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Abstract

Despite significant progress in abstractive text
summarization aimed at generating fluent and
informative outputs, how to ensure the fac-
tual consistency of generated summaries re-
mains a crucial and challenging issue. In
this study, drawing inspiration from advance-
ments in causal inference, we construct causal
graphs to analyze the process of abstractive
text summarization methods and identify in-
trinsic causes of factual inconsistency, specif-
ically language bias and irrelevancy bias, and
we propose COFACTSUM, a novel framework
that mitigates the causal effects of these biases
through counterfactual estimation for enhanc-
ing the factual consistency of the generated
content. COFACTSUM provides two counter-
factual estimation strategies, including Explicit
Counterfactual Masking, which employs a dy-
namic masking approach, and Implicit Coun-
terfactual Training, which utilizes a discrimi-
native cross-attention mechanism. Besides, we
propose a Debiasing Degree Adjustment mech-
anism to dynamically calibrate the level of de-
biasing at each decoding step. Extensive exper-
iments conducted on two widely used summa-
rization datasets demonstrate the effectiveness
and advantages of the proposed COFACTSUM
in enhancing the factual consistency of gener-
ated summaries, outperforming several base-
line methods.

1 Introduction

Abstractive text summarization (Gupta and Gupta,
2019; Lin and Ng, 2019; Zhang et al., 2020; Luo
et al., 2023; Challagundla and Peddavenkatagari,
2024) has witnessed great success in generating
remarkably fluent and diversified summaries that
approach human-level performance. Neverthe-
less, the generated summaries often contain fac-
tually inconsistent errors against the source docu-
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Source document: No batsman from Bapchild Cricket Club
was able to get off the mark against Christ Church University
in Canterbury. “We couldn’t believe it, all they needed to do
was hit a wall to get one run,” Christ Church player Mike
Rose told the Crawley Observer. Somerset club Langport
set the record for the lowest score when they were dismissed
for zero in 1913. Wirral CC were bowled out for three in a
Cheshire League Division Three fixture in 2014...

Factually consistent summary: A cricket team was bowled
out for 0 in just 20 balls in a county six-a-side indoor cham-
pionships match.

Factually inconsistent summary: A 10-year-old boy has
broken the record for the lowest score ever made in first-class
cricket when he hit one run in his first match.

Figure 1: An example of generated summaries by base-
lines and COFACTSUM. The supporting facts in the
source document and inconsistent facts in the generated
summaries are marked in blue and red, respectively.

ments (Narayan et al., 2018; Maynez et al., 2020).
For example, as shown in Figure 1, the subject
is predicted as “a 10-year-old boy” while the cor-
rect answer is “a cricket team”, and the team’s
final score is wrongly predicted as “one” instead of
“zero”. Such inconsistencies contained in the gener-
ated summaries can mislead and confuse the public
and even raise legal risks, which brings significant
rectification costs and limits the applications of
abstractive text summarization.

To tackle such factually inconsistent issues, sev-
eral approaches have been proposed in recent years,
which can be divided into three categories: (i) fact
encoding, which integrates additional fact-related
information during encoding or decoding (Zhu
et al., 2021; Xiao and Carenini, 2022); (ii) post
editing, which adopts a rectification model to cor-
rect the generated summaries (Cao et al., 2020;
Chen et al., 2021); and (iii) auxiliary loss ap-
plying, which designs an auxiliary loss to penal-
ize the model for generating factually inconsistent
texts (Cao and Wang, 2021; Wan and Bansal, 2022;
Scheurer et al., 2023). However, most of these
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studies neglect the intrinsic causes of the factual
inconsistency in abstractive text summarization.

Considering the generation process of abstrac-
tive text summarization models, the generated sum-
maries rely on two key factors: the language prior
knowledge acquired during pre-training, and the in-
formation contained in the source document, both
of which contribute to the fluency and informa-
tiveness of generated summaries. However, they
might introduce language bias and irrelevancy
bias caused by the spurious linguistic correlations
learned from pre-training and the irrelevant infor-
mation in the source document. These biases drive
the observed factual inconsistencies in the gener-
ated summaries. For example, in Figure 1, the
unfaithful content “A 10-year-old boy” is not con-
tained in the source document, which is caused by
the language bias; and the unfaithful content “he
hit one run” is inferred from the mismatched tokens
“hit a wall to get one run” in the source document,
which is caused by the irrelevancy bias.

Shed light on the above insights, we make the
first attempt to incorporate the idea of causal in-
ference (Pearl, 2001; Pearl and Mackenzie, 2018)
into the generation process of text summariza-
tion to ensure the factual consistency of gener-
ated summaries by eliminating the language and
irrelevancy biases. Firstly, we build up a causal
graph among various elements to demonstrate their
causal relationships in abstractive text summariza-
tion. Then, based on the causal graph, we propose
a CounterFactual debiasing framework for abstrac-
tive Summarization, named COFACTSUM, to es-
timate and alleviate the causal effects of language
and irrelevancy biases on the generated summary.

