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Abstract

Language models encode extensive factual
knowledge within their parameters. The accu-
rate assessment of this knowledge is crucial for
understanding and improving these models. In
the literature, factual knowledge assessment of-
ten relies on cloze sentences, which can lead to
erroneous conclusions due to the complexity of
natural language (out-of-subject continuations,
the existence of many correct answers and the
several ways of expressing them). In this paper,
we introduce a new interpretable knowledge as-
sessment method that mitigates these issues by
leveraging distractors—incorrect but plausible
alternatives to the correct answer. We propose
several strategies for retrieving distractors and
determine the most effective one through ex-
perimentation. Our method is evaluated against
existing approaches, demonstrating solid align-
ment with human judgment and stronger robust-
ness to verbalization artifacts. The code and
data to reproduce our experiments are available
on GitHub*.

1 Introduction

Language Models (LMs) encode vast amounts of
factual knowledge within their parameters (Petroni
et al., 2019; Roberts et al., 2020). Assessing this
knowledge is crucial for understanding the capa-
bilities and limitations of these models (Kassner
and Schütze, 2020), as well as for improving their
performance in various applications (Jiang et al.,
2020). Despite extensive research in this area,
defining a proper measure of factual knowledge
within LMs remains an open problem.

Looking at the current literature, facts are gen-
erally represented as relations between entities in
the form of (subject , relation, object) triples, or
(s, r, o) for short. Examples include (France, cap-
ital , Paris) or (Germany, shares a border with ,
Switzerland). Assessing the knowledge of some

*github.com/Orange-OpenSource/DistFactAssessLM

fact (s, r, o) by an LM commonly relies on verbal-
izations of the pair (s, r) as a cloze sentence, which
can have the form of a question (e.g., (France, cap-
ital) → “What is the capital of France? ____”)
or an incomplete declarative sentence (e.g., “The
capital of France is ____”). These sentences are
concise, target specifically the tested fact, and their
expected continuation is a reference to the object o.

Due to the complexity of natural language, cloze
sentences can be continued with an Out-Of-Subject
(OOS) continuation that is linguistically correct
but not informative regarding the fact under study
(e.g., “The capital of France is a city of contrasts.”).
Moreover, non-functional relations can associate
many correct objects to (s, r). Thus, simply veri-
fying that the LM generates “Poland” given “Ger-
many shares a border with” is insufficient to deter-
mine whether it knows the fact (Germany, shares
a border with , Switzerland).

In this paper, we introduce a new knowledge
assessment method that mitigates these issues by
leveraging distractors, i.e., , incorrect but plausible
alternatives to the correct answer. For a given LM,
the probability of generating the correct answer
from a cloze sentence is expected to be higher than
the probability of generating a distractor. This ap-
proach is promising because restricting assessment
to comparisons between entities inherently elimi-
nates the issue of OOS continuations. Relying on
Wikidata to collect facts and entities, we show that
our distractor-based knowledge measure correlates
with human knowledge assessment, among several
measures from the literature, and is the least sen-
sitive to verbalization errors, which are common
when using cloze sentences.

The rest of this document is organized as fol-
lows: the state of the art of knowledge assess-
ment methods is reviewed in Section 2 ; then, our
distractor-based knowledge measure is introduced
in Section 3 ; different distractor retrieval strate-
gies are compared, and our knowledge measure

https://github.com/Orange-OpenSource/DistFactAssessLM
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is compared to other measures in the domain in
Section 4.

2 Related Work

Assessing the knowledge of LMs is an active re-
search area. While part of it includes the study
of linguistic knowledge embedded in transformers
by probing their latent representations (Hewitt and
Manning, 2019; Tenney et al., 2019; Jawahar et al.,
2019), our focus in on assessing factual knowledge.

As formulated in Petroni et al. (2019), most ap-
proaches represent facts as RDF triples from knowl-
edge graphs. Knowledge is then assessed using
predefined templates to convert triples to natural
language (e.g., “The capital of [SUBJECT] is [OB-
JECT]”). Although Jiang et al. (2020) highlighted
the challenges of this approach—notably regarding
the large number of ways a fact can be verbalized,
many methods have been proposed.

