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Abstract

Multimodal Entity Alignment (MMEA) aims
to identify equivalent entities across different
multimodal knowledge graphs (MMKGs) by
integrating structural information, entity at-
tributes, and visual data, thereby promoting
knowledge sharing and deep multimodal data
integration. However, existing methods often
overlook the deeper connections between mul-
timodal data. They primarily focus on the in-
teractions between neighboring entities in the
structural modality while neglecting the inter-
actions between entities in the visual and at-
tribute modalities. To address this, we propose
a structure-guided multimodal entity alignment
method (SGMEA), which prioritizes structural
information from knowledge graphs to enhance
the visual and attribute modalities. By fusing
multimodal representations, SGMEA improves
the accuracy of entity alignment. Experimental
results demonstrate that SGMEA achieves state-
of-the-art performance across multiple datasets,
validating its effectiveness and superiority in
practical applications.1

1 Introduction

Knowledge Graphs (KGs) organize and represent
real-world knowledge through a graph structure,
and they have become powerful tools in fields
such as question answering (Chen et al., 2021,
2022b; Lan et al., 2021) entity linking (Rad-
hakrishnan et al., 2018), text generation (Koncel-
Kedziorski et al., 2019) and information re-
trieval (Han et al., 2018). In recent years, as ap-
plication scenarios have become increasingly com-
plex, Multimodal Knowledge Graphs (MMKGs)
have emerged (Chen et al., 2020a). MMKGs in-
tegrate multimodal data, such as visual informa-
tion, into traditional KGs (Lehmann et al., 2015;
Vrandečić and Krötzsch, 2014; Liu et al., 2019;

1Code: https://github.com/gmx1625/SGMEA
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Figure 1: An example of multimodal entity alignment.

Chen et al., 2020a; Wang et al., 2021), thereby pro-
viding richer knowledge representations. In the
process of MMKG integration, Multimodal En-
tity Alignment (MMEA) is a core task. As illus-
trated in Figure 1, MMEA aims to identify equiva-
lent entities across different MMKGs by compre-
hensively considering the structural information
of the graphs, entity attributes, and visual infor-
mation. This process not only facilitates knowl-
edge sharing between different MMKGs but also
lays a solid foundation for the deep integration of
multimodal data. However, existing methods typ-
ically leverage multimodal knowledge by simply
combining unimodal features heuristically. These
approaches overlook the deeper connections be-
tween multimodal data, resulting in the underuti-
lization of potential cues within cross-modal infor-
mation (Chen et al., 2022a). They focus only on the
interaction between adjacent entities in the struc-
tural modality, while neglecting the interactions
of entities in other modalities, such as visual and
attribute modalities. MSNEA (Chen et al., 2022a)
attempts to enhance this interaction through image-
guided methods, yielding promising results. How-
ever, structural modality occupies a pivotal role
among all modalities (Liu et al., 2021; Lin et al.,

https://github.com/gmx1625/SGMEA
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2022). Consequently, structural modality should
receive more attention and utilization during the
multimodal alignment process. We speculate that
a deeper exploration of intra-modality neighbor in-
teractions will further enhance the accuracy and
effectiveness of multimodal entity alignment.

To this end, we propose a structure-guided multi-
modal entity alignment method. This method prior-
itizes leveraging structural information from knowl-
edge graphs to enhance both visual and attribute
modalities, and by integrating multimodal repre-
sentations, it more effectively identifies equivalent
entities across different knowledge graphs. By em-
phasizing the core role of the structural modality,
our method not only significantly improves align-
ment accuracy but also deeply explores potential
connections between multimodal data, achieving
more precise and comprehensive entity alignment.
The experimental results clearly demonstrate the
effectiveness of our approach.

In this paper, our main contributions are summa-
rized as follows:

• We innovatively propose a method called SG-
MEA, which prioritizes the use of structural
information to enhance the visual and attribute
modalities in knowledge graphs, by integrat-
ing multimodal representations to achieve
more precise entity alignment.