The proposed COFACTSUM consists of two
counterfactual estimation strategies, including Ex-
plicit Counterfactual Masking (ECM) with an ex-
plicit dynamic masking strategy, and Implicit Coun-
terfactual Training (ICT) with an implicit discrim-
inative cross-attention mechanism. Furthermore,
we design a Debiasing Degree Adjustment (DDA)
module to dynamically adapt the debiasing degree
at each decoding step, improving the ability of the
proposed framework to position the factual incon-
sistencies in the generated summaries.

Guided by theoretical principles, we conduct a
series of experiments and successfully validate the
effectiveness and reliability of COFACTSUM. Our
main contributions are summarized as follows:

• We identify that language bias and irrelevancy

bias are currently the key factors affecting
abstractive text summarization. And we con-
struct causal graphs to determine the intrinsic
causes of such factual inconsistency.

• Based on theoretical insights, we propose
the COFACTSUM framework to mitigate the
causal effects of factual inconsistency, lead-
ing to the generation of factually consistent
summaries.

• The extensive experiments on two widely-
used summarization datasets CNN/DM (Her-
mann et al., 2015) and XSum (Narayan et al.,
2018) demonstrate the effectiveness of CO-
FACTSUM in enhancing the factual consis-
tency of generated summaries. Our codes are
publicly available at https://github.com/
lingzhq/CoFactSum.

2 Related Works

Counterfactual Inference In the field of natural
language processing, causal inference (Pearl, 2001;
Pearl and Mackenzie, 2018) has recently inspired
many works to discover the intrinsic causes of spe-
cific biases and remove their causal effects in an
interpretable way, such as the studies in visual ques-
tion answering (Niu et al., 2021; Chen et al., 2023),
text classification (Qian et al., 2021), fairness (Zhu
et al., 2024), and text summarization (Xie et al.,
2021). These methods target measuring causal ef-
fects of biases under counterfactual scenarios based
on causal graphs and eliminating causal effects by
mitigating them from total effect.

Factual Consistency in Text Summarization
As discussed in previous studies (Maynez et al.,
2020; Nan et al., 2021; Ladhak et al., 2022), current
advanced generation models in abstractive summa-
rization are prone to produce factually inconsis-
tent text. To tackle such issues, three mainstream
techniques have been applied recently. The first
is fact encoding, which aims to incorporate more
fact-related information during encoding source
documents or target summaries, such as knowl-
edge graphs (Huang et al., 2020; Zhu et al., 2021)
and document entities (Xiao and Carenini, 2022).
The second is post editing, which treats the gen-
erated summaries as drafts and further conducts
post-editing on them, and is usually achieved by
a separate correction model (Dong et al., 2020;
Cao et al., 2020; Chen et al., 2021). The third is
auxiliary loss applying, which designs auxiliary

https://github.com/lingzhq/CoFactSum
https://github.com/lingzhq/CoFactSum
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penalty losses to force the model to distinguish be-
tween faithful and unfaithful samples, and so far,
the unlikelihood loss (Li et al., 2020), contrastive
loss (Cao and Wang, 2021; Liu et al., 2022; Wan
and Bansal, 2022) and refinement loss from lan-
guage feedbacks (Scheurer et al., 2023) are most
widely adopted.

3 Methodology

3.1 Causal Graph Construction
A causal graph, also known as a causal network or
a causal Bayesian network, is a graphical represen-
tation of causal relationships and dependencies be-
tween variables or events in a system, which helps
in understanding and modeling cause-and-effect
relationships (Pearl, 2009).

The causal graph of abstractive text summa-
rization can be given as a directed acyclic graph
G = {V, E}, which represents the causal relation-
ships (i.e., E) between different variables (i.e., V).
The causal graph consists of five variables: the
source document X , the important information U
(relevant to the ground-truth summary), the irrele-
vant information R (irrelevant to the ground-truth
summary), the language prior P (generic language
knowledge such as grammar and syntax), and the
generated summary Y , as shown in Figure 2 (a).
The important information U and the irrelevant in-
formation R are composed by the source document
X , and their causal relationships are denoted by
the paths X → U and X → R, respectively.

During the generation process, the text summa-
rization model first encodes the source document
X , and then generates tokens step-by-step in an
auto-regressive manner for producing the summary
Y , which can be given as U → Y and R→ Y . The
causal effect of language prior P on the generated
summary Y can be expressed as P → Y .

In this study, we aim to estimate and mitigate the
causal effect of language prior knowledge P and
irrelevant information R on the generated summary
Y , i.e., R → Y and P → Y , which introduces
language bias and irrelevancy bias and causes the
factual inconsistent errors.

3.2 Causal Effect Estimation
Based on the causal graph, we can estimate the
causal effects of language bias and irrelevancy bias
on the generated summary.