One category of methods involves generating
multiple continuations for a cloze sentence using a
decoding strategy such as beam search (Wiseman
and Rush, 2016) or contrastive search (Li et al.,
2023). The generated continuations are then ana-
lyzed using well-known metrics/techniques from
the domain: BERT-score (Zhang et al., 2020),
ROUGE-L (Lin, 2004), and LLM-as-a-judge
methods (Sun et al., 2024; Zheng et al., 2023).
These methods have the disadvantage of being vul-
nerable to OOS continuations because of the pos-
sibility that all or a large portion of the generated
continuations are OOS, giving little information on
the LM’s knowledge for the tested fact.

A more direct approach would be to use, as a
knowledge measure, the conditional probability
of the right answer as the continuation of a given
cloze sentence. However, interpreting this proba-
bility in terms of knowledge requires to set some
threshold above which the fact is considered as
known. Also, probabilities cannot be compared
across different models because of the biases intro-
duced by the training dataset. For example, an LM
trained on a QA dataset is more likely to generate
the correct answer after a question compared to
an LM trained on CommonCrawl, not because it
“knows” the fact better, but because it was condi-
tioned to answer questions with entities. A more
sophisticated knowledge measure based on con-
ditional probability is KaRR Dong et al. (2023),
which estimates the ratio between the probability to
generate the correct answer given the LM’s distribu-

tion and by pure chance. However, it suffers from
the same limitations as using the conditional prob-
ability of the correct answer. This metric ranges
over [0;∞[, which further impedes interpretability.

Finally, Precision@n, Petroni et al. (2019)
checks whether the correct answer is in the top-k
most probable continuations to the cloze sentence.
This has the disadvantage of being limited to single-
token answers, because of the explosion of the num-
ber of continuations for answers encoded in more
than one token.

As a consequence, our work aims to propose a
measure that addresses the various gaps previously
mentioned and summarized in Table 1. Indeed, our
distractor-based approach is easily interpretable,
free from the problems of OOS continuations. Fur-
thermore, it allows comparison across different
models, answers with multiple tokens, with a rea-
sonnable computational cost.

Overall, several links can be made with other
work. Especially, the work by Kassner et al. (2021)
is the closest to ours and also uses distractors to
assess factuality in LMs. However, their set of dis-
tractors for assessment is limited to a little more
than 30,000. In practice, though, there are millions
of entities in Wikidata, highlighting the need for
effective retrieval strategies to avoid performing in-
ference on each distractor. Then, the idea to rely on
distractor is close to the task of multiple-choice
question answering (MCQA) (Hendrycks et al.,
2021; Boratko et al., 2018) since distractors can
be seen as incorrect answers. MCQA assumes an
instruction-tuned model and introduces the ambi-
guity that errors may stem either from the model’s
inability to handle questions or from a deeper lack
of knowledge. Still, the shared issue is to automat-
ically determine the possible responses that will
most challenge the LM.

Finally, let one highlight that temporality of facts
is an important dimension that is under-explored
in the knowledge assessment literature. However,
we postpone this aspect for future work in order to
focus, yet, on measuring factual knowledge valid
at the present time, which is a simpler but still
challenging problem.

3 Our Knowledge Measure

The key principle of our knowledge measure is that
a model “knows” a fact (s, r, o) if it prefers (s, r, o)
against plausible incorrect alternatives of the form
(s, r, o∗), where the objects o∗ are referred to as
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Know. measure
Easily

interpretable
Robust
to OOS

Comparable
inter-LM

Support
multi-token answers

Computation
cost

ROUGE-L ✓ ✗ ✓ ✓ ++
BERT-score ✗ ✗ ✓ ✓ ++
LLM-as-a-judge ✓ ✗ ✓ ✓ +++
Precision@n ✓ ✗ ✗ ✗ +
Probability ✗ ✓ ✗ ✓ +
KaRR ✗ ✓ ✗ ✓ ++
Distractors (ours) ✓ ✓ ✓ ✓ ++

Table 1: Pros and cons of each knowledge measure.

distractors. Evaluating the preference relies on
verbalizing the pair (s, r) as a cloze sentence and
measuring the likelihood of the objects o and o∗ as
possible continuations.

This section first formalizes the knowledge mea-
sure and its key concepts. Then, it presents various
strategies to retrieve distractors in anticipation of
experiments in Section 4.1.