• We particularly emphasize the importance of
the structural modality in multimodal align-
ment and explore intra-modality interactions,
thereby enhancing the accuracy and effective-
ness of multimodal entity alignment.

• Our method achieves SOTA performance on
three most widely used datasets, FB15K-
DB15K, FB15K-YAGO15K and DBP15K
datasets, validating its effectiveness and su-
periority in practical applications.

2 Related Work

2.1 Entity Alignment
Entity Alignment (EA) aims to identify equivalent
entities across different Knowledge Graphs (KGs)
to facilitate knowledge integration. Early work em-
ployed symbolic or schematic methods to address
the EA problem (Wijaya et al., 2013; Suchanek
et al., 2011). In recent years, embedding-based
methods have gained increasing attention. These
methods mainly fall into two categories: one cat-
egory is translation-based methods (Bordes et al.,

2013; Chen et al., 2017; Zhu et al., 2017; Sun et al.,
2018; Trisedya et al., 2019; Zhang et al., 2019;
Sun et al., 2019; Xin et al., 2022; Cai et al., 2022),
which capture the structural information between
entities through the translational properties of re-
lations. They optimize the objective function to
ensure that the distance between known aligned
entity pairs in the embedding space is as small as
possible, while the distance between non-aligned
entity pairs is as large as possible. The other cat-
egory is Graph Neural Networks (GNNs)-based
methods (Wang et al., 2018; Li et al., 2019; Mao
et al., 2020; Cao et al., 2019; Sun et al., 2020a;
Mao et al., 2021; Sun et al., 2020b; Liu et al., 2020;
Wu et al., 2020; Gao et al., 2022), which learn
richer entity representations by aggregating the fea-
tures of neighboring entities, effectively handling
the structural information of knowledge graphs
and enhancing alignment performance. Although
embedding-based entity alignment methods have
made significant progress in capturing the struc-
tural information of knowledge graphs and improv-
ing alignment performance, these methods mainly
focus on single-modal (e.g., structural or textual)
information. With the widespread application of
multimodal data (e.g., images, audio, video, etc.),
how to utilize multimodal information in knowl-
edge graphs to further improve entity alignment
performance has become a new research hotspot.

2.2 Multimodal Entity Alignment

Multimodal Entity Alignment (MMEA) effectively
improves entity alignment performance by intro-
ducing multiple modalities of information. In re-
cent years, researchers have proposed various meth-
ods to fully utilize these different modalities of in-
formation. PoE (Liu et al., 2019) integrates the
outputs of single-modal experts by assigning prob-
abilities to triples; MMEA (Chen et al., 2020a) gen-
erates multimodal entity representations and per-
forms transfer learning;EVA (Liu et al., 2021)lever-
ages visual knowledge and other auxiliary informa-
tion to facilitate both supervised and unsupervised
learning for entity alignment; MSNEA(Chen et al.,
2022a) uses an image-guided multimodal Siamese
network; MCLEA (Lin et al., 2022) explores intra-
and inter-modal interactions through contrastive
learning to bridge the gap between modalities;
MEAformer (Chen et al., 2023a) is based on a mul-
timodal Transformer architecture for alignment;
and ACK-MMEA (Li et al., 2023) enhances knowl-
edge graph entity alignment performance by con-
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sidering multimodal attribute consistency. These
methods significantly improve the accuracy and
robustness of entity alignment by integrating mul-
timodal information, providing a wealth of direc-
tions and ideas for multimodal entity alignment re-
search.We propose a structure-guided multimodal
entity alignment method that leverages knowledge
graph structures to enhance visual and attribute
modalities, improving the performance of knowl-
edge graph entity alignment.