Total Effect In the causal graph, suppose that the
document X is set to x, the underlying important
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Figure 2: Illustration for (a) the basic causal graph and
(b) our debiasing framework COFACTSUM.

and irrelevant information U and R is set to u and
r, respectively, and the language prior P is set to p,
then the generated summary Y can be given as:

Yu,r,p = Y (do(U = u), do(R = r), do(P = p))

= Y (U = u,R = r, P = p),
(1)

where the do operator can be omitted according to
the back-door criteria (Pearl, 2009). To measure
the total effect on Y , we need to compare the po-
tential outcomes of the same individual under the
treatment and no-treatment conditions, where the
no-treatment condition can be approximated by set-
ting U,R, P to empty values u∗, r∗, p∗ under the
counterfactual scenario. Formally, the total effect
can be given as:

Etotal = Yu,r,p − Yu∗,r∗,p∗ . (2)

Bias Elimination Similarly, the causal effects of
language prior P and irrelevant information R on
the generated summary Y can be estimated as:

Ebias = Yu∗,r,p − Yu∗,r∗,p∗ , (3)

where we set U = u∗ to exclude the causal effect
of the important information U on Y . To eliminate
the language bias and irrelevancy bias in the gener-
ation process, we remove their causal effects on the
generated summary from the total effect. Formally,
it can be given as:

Etotal − Ebias = Yu,r,p − Yu∗,r,p. (4)

The equation can also be regarded as the estima-
tion of the causal effect of important information
U on the generated summary Y when given the
R = r and P = p, as illustrated in Figure 2 (b).

3.3 Instantiation
In order to instantiate Equation (4) in abstractive
text summarization, we design two counterfactual
strategies, i.e., Explicit Counterfactual Masking
(ECM) and Implicit Counterfactual Training (ICT),
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which are designed for estimating during the in-
ference process and optimizing during the training
process, respectively. The instantiation of COFACT-
SUM is illustrated in Figure 3.

Explicit Counterfactual Masking (ECM) Pre-
vious studies (Xie et al., 2021) have used masking
techniques to block the causal effect of important
information on the generated summary. However,
the proposed ECM is different from previous stud-
ies in that it considers that during the generation
process, the decoder attends to different tokens of
the source document at different decoding steps.
Therefore, we propose to dynamically determine
the important tokens in the source document w.r.t.
each generated token, rather than using a fixed set
of important tokens.

Specifically, we use the cross-attention score as
an indicator and employ a top-K strategy to pick
up the top K positions with the maximum scores as
the important positions. To remove these important
tokens from the source document without causing
the disparity between training and inference, we
use a special token “[MASK]” to explicitly replace
the important tokens, similar to the pre-train stage
of most transformer-based models (Devlin et al.,
2019; Zhang et al., 2020). We also adopt a debias-
ing ratio α (α ≤ 1) to adjust the extent of debiasing,
in order to preserve the informativeness of gener-
ated summaries. Formally, the probability of each
generated token yt with ECM can be given as:

Pr(yt|x) = Pr(yt|y<t, x; θ)−α·Pr(yt|y<t, x
′; θ),

(5)
where x′ denotes the masked document, and θ de-
notes the model parameters.

Implicit Counterfactual Training (ICT) In ad-
dition to ECM, a counterfactual training strategy
with a discriminative cross-attention mechanism is
further proposed to implicitly minimize the causal
effect of bias on the generated summaries.

Specifically, at each decoding step, the source
document is dynamically split into two disjoint par-
titions (i.e., important tokens xu and irrelevant to-
kens xr) based on cross-attention scores. Then the
decoder model separately attends to these partitions
for counterfactual training. The probability of each
generated token yt at decoding step t can be repre-
sented as Pr(yt|y<t, xu; θ

′) and Pr(yt|y<t, xr; θ
′),

respectively, where θ′ denotes the parameters of
the counterfactual summarization model.

Intending to guide the counterfactual text sum-
marization model to rely less on the important to-
kens, we use an unlikelihood loss Lunl to penal-
ize the sequence log-likelihood when the model
attends to important tokens:

Lunl = −
|y|∑
t=1

log
(
1− Pr(yt|y<t, xu; θ

′)
)
, (6)

where y is the ground truth summary. Meanwhile,
a cross-entropy loss Lxent is adopted to increase
the probabilities of tokens that are generated when
attending to irrelevant tokens:

Lxent = −
|y|∑
t=1

log Pr(yt|y<t, xr; θ
′). (7)

Moreover, we adopt a Kullback-Leibler (KL)
divergence loss Lkl to further push away the pre-
dicted distributions over vocabulary when attend-
ing to the important tokens and irrelevant tokens
respectively, which can be formally given as:

Lkl = −
|y|∑
t=1

KL
(
Pr(·|y<t, xu; θ

′)||Pr(·|y<t, xr; θ
′)
)
.

(8)

Finally, the training loss can be defined by:

L = Lunl + γLxent + λLkl, (9)

where γ, λ are hyperparameters to control the
strength of adopted loss functions. Only the
decoder’s parameters are updated, with encoder
frozen to ensure encoder outputs are consistent
across treatment conditions during debiasing.

Applying the above counterfactual process, we
train a counterfactual decoder as an instantiation of
Yu∗,r,p in Equation (4). The debiased probability
of each generated token yt with ICT is given as:

Pr(yt|x) = Pr(yt|y<t, x; θ)−β ·Pr(yt|y<t, x; θ
′),

(10)
where β (β ≤ 1) is a hyperparameter.