3.1 Fact Verbalization

Verbalization consists in mapping facts into natural
language. This is a key step since facts are sym-
bolic objects in knowledge bases and LMs can only
handle textual data . For our purposes, we decom-
pose the verbalization of a fact (s, r, o) into two
aspects: the pair (s, r) can be mapped to a cloze
sentence; the entity o can be expressed in one or
several ways. For both aspects, the main problem
is to handle the variability of natural language as
it has been shown that LMs can sometimes answer
differently to semantically equivalent variants of
the same prompt (Elazar et al., 2021; Kassner and
Schütze, 2020). Hence, we assume that a given
pair (s, r) can be associated with a set of semanti-
cally equivalent cloze sentences, noted as C(s, r).
Likewise, an entity e can be expressed in differ-
ent forms, or labels in the terminology of knowl-
edge bases (for instance, a person being referred to
through her/his full name or only last name). Thus,
an entity e is associated with a set of labels Λ(e).

3.2 Knowledge Measure K

Our knowledge measure is defined as a function
K that takes as input a fact f = (s, r, o). For sim-
plicity, let us consider a single cloze sentence c of
C(s, r) to assess knowledge of (s, r, o), our mea-
sure relies on the probability to continue c with a
label of o. The sum of these probabilities is referred

to as the plausibility Pl(o|c) and is defined as:

Pl(o | c) =
∑

λ∈Λ(o)

Pr(λ+ EOS | c) (1)

where EOS is the end of sentence token.
The plausibility of o is then compared to the

plausibility of several distractors. A distractor for
o is defined as an entity o∗ which has the same
type as o, no common labels with o∗, and such
that (s, r, o∗) is incorrect. Given a set ∆n(f) of
n distractors for the fact f , if the model knows f ,
then we should observe Pl(o|c) > Pl(o∗|c) for
any distractor o∗ ∈ ∆n(f). Thus, we define the
measure K as follows:

K(f |c) = Agg
o∗∈∆n(f)

1
[
Pl(o|c) > Pl(o∗|c)

]
(2)

where 1 denotes the indicator function, and Agg is
an aggregation function.

Choosing the minimum as an aggregation func-
tion is a natural choice, which yields a strict mea-
sure of knowledge, where the score is 1 if o is
preferred to all distractors, 0 otherwise. Another
reasonable choice is the average, which can be seen
as a smooth version of minimum. We refer to the
knowledge measures using these two aggregation
functions as Min@n and Avg@n respectively.

Finally, generalizing to all cloze sentences
C(s, r) the final formula for K is defined as fol-
lows:

K(f) =
1

|C|
∑
c∈C

K(f |c) . (3)

3.3 Distractor Retrieval Strategies
We consider a knowledge base B defined as follows.
Let E be set of entities and R a set of relations.
Then B ⊆ E × R × E, i.e., B is a set of triples
of the form (entity, relation, entity). Moreover, we
consider a function types that maps each entity
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to its types, e.g., types(Paris) = {City}. For
simplicity, we assume that B contains all true facts
of E ×R× E; in other words: a fact f is correct
if and only if f ∈ B.

The set of all distractors of f can be formalized
as the set Ω(f) of all entities o∗ ∈ E such that:

• (s, r, o∗) ̸∈ B ;

• types(o∗) ∩ types(o) ̸= ∅ ; †

• Λ(o) ∩ Λ(o∗) = ∅.

For any input f , the value of K(f) depends on
the set of n considered distractors ∆n(f). Here, ∆
denotes a distractor retriever, i.e., a function that
maps any input fact f to a subset of Ω(f).

The retrieval strategies we considered are de-
scribed in what follows:

Optimal Distractors. Given the objective of the
distractors to be competitive alternatives for a given
LM and a triple (s, r, o), the best possible distrac-
tors are the entities of the same type as o and with
the highest conditional probability given (s, r) as
provided by the LM. We denote the set of the
n most plausible distractors as:

∆n(f) = top-n
o∗∈Ω(f)

Pl(o∗|c) . (4)

Finding an exact solution to this problem involves
exploring a huge portion of the generation tree,
which can be very expensive.