3 Method

3.1 Problem Definition

A multimodal knowledge graph can be represented
as G = (E,R, I, A, V, TR, TA), where E, R, I ,
A, and V are finite sets of entities, relations, im-
ages, attributes, and values, respectively. A knowl-
edge graph consists of two types of triples: the
set of relational triples TR contains triples of the
form (h, r, t), representing that entity h is related
to entity t through relation r; the set of attribute
triples TA contains triples of the form (e, a, v),
representing that entity e has an attribute a with
value v. The goal of the multimodal entity align-
ment task is to identify equivalent entity pairs be-
tween two multimodal knowledge graphs. Given
two multimodal knowledge graphs Gs and Gt,
represented as Gs = (E,R, I, A, V, TR, TA) and
Gt = (E′, R′, I ′, A′, V ′, T ′

R, T
′
A), respectively, the

cross-graph alignment seed set is defined as H =
{(e, e′) | e ∈ E, e′ ∈ E′, e ≡ e′} where ≡ de-
notes the equivalence between two entities. The
objective of multimodal entity alignment is to find
corresponding entity pairs that describe the same
real-world concept in different multimodal knowl-
edge graphs.

3.2 Framework Description

The overall framework is shown in Figure 2 and
consists of three main components: the initial em-
bedding acquisition module, the structure-guided
module, and the modality fusion module.

3.3 Initial Embedding Acquisition

3.3.1 Structural Embedding
To model the structural relationships between
modalities effectively, we employ a Graph At-
tention Network (GAT) for structural embed-
ding (Velickovic et al., 2018). GAT adaptively
assigns different attention weights to each node’s
neighbors, thereby capturing complex interaction

information within the graph structure. For a given
node in the graph, its initial feature representation
is hi ∈ Rd. GAT generates a new representation
hgi by aggregating weighted features of the node
and its neighbors as follows:

hgi = GAT(Wg,Mg;x
g
i ), (1)

where Mg denotes the adjacency matrix of the
graph, and Wg is a learnable diagonal matrix (Yang
et al., 2015).

3.3.2 Relation, Attribute, and Visual
Embedding

In the process of obtaining initial features, we em-
ploy a simple feedforward network to map rela-
tions, attributes, and visual features into a low-
dimensional space. For relation features, we rep-
resent them using a bag-of-words model, where
the core idea is to convert the relation name into
a term frequency vector xr. For attribute features,
we utilize a pre-trained language model to process
the textual information of attributes and attribute
values, generating attribute features xa through the
BERT model. For visual features, we extract image
features xv using a pre-trained visual model such
as ResNet-152(He et al., 2016). The mapping for
each feature type can be expressed as:

hmi = Wm · xm + bm, m ∈ {r, a, v}, (2)

where Wm is the weight matrix for the linear trans-
formation of relational, attribute, or visual feature,
and bm is the bias term.

3.4 Structure-guided
3.4.1 Structure-Guided Visual Embedding
To ensure that the image embedding not only cap-
tures visual information but also incorporates struc-
tural information from adjacent entities, we pro-
cess the initial image embedding hvi with a one-
layer Graph Attention Network (GAT) to generate
a structure-guided image embedding hv+g

i .
Specifically, we input the image embedding hvi

and the adjacency matrix Mg into the GAT, and the
updated image embedding representation is given
by:

hv+g
i = GAT(Wv,Mg;h

v
i ), (3)

where Wv is the weight matrix for the linear trans-
formation.Through multi-layer processing by the
GAT, the image embedding not only integrates vi-
sual features but also incorporates graph structural
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Figure 2: The overall framework of SGMEA

information, resulting in a more enriched embed-
ding representation.

Ultimately, we obtain two levels of visual em-
beddings: the initial image embedding hvi and the
structure-guided image embedding hv+g

i obtained
through further processing by the GAT. These pro-
vide a richer representation of the entity by inte-
grating structural information at different levels.

3.4.2 Structure-Guided Attribute Embedding
Similar to the structure-guided image embedding,
we also apply a Graph Attention Network (GAT)
to guide the attribute embedding so that it can bet-
ter integrate the structural information from neigh-
boring entities. This results in a structure-guided
attribute embedding, denoted as ha+g

i .