Debiasing Degree Adjustment (DDA) Taking
both ECM and ICT into consideration, we point
out that debiasing at every decoding steps to the
same extent might not be an optimal solution, since
the intermediately generated sentences at different
decoding steps have different factually inconsistent
degrees. It is reasonable to conduct more intensive
debiasing when the generated sentence is relatively
less consistent and vice versa.
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Figure 3: Illustration of COFACTSUM in each decoding step to generate factually consistent text summaries.

To this end, we propose a dynamic adjustment
strategy for the debiasing degrees at different de-
coding steps. This involves pre-training a factual
consistency predictor using synthetic inconsistent
summaries, which adapts the debiasing ratio based
on inconsistency scores. The prediction process
is treated as a sequence labeling task, identifying
mismatched tokens as inconsistent and matched
ones as consistent.

During training at t-th decoding step, the pre-
dictor receives the following four representations:
the original decoding hidden states ht ∈ Rd, the
counterfactual hidden states generated from the
masked source document h′

t ∈ Rd, the element-
wise multiplication and the difference of the above
two hidden states. These representations are con-
catenated and sent to a fully connected layer and a
softmax function to obtain the predicted scores, as
formulated by:

St = softmax(W · zt + b) ∈ R2, (11)

zt = [ht;h
′
t;ht ⊙ h′

t;ht − h′
t] ∈ R4d, (12)

where d is the dimension of hidden states, W ∈
R2×4d,b ∈ R2 are learnable parameters in the lin-
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Figure 4: The smoothing function used in DDA for the
factually inconsistent scores.

ear layer, [; ] denotes the concatenation, ⊙ is the
element-wise multiplication, and St contains the
factually consistent score Sc

t and factually inconsis-
tent score Sic

t in which Sc
t +Sic

t = 1. We use cross-
entropy loss to train the predictor and freeze the
parameters of the original summarization model.

During inference, we multiply the subtracted
terms α · Pr(yt|y<t, x

′; θ) and β · Pr(yt|y<t, x; θ
′)

by a predicted factually inconsistent score to dy-
namically control the debiasing degrees. Besides,
as we observed in our experiments, the factually
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Methods CNN/DM XSum

R-L QAFE QAGS FCC FT-C FT-O COCO AVG R-L QAFE QAGS FCC FT-C FT-O COCO AVG

PEGASUS (ZHANG ET AL., 2020) 40.48 89.25 75.52 39.43 53.64 67.86 47.54 51.34 39.06 41.49 21.47 25.29 6.17 3.72 15.09 28.97
UNL (LI ET AL., 2020) 39.15 86.71 74.72 36.76 53.31 67.86 45.20 49.96 34.03 38.51 18.87 25.92 4.45 1.17 12.60 25.48
CORR (CAO ET AL., 2020) 39.79 82.30 69.49 22.68 49.46 58.87 41.55 46.92 38.95 41.72 21.73 25.01 6.10 3.69 15.07 28.92
CCGS (CHEN ET AL., 2021)† 40.40 87.24 73.35 37.09 54.71 67.40 47.20 50.78 38.68 41.08 21.14 25.11 8.31 3.67 14.95 28.86
CLIFF (CAO AND WANG, 2021) 39.47 88.64 76.59 39.22 54.57 71.02 46.99 51.15 38.14 43.34 22.80 24.73 6.24 3.15 15.41 28.71
SC (XIAO AND CARENINI, 2022)† 41.34 82.45 70.17 30.15 45.95 52.12 39.10 47.33 38.34 37.20 19.87 23.49 4.76 1.54 13.24 27.51

COFACTSUM 39.94 90.18 75.94 43.48 57.45 72.38 49.85 52.41 37.23 43.15 22.99 24.43 10.47 9.27 16.10 29.15

Table 1: Automatic evaluation results on CNN/DM and XSum. Methods with † are conducted with released codes.
Bold indicate methods with the best performances. Columns in grey indicate metrics in terms of factual consistency.

inconsistent scores tend to vary dramatically across
different decoding steps, thus we design a smooth-
ing function to restrict their variation range and
stabilize the inference. The overall predicted prob-
ability with debiasing can be formally given as:

Pr(yt|x) = Pr(yt|y<t, x;θ)− S̃ic ·
(
α · Pr(yt|y<t, x

′; θ)

+ β · Pr(yt|y<t, x; θ
′)
)
. (13)

S̃ic is the smoothed factually inconsistent score,
and at the t-th decoding step, it is calculated by:

S̃ic
t =

{
1− (2Sic

t − 1)2, Sic
t ≤ Sc

t

1, Sic
t > Sc

t
, (14)

which is illustrated in Figure 4. The overall train-
ing procedure and the computational overhead of
the proposed COFACTSUM to construct factual
consistency-enhanced text summaries in practical
applications is summarized in Appendix B.

4 Experiment

In this section, we will introduce our experimental
setup and results, which validate the effectiveness
of COFACTSUM. The detailed implementation is
provided in Appendix C.1.