Approximation of Optimal Distractors. This
strategy (noted ApprOpt) gives an approximation
of the set of optimal distractors defined in Equa-
tion 4. It uses a beam search of width equal to n
as a decoding strategy, constrained using a gram-
mar (Geng et al., 2023; Cao et al., 2021) enforc-
ing the generation of a continuation of the form
λ + EOS, where λ is a label of o or of one of
its distractors. It has to be noted that the number
of retrieved distractors can be smaller than n be-
cause it is possible for a label of o to be encoded
in two different sequences of tokens. A variant
of grammar-constrained decoding that avoids this
problem is an interesting direction for future work.

†For simplicity, the types of an entity are restricted to those
that were explicitly declared in Wikidata via the relations
instance of and subclass of, i.e., types(e) do not contain the
whole type hierarchy of e. Otherwise, all entities would have
the Entity type in common.

Semantic Distractors. Searching for distractors
in the LM generation tree is costly; a more frugal
approach is to frame distractor retrieval as a seman-
tic search task. The idea is to select distractors
that share common properties with o, by adapting
the classical TF-IDF approach‡. In a first step, all
entities e ∈ E are encoded as a bag of features
containing: (i) the entity e itself, (ii) all r such
that (e, r, o) ∈ B for some o; (iii) all o such that
(e, r, o) ∈ B for some r; (iv) all (r, o) such that
(s, r, o) ∈ B. Then, all bags of features are rep-
resented as TF-IDF vectors§ (Salton and Buckley,
1988), by considering each entity in E as a doc-
ument. At retrieval time, the similarity between
two entities is computed as the cosine similarity
between their respective vectors. For a given fact
f = (s, r, o), the method returns the n most similar
distractors in Ω(f). This strategy is noted Sem.

Temporal+Semantic Distractors. Temporal dis-
tractors are objects o∗ such that (s, r, o∗) was valid
in the past but is not anymore at the present time.
For example, the temporal distractors of the pair
(USA , president) are all the presidents of USA ex-
cept the current one. Since the training data of LMs
spans over multiples years/decades, verbalizations
of facts with temporal distractors have probably
been observed during the LM’s pretraining. Tem-
poral distractors also benefit from being most likely
semantically connected to o. In this strategy (noted
Temp+Sem), temporal distractors are prepended
to the list of semantic distractors. We note that
Temp+Sem and Sem strategies have the advantage
over ApprOpt of producing the same distractors for
all LMs, making their performance comparable.

Random Distractors. This last strategy draws
random entities o∗ ∈ B of a common type with o,
still under the constraint (s, r, o∗) /∈ B. Random
distractors are considered to provide a lower bound
on the quality of the distractors.

The next section aims at comparing between the
different retrieval strategies.

4 Comparison of Knowledge Measures

This section first compares retrieval strategies to
determine which one produces the hardest distrac-

‡TF-IDF is not essential for this strategy to work, it is only
a representative of the family of weighing methods and is used
to evaluate semantic search methods in general. Thus, another
weighing technique, such as BM25 (Robertson and Zaragoza,
2009), can be used instead.

§The TF-IDF vectors are indexed using NMSLIB for fast
retrieval (github.com/nmslib/nmslib).

github.com/nmslib/nmslib
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tors for LMs. It then compares the strategies with
measures from the literature based on their corre-
lation with human knowledge assessment. Finally,
comparisons are also presented regarding the ro-
bustness to verbalization artifacts, as verbalization
often rely on templates.

4.1 Which strategy produces the hardest
distractors?

In this experiment, our knowledge measure
(Min@n) is applied with several distractor retrieval
strategies to assess Pythia-6.9B’s (Biderman et al.,
2023) knowledge of a set of triples. Since good
retrieval strategies should yield challenging distrac-
tors, the best retrievers are those that produce the
lowest Min@n values.

Data. The experiments rely on a preprocessed
version of the 2021-01-04 dump of Wikidata (Am-
mar Khodja et al., 2024), which provides triples
with their popularity scores, as well as the types and
labels of each entity involved. It features 51 million
triples, 2,100 relations, 10 million unique entities,
and 1.34 labels per entity on average, indicating
a large coverage of factual knowledge. Moreover,
each relation comes with many templates for ver-
balizing facts in natural language. These templates
were generated using post-processed GPT3.5 fact
verbalizations. We augment the number of tem-
plates to increase the coverage of Wikidata rela-
tions from 1,123 to 1,866 relations, which is the
richest template database to our knowledge.