3.4.3 Rationale for Not Applying Structure
Guidance to Relations

We choose not to apply structural guidance to re-
lations because relations inherently exist between
two neighboring entities and are already explic-
itly modeled through their interactions. In the
graph structure, relations naturally capture seman-

tic information between entities, making additional
GAT guidance unnecessary. Compared to attributes
or image embeddings, the representation of rela-
tions is sufficiently robust, and further guidance
may introduce redundancy or negatively impact the
model’s performance.

3.5 Modality Fusion
In this module, we follow Chen et al. (2023a) to
adapt the vanilla Transformer (Zhou et al., 2021)

3.5.1 Modal representation generation and
interaction

We first perform a linear transformation on the
input representation of each modality hm, mapping
them into query vectors Q(i)

m , key vectors K(i)
m m,

and value vectors V
(i)
m . The specific calculation

formulas are as follows:

Q(i)
m ,K(i)

m , V (i)
m = hmW(i)

q , hmW
(i)
k , hmW(i)

v , (4)

where W(i)
k , W(i)

k , and W
(i)
k are linear transforma-

tion matrices, and m ∈ {a, g, r, v, a+ g, v + g}.
The interaction between modality m and modal-

ity j is computed using the scaled dot-product at-
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tention mechanism, as defined by the following
formula:

βmj = Softmax
(
Q⊤

mKj√
dh

)
, (5)

Attention(Qm,Kj , Vj) =
∑

j∈M
βmjVj , (6)

where dh is the hidden layer dimension, used to
scale the dot product to keep it within a reasonable
range.

3.5.2 Multi-head cross-attention and
processing

To further enhance the model’s ability to capture
cross-modal interactions, we employ a Multi-Head
Cross Attention (MHCA) mechanism. Multiple
attention heads are calculated in parallel, and the
formula for each head i is:

headi = Attention(Q(i)
m ,K

(i)
j , V

(i)
j ), (7)

The outputs of all attention heads are then concate-
nated and mapped to the final output using a linear
transformation matrix Wo, as shown below:

MHCA(hm) = Wo

(
H⊕
i=1

headmi

)
, (8)

H denotes the number of attention heads, and ⊕
represents the concatenation operation.

To further refine the modality representations,
the output of MHCA is combined with the orig-
inal input hm through a residual connection and
then processed with Layer Normalization, which is
given by:

ĥm = LayerNorm(MHCA(hm) + hm), (9)

After the multi-head cross-attention mechanism, a
Feed-Forward Neural Network (FFN) further pro-
cesses the modality representations. The FFN con-
sists of two linear layers with ReLU activation to
introduce non-linearity, defined as:

FFN(ĥm) = ReLU(ĥmW1 + b1)W2 + b2, (10)

where W1 and W2 are linear transformation ma-
trices, and b1 and b2 are bias terms. The output of
the FFN is then combined with the input through
a residual connection and processed with Layer
Normalization:

ĥm = LayerNorm(FFN(ĥm) + ĥm), (11)

3.5.3 Fusion representation generation
To generate the fused modality representation
hFusion, we assign dynamic fusion weights wm for
each modality. The weights are dynamically cal-
culated based on the interaction strength between
modalities, as defined by:

wm =

exp

(∑
j∈M

∑Nh
i=0 β

(i)
mj

/√
|M | × Nh

)
∑

k∈M exp

(∑
j∈M

∑Nh
i=0 β

(i)
kj

/√
|M | × Nh

) , (12)

where M is the set of modalities, Nh is the number
of attention heads, and β

(i)
mj represents the interac-

tion weight between modality m and j in the i-th
attention head.

Finally, the fused representation is obtained
by performing a weighted concatenation of each
modality’s unimodal representation hm with its cor-
responding weight wm, as shown below:

hFusion =
⊕

m∈{a,g,r,v,a+g,v+g}

wm · hm, (13)

3.6 Optimization Objective
We employ contrastive learning to construct a loss
function that ensures the representations of the
same entity under different modalities are as close
as possible in the vector space while enlarging the
distance between different entities.We calculate the
matching probability of entity pairs and design the
loss function based on this probability.