4.1 Datasets and Metrics
Datasets We conduct experiences on two widely
adopted abstractive summarization datasets, in-
cluding CNN/DailyMail (CNN/DM) (Hermann
et al., 2015) and Extreme Summarization
(XSum) (Narayan et al., 2018). Both datasets con-
tain news articles and their corresponding sum-
maries written by professional journalists. The
detailed description of these datasets and their size
is provided in Appendix C.2.

Metrics We first adopt ROUGE-L metric (Lin,
2004) to evaluate the informativeness. However,
such traditional evaluation metrics are not capa-
ble of measuring factual consistency. Therefore,

we employ the following metrics to assess the fac-
tual consistency of COFACTSUM: QAFE(Fabbri
et al., 2022), QAGS(Wang et al., 2020), FactCC
(FCC)(Kryscinski et al., 2020), Fact Triple (FT-
C/O)(Goodrich et al., 2019), and COCO (Xie et al.,
2021). All of these metrics are widely used in the
evaluation of summarization, with detailed descrip-
tions provided in Appendix C.3.

4.2 Baselines

We adopt PEGASUS (Zhang et al., 2020) as the
model backbone, and mainly choose the following
four counterparts to compare with: (i) UNL (Li
et al., 2020), which leverages the unlikelihood loss
to penalize the probabilities of the tokens in un-
faithful samples. (ii) CORR (Cao et al., 2020),
which pre-trains a post-editing corrector model to
directly generate factually consistent summaries.
(iii) CCGS (Chen et al., 2021), which pre-trains
a factual consistency predictor and leverages it to
rank candidate summaries. (iv) CLIFF (Cao and
Wang, 2021), which adopts contrastive loss to dis-
criminate between faithful and unfaithful samples.
(v) SC (Xiao and Carenini, 2022), which contains
an entity-based SpanCopy mechanism with Global
Relevance to reduce mismatched entities.

4.3 Results

Automatic Evaluation We report the automatic
evaluation results on CNN/DM and XSum in Ta-
ble 1. Following previous studies (Cao and Wang,
2021), we randomly select 5,000 samples for the
factual consistency evaluation on CNN/DM. In
summary, the overall performances of COFACT-
SUM on both CNN/DM and XSum are significantly
better than baseline with improvements of at least
1.07% and 0.18%, which demonstrates the superior
trade-off ability of COFACTSUM between factual
consistency and informativeness.

Specifically, COFACTSUM demonstrates advan-
tages over baselines in most factual consistency
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Methods CNN/DM XSum

Win↑ Tie Lose↓ Win↑ Tie Lose↓

UNL 15.33 54.67 30.00 18.00 51.33 30.67
CORR 13.33 38.00 48.67 7.33 89.33 3.34
CCGS 8.00 87.33 4.67 12.67 78.00 9.33
CLIFF 21.33 59.33 19.34 17.33 62.67 20.00
SC 14.00 60.67 25.33 6.00 68.33 25.67

COFACTSUM 17.33 80.67 2.00 29.33 62.00 8.67

Table 2: Pairwise human evaluation results (%) in terms
of factual consistency compared with PEGASUS.

Methods R-L QAGS FT-C FT-O AVG

Ours 37.23 23.44 9.84 8.96 25.66

w/o DDA 37.64 22.79 8.00 7.68 25.23
w/o ECM 37.89 22.95 7.29 7.70 25.27
w/o ICT 38.50 21.68 5.97 4.36 24.59
w/o All 39.06 21.29 5.71 3.77 24.66

Table 3: Ablation study on different modules.

metrics. For instance, on CNN/DM, it achieves im-
provements of 0.93%, 0.42%, and 4.05% in QAFE,
QAGS, and FCC, respectively, compared to PE-
GASUS. And on XSum, it shows gains of 4.30%,
5.55%, and 1.01% in FT-C, FT-O, and COCO.
While there is a slight drop in the traditional R-L
metric (similar to CCGS and CLIFF), COFACT-
SUM still delivers competitive performance, con-
firming the informativeness of its summaries.

Human Evaluation We also conduct pairwise
human evaluations on the factual consistency of
generated summaries, as shown in Table 2. We
randomly select 100 samples from CNN/DM and
XSum and have three experienced annotators assess
whether summaries generated by factually consis-
tent methods are better than, tie with, or worse
than those from the baseline PEGASUS. The re-
sults show that COFACTSUM has the fewest losses
(2.00% in CNN/DM) and the most wins (29.33% in
XSum), indicating significant improvements in fac-
tual consistency. Additionally, human evaluation
results on informativeness (Appendix D) show that
COFACTSUM is competitive with baselines, achiev-
ing a strong balance between informativeness and
factual consistency.

4.4 Ablation Study

We conduct an ablation study to evaluate the ef-
fectiveness of the COFACTSUM modules (DDA,
ECM, and ICT) using 3,000 randomly selected in-

Methods R-L QAGS FT-C FT-O AVG

Ours 37.23 23.44 9.84 8.96 25.66

w/o Lunl 38.46 22.24 6.98 6.87 25.25
w/o Lxent 37.85 22.45 7.17 6.27 24.91
w/o Lkl 38.08 21.93 7.20 5.67 24.84

Table 4: Ablation study on different training losses.
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Figure 5: Analysis on different attending proportions of
irrelevant information.

stances from XSum, as shown in Table 3. The
results indicate that overall performance decreases
when any module is removed. Specifically, DDA
and ECM contribute equally with average improve-
ments of 0.43% and 0.39%, respectively, while ICT
has the largest impact with a 1.07% improvement.
This confirms the effectiveness of the COFACT-
SUM modules.

