base-uncased was used to analyze Ex∈Xw {∥x∥}, the effect of such artifacts appeared to
be relatively small.



7808

Figure 22: Results of the same experiments as in Fig. 11a using each word embedding set Xw, where the embeddings
are the means of the token embeddings for bert-base-uncased. Words are colored based on the number of tokens
produced by BERT tokenization. The clustering of words with the same color indicates an artifact caused by taking
the means of the token embeddings.
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