Given an entity pair (e1i , e
2
i ), where e1i and e2i

represent the entity ei under two different KG, we
compute the matching probability of entity pair
(e1i , e

2
i ) as follows:

pm(e1i , e
2
i ) =

γm(e1i , e
2
i )

γm(e1i , e
2
i ) +

∑
ej∈N

neg
i

γm(e1i , e
2
j )
, (14)

where γm(e1i , e
2
i ) = exp

(
hm

T

i hmj /τ
)

denotes

the similarity measure between entities e1i and e2i .
Nneg

i represents the union of two negative sample
sets (Sun et al., 2018; Chen et al., 2020b): Nneg1

i ,
which is the negative sample set from the source
knowledge graph, containing all entities e1j except
for entity e1i ; Similarly, Nneg2

i is the negative sam-
ple set from the target knowledge graph. This for-
mulation allows us to measure the relative impor-
tance of entity pairs between positive and negative
samples, thereby adaptively adjusting the model’s
focus on positive and negative samples.

To ensure matching consistency, i.e., the sym-
metry between pm(e1i , e

2
i ) and pm(e2i , e

1
i ), we take
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the average of the matching probabilities in both
directions and using a logarithmic loss function.
The specific loss function is defined as:

Lm = − log

(
pm(e1i , e

2
i ) + pm(e2i , e

1
i )

2

)
, (15)

The goal of this loss function is to maximize the
matching probability of positive sample pairs.

We need to consider not only the alignment loss
of single modalities before cross-modal fusion but
also the alignment loss of single modalities after
cross-modal fusion, as well as the overall joint
alignment loss. To this end, we compute the align-
ment loss of single-modality features before cross-
modal fusion, LIE (using the pre-fusion single-
modality features hm) (Lin et al., 2022), the align-
ment loss of multimodal features after cross-modal
fusion, LRE (using the post-fusion multimodal
features ĥm), and the overall joint loss LFusion

(for aligning multimodal features hFusion). For
LRE , we do not compute the alignment loss for
the modality guided by structure. We speculate
that the Graph Attention Network (GAT) has al-
ready enhanced the structural representation of the
features during the guiding stage, and further en-
forcing alignment may weaken the consistency by
the Transformer layer (Zhou et al., 2021).

LIE =
∑

m∈{a,g,r,v,a+g,v+g}

Lm, (16)

LRE =
∑

m∈{a,g,r,v}

L̂m, (17)

where L̂m is a variant of Lm, calculated using
γ̂m (ei, ej) = exp

(
ĥm

T

i ĥmj /τ
)

. Finally, our train-
ing objective is:

L = LFusion + LIE + LRE (18)

4 Experiment

4.1 Experiment Setup
4.1.1 Datasets
We evaluate the performance of the model us-
ing three popular datasets, including the bilingual
dataset DBP15K (ZH-EN, JA-EN, FR-EN) (Sun
et al., 2017)and the monolingual datasets FB15K-
DB15K and FB15K-YAGO15K (Liu et al., 2019).
DBP15K contains around 400K triples and 15K
aligned entity pairs, with 30% used as seed align-
ments. The monolingual datasets FB15K-DB15K

and FB15K-YAGO15K cover different alignment
ratios (20%, 50%, 80%). Additionally, we address
the issue of missing images in our experiments by
assigning a random vector sampled from a normal
distribution to entities without images, where the
distribution is parameterized by mean and standard
deviation (Liu et al., 2021).

4.1.2 Iterative Training
We adopted a preparatory iterative training tech-
nique (Lin et al., 2022). Specifically, during each
epoch (Ke = 5), we consider cross-KG entity pairs
as mutual nearest neighbors in the vector space
and add these pairs to the candidate list N cd. Fur-
thermore, if entity pairs remain as mutual nearest
neighbors for consecutive Ks rounds (Ks = 10),
they are included in the training set.