A set S of 1000 facts is sampled with various
levels of popularity. For each fact (s, r, o) ∈ S, a
cloze sentence is generated for (s, r) by filling the
subject slot of the template of r with a label of s.

Results. Figure 1 displays the mean value of
Min@n over S for n varying from 1 to 100.
We first note that the distractors retrieved using
Temp+Sem are significantly harder than random en-
tities from the target type (Random). The ApprOpt
strategy produces the most challenging distractors,
in particular when n is small. Indeed, the first dis-
tractor deceives the LM (Pythia-6.9B) in 60% of
the time on average, highlighting the poor factual
accuracy of LMs even for this kind of model size.
As n increases, Min@n does not converge to zero
but stabilizes at 0.35, meaning that there is a por-
tion of facts that is robust to ApprOpt distractors.
The curve of the Sem was not plotted because it was
identical to the Temp+Sem curve, which was ini-
tially surprising. After further analysis, we found
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Figure 1: Comparison of the different retrieval strategies
on S using Pythia-6.9B (the lower the curve, the harder
the produced distractors for the LM).
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Figure 2: Comparison between the difficulty of the
retrieval strategies on S′ using Pythia-6.9B.

that only ∼ 1% of facts in Wikidata possess at least
one temporal distractors, leading to no difference
in practice between these two strategies.

To better assess the advantage of temporal dis-
tractors, A set of 1000 facts, noted S′ from Wiki-
data is sampled following the same procedure to
sample S, except that the kept facts possess at least
1 temporal distractors. On S′, Temp+Sem produced
distractors that are significantly harder than Sem’s,
indicated by a decrease of 0.17 in Min@1 (Figure
2). We conclude that Temp+Sem is a superior strat-
egy compared to Sem, producing distractors at least
as difficult as those of Sem.

4.2 How does it compare with other
knowledge measures?

In the following two sections, our knowledge mea-
sure is compared with several measures found in
the literature regarding two aspects: their correla-
tion with human judgement, and their sensitivity to
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verbalization errors.

Metrics. As already introduced in Section 2, the
studied measures are : Probability, Precision@n
(Petroni et al., 2019), BERT-score (Zhang et al.,
2020), ROUGE-L (Lin, 2004), KaRR (Dong et al.,
2023), and LLM-as-a-judge (Sun et al., 2024).
Their formal definition is provided in Table 2 with
the same formalism as our method. LLM-as-a-
judge should be distinguished from other methods
because it is far more expensive, since one objec-
tive of our work is to provide a metric that can be
computed using a reasonable amount of resources.
The complexity of KaRR’s equation prevented its
inclusion in Table 2. For details about this measure,
readers should refer to the original paper Dong et al.
(2023).

Here, the implementation of LLM-as-a-judge
is based on the prompt in Sun et al. (2024) (in
Appendix A.1.2 of this reference). This prompt
was adapted to our data since we use declarative
cloze sentences for this experiment (Appendix D),
and we choose the judge to be GPT3.5¶.

Data. Dong et al. (2023) provides a dataset where
humans assessed the knowledge of GPT2-XL (Rad-
ford et al., 2019) on 210 facts||. Two groups of an-
notators were involved. For each fact (s, r, o), the
first group was charged to prompt GPT2-XL using
cloze sentences until the response of the model was
of same type as o, while the second group rated the
response (0 if incorrect and 1 if correct). The hu-
man assessment score is the average rating across
all human scores from the second group, and all
prompts produced by the first group, which ranges
from 0 to 1. The reported Kappa score of the an-
notations of the second group is 0.4. For a fair
comparison, all the measures use the same cloze
sentences, 5 per fact, to assess knowledge.

Experiment. Because several of these measures
have hyperparameters, a phase of calibration is per-
formed in order to maximize the correlation to the
human knowledge assessment scores. Following
previous work (Dong et al., 2023), the correlation
measure that is used is Kendall’s τ . The alignment
with human judgement of each knowledge measure
is computed as the mean Kendall’s τ across the
K = 3 folds of cross-validation.