Additionally, we evaluate the effectiveness of
training losses (Lunl, Lxent, and Lkl) in Table 4,
where the KL loss Lkl shows the highest improve-
ment, contributing 0.82% to overall performance.

4.5 Hyper-parameters Study
Impact of Irrelevancy Bias We conduct several
experiments on the original PEGASUS model to
evaluate the negative impact of irrelevancy bias
on factual consistency. Specifically, we force the
model attends to different proportions of irrelevant
information based on the cross-attention scores dur-
ing decoding and assess the generated summaries.
The results are shown in Figure 5, from which we
can observe that the factual consistency scores (i.e.,
FT-C and FT-O) gradually decrease as the attending
proportion and the amount of irrelevant informa-
tion increase, demonstrating the negative effect of
irrelevancy bias.

Masking and Attending Strategy in ECM and
ICT To confirm the ascendancy of the dynamic
strategy, we select several static strategies for com-
parison. Following works that adopt static masking
strategies (Xie et al., 2021), we select three static
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Methods R-L QAGS FT-C FT-O AVG

Ours 37.23 23.44 9.84 8.96 25.66

Static (tok.) 32.93 21.51 9.66 8.54 23.08
Static (sent.) 35.34 20.51 7.90 5.30 23.29
Static (doc.) 38.08 20.95 7.77 4.80 24.63

Table 5: Analysis on different masking and attending
strategies in ECM and ICT. (tok.: token-level, sent.:
sentence-level, doc.: document-level)

types for masking and attending in ECM and ICT,
including token-level (tok.), sentence-level (sent.),
and document-level (doc.). These strategies are
proposed to mask and attend to the same named
entities, the same sentences with at least one en-
tity, and the entire tokens in the source document
during different decoding steps in ECM and ICT,
respectively.

The results are shown in Table 5, from which
we observe that all the overall performances of
the static strategies have significant decreases com-
pared with the proposed dynamic strategy used in
COFACTSUM. Moreover, we can see that the strate-
gies token-level and sentence-level lead to poor per-
formances on R-L while those of document-level
and the dynamic strategy are kept at the same level.
These results imply that the decoder has different
perceptions of important information at different
decoding steps; simply choosing the same part of
the source document as important information will
harm the informativeness, while indiscriminately
choosing the entire tokens or dynamically choosing
the important tokens can alleviate the issue.

Impact of Debiasing Degree We gradually in-
crease the static debiasing ratio α, β in Equation
(13) to investigate the impact of debiasing degree
on the informativeness and factual consistency.
From the results in Figure 6, we can see that with
the enhancement of debiasing degree, the R-L score
gradually decreases and the factual consistency
scores increase first and then decrease. This phe-
nomenon indicates that a proper debiasing degree
can improve the factual consistency of generated
summaries without weakening their informative-
ness, while a large debiasing degree might severely
hurt the informativeness and factual consistency.

4.6 Case Study

We further conduct a case study in Figure 7. From
the figure, it is evident that all the summaries gen-
erated by the baseline methods include factual in-
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Figure 6: Comparisons among applying different debi-
asing ratios α and β in COFACTSUM.

Source document: The employees, who worked in four
takeaways, are alleged to have been living and working in
the country illegally. The firms have been asked to produce
documents proving their staff had the right to work and live in
the UK. If they are unable to do so the Home Office said they
would impose a fine of up to £20,000 per illegal employee.
The process to deport the workers is already under way.

PEGASUS: The Home Office has launched an investigation
into the alleged illegal employment of more than 100 workers
at takeaways in Cardiff.
CCGS: The Home Office has launched an investigation into
the alleged illegal employment of four workers at takeaways
in Cardiff.
CLIFF: More than 100 illegal workers have been ordered to
leave the UK by the Home Office.
COFACTSUM (ours): The Home Office has launched an op-
eration targeting illegal immigrants working in the takeaway
food industry.

Figure 7: An example of generated summaries by base-
lines and COFACTSUM. The supporting facts in the
source document and inconsistent facts in the generated
summaries are marked in blue and red, respectively.

consistencies that are not mentioned in the source
document, such as the number of employees “100
workers” and the name of the city “Cardiff”, while
the proposed COFACTSUM alleviates such factual
inconsistency issue to some extent.

5 Conclusions

In this paper, we enhance the factual consistency of
generated summaries by utilizing counterfactual es-
timation to mitigate the causal effects of language
bias and irrelevancy bias. We propose COFACT-
SUM, a novel framework that contains two coun-
terfactual estimation methods: Explicit Counterfac-
tual Masking and Implicit Counterfactual Training.
Meanwhile, we propose a Debiasing Degree Ad-
justment module to dynamically calibrate debiasing
levels at different decoding steps. We conduct a
series of experiments, including comparisons with
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baselines, ablation studies, hyperparameter anal-
ysis, and case studies to demonstrate significant
advances in improving factual consistency.