4.1.3 Baseline Methods
We use Hits@Nand Mean Reciprocal Rank (MRR)
to evaluate the performance of our model and
the baseline methods. Hits@N (expressed as
a percentage) represents the proportion of cor-
rectly aligned entities among the top N ranked
candidates. MRR is the average of the recip-
rocal ranks of correctly aligned entities, where
the reciprocal rank reports the rank of the cor-
rect entity alignment. Higher values for Hits@N
and MRR indicate greater entity alignment ac-
curacy.We selected the following baseline meth-
ods for comparison: MUGNN (Cao et al., 2019),
AliNet (Sun et al., 2020b), BootEA (Sun et al.,
2018), NAEA (Zhu et al., 2019), MMEA (Chen
et al., 2020a), MSNEA (Chen et al., 2022a),
MCLEA (Lin et al., 2022), MEAformer (Chen
et al., 2023a), UMAEA (Chen et al., 2023b) and
ACK-MMEA (Li et al., 2023).

4.1.4 Implementation Details
To ensure fairness and consistency in our experi-
ments, all networks utilize a 300-dimensional hid-
den layer and are trained for 500 epochs (Chen
et al., 2023a). We implement a cosine learning
rate warm-up strategy with 15% warm-up, along
with early stopping and gradient accumulation
techniques. The optimizer used is AdamW with
β1 = 0.9 and β2 = 0.999, and the batch size is
set to 3500. For the visual encoder (Chen et al.,
2020a, 2023a), we follow the ResNet-152 architec-
ture on DBP15K, with a visual dimension of dv =
2048, and the VGG-16 (Simonyan and Zisserman,
2015) architecture on FBDB15K/FBYG15K, with
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DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MUGNN (Cao et al., 2019) .494 .844 .611 .501 .857 .621 .495 .870 .621
AliNet (Sun et al., 2020b) .539 .826 .628 .549 .831 .645 .552 .852 .657
EVA (Liu et al., 2021) .680 .910 .762 .673 .908 .757 .683 .923 .767
MSNEA (Chen et al., 2022a) .601 .830 .684 .535 .775 .617 .543 .801 .630
MCLEA (Lin et al., 2022) .715 .923 .788 .715 .909 .785 .711 .909 .782
MEAformer (Chen et al., 2023a) .771 .951 .835 .764 .959 .834 .770 .961 .841
UMAEA (Chen et al., 2023b) .800 .962 .860 .801 .967 .862 .818 .973 .877
SGMEA .852 .975 .899 .866 .979 .908 .882 .983 .920

Table 1: Results without iteration on three bilingual datasets. The best results are marked with bold, and the
second-best results are marked with underline.

DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

BootEA (Sun et al., 2018) .629 .847 .703 .622 .845 .701 .653 .874 .731
NAEA (Zhu et al., 2019) .650 .867 .720 .641 .873 .718 .673 .894 .752
EVA (Liu et al., 2021) .746 .910 .807 .741 .918 .805 .767 .939 .831
MSNEA (Chen et al., 2022a) .643 .865 .719 .572 .832 .660 .583 .841 .671
MCLEA (Lin et al., 2022) .811 .954 .865 .806 .953 .861 .811 .954 .865
MEAformer (Chen et al., 2023a) .847 .970 .892 .842 .974 .892 .845 .976 .894
SGMEA .899 .984 .931 .901 .985 .933 .917 .990 .945

Table 2: Results with iteration on three bilingual datasets.

dv = 4096. A bag-of-words (BoW) model (Yang
et al., 2019) is employed to encode relations into
1000-dimensional vectors, while pre-trained BERT
is used to initialize attribute embeddings, with a
dimension of 768. All experiments are conducted
on an RTX 3090 GPU.

Models
FB15K-DB15K FB15K-YAGO15K

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

20
%

MMEA .265 .541 .357 .234 .480 .317
EVA .199 .448 .283 .153 .361 .224
MSNEA .114 .296 .175 .103 .249 .153
MCLEA .295 .582 .393 .254 .484 .332
ACK-MMEA .304 .549 .387 .289 .496 .360
MEAformer .417 .715 .518 .327 .595 .417
SGMEA .543 .777 .625 .587 .826 .670

50
%

MMEA .417 .703 .512 .403 .645 .486
EVA .334 .589 .422 .311 .534 .388
MSNEA .288 .590 .388 .320 .589 .413
MCLEA .555 .784 .637 .501 .705 .574
ACK-MMEA .560 .736 .624 .535 .699 .593
MEAformer .619 .843 .698 .560 .778 .639
SGMEA .716 .882 .775 .780 .924 .832

80
%

MMEA .590 .869 .685 .598 .839 .682
EVA .484 .696 .563 .491 .692 .565
MSNEA .518 .779 .613 .531 .778 .620
MCLEA .735 .890 .790 .667 .824 .722
ACK-MMEA .682 .874 .752 .744 .676 .86
MEAformer .765 .916 .820 .703 .873 .766
SGMEA .815 .931 .828 .857 .951 .894

Table 3: The results on two monolingual datasets with-
out iteration

4.2 Main Results

To ensure fair comparisons, we followed the ap-
proach of Chen et al. by excluding surface-level
information interference(Chen et al., 2023b).

Models
FB15K-DB15K FB15K-YAGO15K

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

20
%

EVA .231 .448 .318 .188 .403 .260
MSNEA .149 .392 .232 .138 .346 .210
MCLEA .395 .656 .487 .322 .546 .400
MEAformer .578 .812 .661 .444 .692 .529
SGMEA .661 .847 .729 .750 .901 .805

50
%

EVA .364 .606 .449 .325 .560 .404
MSNEA .358 .656 .459 .376 .646 .472
MCLEA .620 .832 .696 .563 .751 .631
MEAformer .690 .871 .755 .612 .808 .682
SGMEA .752 .894 .802 .827 .938 .868

80
%

EVA .491 .711 .573 .493 .695 .572
MSNEA .565 .810 .651 .593 .806 .668
MCLEA 741 .900 .802 .681 .837 .737
MEAformer .784 .921 .834 .724 .880 .783
SGMEA .828 .921 .861 .882 .967 .915

Table 4: The results on two monolingual datasets with
iteration

4.2.1 Non-Iterative Results

Under non-iterative training conditions, the results
on the cross-lingual DBP15K dataset highlight the
superior performance of our model. For example,in
Table 1, on the DBP15K FR-EN dataset, our model
achieved 88.2% Hits@1, outperforming the best
baseline model UMAEA by 6.4%. Hits@10 and
MRR were 98.3% and 0.920, respectively, leading
across all metrics. These results fully demonstrate
the significant advantages of our model in non-
iterative training.

In monolingual tasks, such as in Table 3 the
FB15K-DB15K and FB15K-YAGO15K datasets,
our model also exhibited outstanding performance.
Notably, Hits@1 with 20% of the training data sur-
passed the previous best baseline model by 26%.
Furthermore, in many cases, our model using 20%
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DBP15KZH−EN DBP15KJA−EN DBP15KFR−EN

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

SGMEA .852 .975 .899 .866 .979 .908 .882 .983 .920
w/o Guiding img and att .834 .973 .886 .847 .975 .895 .862 .981 .907
w/o Guiding att .841 .970 .889 .854 .975 .899 .875 .983 .916
w/o Guiding img .850 .977 .898 .861 .980 .906 .877 .985 .917

Table 5: The ablation results on the DBP15K.

Figure 3: Attribute embedding uses the bag-of-
words model on datasets FB15K-DB15K and FB15K-
YAGO15K.

of the training data already outperformed the base-
line models trained with 50% of the data.