Limitations

We investigate how to leverage counterfactual esti-
mation to eliminate language and irrelevant biases
in text summarization in this study. On the limita-
tions of this paper, we primarily conclude in four
aspects as follows: (i) The proposed method is eval-
uated on widely-used auto-regressive pre-trained
models, while its applicability and effectiveness for
large language models require further investigation.
(ii) The model complexity is increased for improv-
ing the factual consistency of generated summaries.
(iii) Current debiasing methods generally under-
mine the traditional metrics to some extent while
enhancing the factual metrics, and how to achieve
a better trade-off between traditional and factual
metrics remains a challenging problem.
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A Description of Symbols

For the convenience of reading and to ensure clarity
in the exposition of our methodologies and results,
we list all mathematical symbols and their corre-
sponding definitions in Table 6.

B Algorithm

By leveraging the foundational theories discussed
above and integrating the specified methodologies,
the overall training procedure of the proposed CO-
FACTSUM for constructing factually consistent-
enhanced text summaries in practical applications
is summarized in Algorithm 1.

Specifically, we take a source document x at
the input and aim to output a factually consistent
summary. At each decoding step t, Steps 4 and
Step 5 generate the probability of each generated
token yt using ECM, while Steps 6 generates the
probability of each generated token yt using ICT.
Steps 7 applies DDA to regulate the extent of the
effect of ECM and ICT. Ultimately, we obtain an
output y that has mitigated language bias.

From a theoretical perspective, the computa-
tional overhead introduced by the dynamic masking
and debiasing mechanisms can be assessed through
the equations involved in the process. Specifically,
as an example, consider the debiasing Equation
(10) in module ICT, where the computation of
Pr(yt|y<t, x; θ) is part of the standard decoding
process. The additional term, Pr(yt|y<t, x; θ

′) in-
troduces extra computational steps, but this addi-
tional cost is directly proportional to the number
of tokens being decoded and does not scale with
the size of the input or the complexity of the model
itself. Thus, while there is a slight increase in
computational cost, it is linear with respect to the
output length, rendering it manageable in practical
applications.

C Details of Experiments

C.1 Implementation Details

The proposed COFACTSUM is implemented based
on pytorch (Paszke et al., 2019) and Hugging-
face (Wolf et al., 2020). After conducting a hyper-
parameter search, we have obtained the following
recommended parameter settings. During the train-
ing process in ICT, we set γ, λ in Equation (9) to
1 and 0.01, respectively. The batch size is set to 8,
and the number of training steps is set to 50,000
on both datasets. The attending proportion of im-

Algorithm 1 COFACTSUM Algorithm

Require: Source document x, original summariza-
tion model fθ, counterfactual summarization
model f ′

θ′ trained with ICT, factual consistency
predictor g trained with DDA, maximum de-
coding step T

Ensure: Factually consistent summary y
1: Initialize y ← {};
2: for t← 1 to T do
3: Feed x, y<t into f to generate the probabil-

ity of each token yt at t-th decoding step
Pr(yt|y<t, x; θ);

4: Mask x according to the cross-attention
score to produce x′;

5: Feed x′, y<t into f to generate the probabil-
ity Pr(yt|y<t, x

′; θ);
6: Feed x, y<t into f ′ to generate the probabil-

ity Pr(yt|y<t, x; θ
′);

7: Feed x, x′ into g to generate the smoothed
factually inconsistent score S̃ic;

8: Calculate Pr(yt|x) according to Equation
(13) and select y∗t with highest probability;

9: y ← y ∪ y∗t ;
10: end for
11: return y

portant/irrelevant information is set to 0.5/0.5 and
0.1/0.9 on CNN/DM and XSum, respectively. The
learning rate is set to 5e-4 and 5e-5 on CNN/DM
and XSum, respectively. During the training in
DDA, the batch size is set to 8, the number of train-
ing steps is set to 50,000, and the learning rate is set
to 1e-4 on both datasets. And during inference, the
masking ratio in ECM is the same as the attending
proportion of important information in ICT on both
datasets. We use beam search for decoding and
set the beam size as 20 and 12 on CNN/DM and
XSum, respectively. For the debiasing ratio α, β
in Equation (13), we set α = 0.05, β = 0.01 on
CNN/DM and α = 0.15, β = 0.15 on XSum. The
unfaithful samples in DDA are constructed with the
system generation method (Cao and Wang, 2021).
All experiments are conducted on GeForce RTX
3090 GPUs with 24GB of video memory.

C.2 Datasets intro

The number of samples in the utilized datasets is
presented in Table 7, and the fundamental informa-
tion of these datasets is provided as follows:
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Symbol Description
V Variables in graph

E Causal relationships

G Directed acyclic graph

X Source document

U Relevant information to the ground-truth summary

R Irrelevant information to the ground-truth summary

P Generic language knowledge

Y The generated summary

K Positions with the maximum scores

d Dimension of hidden states

θ Model parameters

θ
′

Parameters of counterfactual generated model

x
′

The masked document

u
′

Causal exclusion value

α, β Debiasing ratios of ECM and ICT

yt The generated token

zt Representations information at decoding step

ht,h
′
t Original / Counterfactual hidden states

γ, λ Control hyperparameters of loss functions

ξbd The extent of Bias

S̃c
t , S̃

ic
t Smoothed factually consistent / inconsistent score

y Factually consistent summary

f The used model for generating summaries

g The factual consistency predictor model

Table 6: Description of symbols used in the paper.

(i) CNN/DailyMail (CNN/DM) (Hermann et al.,
2015), which is a widely used and reputable
collection of news articles and their cor-
responding abstractive summaries from the
CNN and Daily Mail websites, primarily uti-
lized for text summarization research and eval-
uation.

(ii) Extreme Summarization (XSum) (Narayan
et al., 2018), which is a widely used dataset
comprising abstractive summaries of British
Broadcasting Corporation (BBC) online arti-
cles, designed for text summarization tasks
and researches.

C.3 Metrics
We first adopt conventional metric ROUGE-L (Lin,
2004) to evaluate the informativeness of COFACT-

Number of samples CNN/DM XSum

Train set 287,227 204,045
Validation set 13,368 11,332
Test set 11,490 11,334

Table 7: Number of samples in datasets.

SUM. However, such traditional evaluation metric
is not capable of measuring the factual consistency
between the source document and summary. There-
fore, we adopt several metrics for evaluation as
follows:

(i) ROUGE-L (R-L) (Lin, 2004), which is an
automated evaluation measure in natural lan-
guage processing used to assess the quality of
machine-generated text summaries by measur-
ing the longest common subsequence between
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the generated summary and the reference text.

(ii) QAFactEval (QAFE) (Fabbri et al., 2022),
which combines entailment and question an-
swering based metrics to capture their com-
plementary signals and further boost the per-
formance.

(iii) QAGS (Wang et al., 2020), which first gener-
ates several questions based on the generated
summary with a Question Generation (QG)
model, and then generates two sets of corre-
sponding answers given the source document
and the summary with a Question Answer-
ing (QA) model. Finally, the QAGS score is
computed by comparing these answers with
token-level similarity metrics.

(iv) FactCC (FCC) (Kryscinski et al., 2020),
which is based on a weakly-supervised BERT-
based model to measure whether the summary
is entailed by the source document.

(v) Fact Triple (FT-C/O) (Goodrich et al., 2019),
which extract fact triples (subject, relation,
object) separately from the source document
and the summary and compare these two sets
of triples. Among them, FT-C is in a closed
scheme, where relation is predicted from a
pre-defined relation set; FT-O is in an open
scheme, where relation is the original text
span between subject and object.

(vi) COCO (Xie et al., 2021), which evaluates the
factual consistency in text summarization via
counterfactual estimation.

(vii) AVG, which first calculates the average score
over all the factual metrics, and then averages
it with the traditional metric R-L for a clear
comparison of the trade-off between the tradi-
tional and factual metrics.

C.4 Baselines
To validate the effectiveness of our COFACTSUM,
we select several baselines that have demonstrated
superior performance in text summarization tasks
over the years. In particular, we adopt the state-
of-the-art PEGASUS (Zhang et al., 2020) as our
model backbone, and mainly choose the following
counterparts to compare with:

(i) PEGASUS (Zhang et al., 2020), which em-
ploys a denoising autoencoder architecture to

generate coherent and contextually accurate
summaries from input documents.

(ii) UNL (Li et al., 2020), which leverages the
unlikelihood loss to penalize the probabilities
of the tokens in unfaithful samples.

(iii) CORR (Cao et al., 2020), which pre-trains a
post-editing corrector model to directly gener-
ate factually consistent summaries.

(iv) CCGS (Chen et al., 2021), which pre-trains
a factual consistency predictor and leverages
it to rank candidate summaries.

(v) CLIFF (Cao and Wang, 2021), which adopts
contrastive loss to discriminate between faith-
ful and unfaithful samples.

(vi) SC (Xiao and Carenini, 2022), which con-
tains an entity-based SpanCopy mechanism
with Global Relevance to reduce mismatched
entities.

D Human Evaluation Results

The results of human evaluations on the informa-
tiveness of the generated summaries are shown in
Table 8, which show that COFACTSUM are com-
petitive with baseline methods, indicating the pro-
posed COFACTSUM achieves a great balance be-
tween informativeness and factual consistency.

Methods CNN/DM XSum

Win↑ Tie Lose↓ Win↑ Tie Lose↓

UNL 10.33 59.33 30.34 18.67 53.33 28.00
CORR 12.67 67.00 20.33 2.33 95.67 2.00
CCGS 4.00 93.67 2.33 2.67 88.33 9.00
CLIFF 10.67 65.00 24.33 10.00 65.33 24.67
SC 14.33 66.67 19.00 12.33 66.33 21.34

COFACTSUM 8.33 83.00 8.67 22.00 65.67 12.33

Table 8: Pairwise human evaluation results (%) in terms
of informativeness compared with PEGASUS.
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