4.2.2 Iterative Results
In the iterative training experiments, our model
consistently demonstrated clear performance ad-
vantages across multiple datasets. As shown in
Table 2, on the cross-lingual DBP15K datasets,
our model excelled across all three language pairs
(ZH-EN, JA-EN, FR-EN), significantly surpassing
the best baseline model, MEAformer. In Table 4
On the monolingual FB15K-DB15K and FB15K-
YAGO15K datasets, our model also performed ex-
ceptionally well across different training data ratios
(20%, 50%, 80%). Particularly on the FB15K-
YAGO15K dataset, with 20% of the training data,
the model achieved 75% Hits@1, surpassing the
MEAformer model by 30.6%.

4.3 Ablation Study

We conducted ablation experiments on the
DBP15K dataset across three language pairs (ZH-
EN, JA-EN, FR-EN). We removed the image guid-
ing module, the attribute guiding module, and both
modules together to analyze the impact of these
components on the model’s performance.The ex-
perimental results presented in Table 5.

First, we observe that whether image guidance
or attribute guidance is added individually, the
model’s performance improves significantly com-

pared to when no guidance is provided, with an
average increase of 2%. This further demonstrates
the importance of attribute values in multimodal
entity alignment. While dual guidance from both
images and attention enhances overall matching
accuracy, in broader alignment metrics (such as
Hits@10), attribute guidance may be more effec-
tive in some cases.

We speculate that although images provide high
precision, they primarily rely on visual features.
On the other hand, attribute information typically
describes entities from multiple dimensions, cover-
ing a broader range of semantic features, thus help-
ing the model match entities more effectively over
a larger search space. The ablation study clearly
shows that our proposed structural guidance mod-
ules play a crucial role in improving the perfor-
mance of multimodal alignment tasks. These mod-
ules enable the model to better capture structural
information across different languages, thereby en-
hancing matching accuracy.

4.4 Model Variants

To ensure a fair comparison and validate the su-
periority of our model, we developed a version of
the model that uses a Bag-of-Words (BoW) repre-
sentation for attribute embeddings, consistent with
previous studies. We conducted experiments on the
FB15K-DB15K and FB15K-YAGO15K datasets.
The experimental results are shown in Figure 3,
where we performed statistical analysis on Hits@1
and MRR under 20%, 50%, and 80% seed settings.
The results demonstrate that our model architecture
still achieves significant improvements across all
metrics. Compared to the best-performing base-
line model, MeaFormer, our model achieves av-
erage improvements of 4% and 0.04 in Hits@1
and MRR, respectively. Overall, the experimen-
tal results strongly demonstrate the effectiveness
and robustness of our model, especially as it con-
sistently outperforms across different seed ratios,
further validating the effectiveness of the guiding
theory.
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5 Conclusion

This paper proposes a new method called SGMEA,
which aims to address the issue of insufficient in-
teraction between attribute and visual unimodal
neighbors in multimodal entity alignment. SG-
MEA prioritizes the utilization of structural infor-
mation from knowledge graphs to enhance the per-
formance of the visual and attribute modalities. We
conducted extensive experiments on several public
datasets, and the results fully validate the effective-
ness and soundness of SGMEA.

Limitation

In this study, while the proposed Structure-Guided
Multimodal Entity Alignment (SGMEA) method
achieves promising results in integrating structural
information to enhance the performance of vi-
sual and attribute modalities, its over-reliance on
structural information also reveals potential limi-
tations. The structural information in knowledge
graphs may suffer from insufficient heterogeneity,
meaning that the structures of different knowledge
graphs may not be completely consistent or may
have partial omissions. This issue could lead to in-
sufficiencies or inaccuracies during the alignment
process. To address this problem, future research
can draw inspiration from the concept of graph
structure completion to further expand and refine
the structural information in heterogeneous knowl-
edge graphs, thereby improving the accuracy and
robustness of entity alignment.
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