This optimization process is done using a grid

¶gpt-35-turbo-16k-0613
||This is a subset of the full dataset of 410 assessed facts

that was used in their own work.

search over all hyperparameters for each measure:
the beam width parameter is varied in {1, 2, 5, 10,
20, 30, 50, 100} except in LLM-as-a-judge, where
it is varied in {1, 2, 5}, the number of distractors is
varied in {1, 2, 5, 10} ∪ {20, 40, ..., 200}, as well
as n in Precision@n.

Results. The correlation to human judgment for
each knowledge measure is shown in Table 3 and
the best configurations per fold are shown in the
Appendix. We were unable to reproduce the re-
ported KaRR performance of 0.42 in Kendall’s τ
with human judgement in our experiments and us-
ing our facts. We report however our tentative in
Table 3 which is much lower.

First, methods that explore the generation tree
(ROUGE-L and BERT-score) are not well corre-
lated to human judgement, except for LLM-as-a-
judge which is surprisingly well correlated given
that it used a beam width of only 1, 2, and 2 re-
spectively for each fold. Its main inconvenient re-
mains the cost of this approach compared to other
measures. As of our approach, the best strategy
retrieval is ApprOpt followed by Temp+Sem, then
finally Random. We note also that Probability,
which consists simply taking the average of proba-
bility of the correct objects, correlates surprisingly
well with human judgement compared to other met-
rics.

The best configurations of each knowledge mea-
sure per test fold are kept for the next experiments.

4.3 Robustness to verbalization artifacts

A neglected aspect in the literature is the impor-
tance of the verbalization process in the quality of
the assessment. In general, the use of templates
introduce several problems, because syntactical ar-
tifacts can arise, such as missing or mispresence
of determiners or prepositions before the object.
For instance, the template “[SUB] is located in the
[OBJ]” works for the triple (Washington, location,
United States) but fails for the triple (Tokyo, loca-
tion, Japan) because “the Japan” is syntactically
incorrect. This section evaluates the robustness of
knowledge measures to these errors by assessing
how much they deviate between using a perfect
verbalization compared to a flawed one. Given a
knowledge measure, a small deviation indicates
that template-based verbalization can effectively
substitute a manually crafted high-quality verbal-
ization, while a high deviation indicates that this
measure is too sensitive to verbalization artifacts.
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Name Definition Hyperparameters

Our measure
1

|C|
∑
c∈C

Agg
o∗∈∆n(f)

1
[
Pl(o|c) > Pl(o∗|c)

] Aggregation function,
number of distractors

Precision@n
1

|C|
∑
c∈C

1

[(
top-k
γ∈V

Pr(γ | c)

)
∩ Λ(o) ̸= ∅

]
n

Probability
1

|C|
∑
c∈C

∑
λ∈Λ(o)

Pr(λ|c) -

BERT-score
1

|C|
∑
c∈C

max
λ∈Λ(o),b∈B(c)

BERTScore(λ, b) Beam width

ROUGE-L
1

|C|
∑
c∈C

max
λ∈Λ(o),b∈B(c)

ROUGEL(λ, b) Beam width

LLM-as-a-judge
1

|C|
∑
c∈C

max
b∈B(c)

LLMJudge(Λ(o), b) Beam width

Table 2: Knowledge measures definitions. C is the set of cloze sentences used to assess the fact f = (s, r, o). B(c)
are the best sequences obtained from the LM using beam search given the prompt c. V is the vocabulary of the LM.
The complexity of KaRR’s equation prevented its inclusion in this table.

Know. measure Mean τ Std τ

KaRR† 0.104 0.039
ROUGE-L 0.138 0.122
BERT-score 0.159 0.063
Precision@n 0.185 0.028
Probability 0.262 0.047

Dist. Random 0.225 0.021
Dist. Temp+Sem 0.242 0.023
Dist. ApprOpt 0.282 0.024

LLM-as-a-judge 0.293 0.029

Table 3: Correlation of knowledge measures to human
judgement. The measure with the maximum correlation
(excluding LLM-as-a-judge) is in bold. † our tentative
of measuring the correlation of KaRR. The metrics were
grouped as : baseline knowledge measures (top group),
our measures (middle group), and expensive baseline
measures (bottom group)

Data. To build a dataset of verbalization errors,
we sampled 77 facts from S (Section 4.1) and ver-
balized each one of them using one of the five
available templates. An annotator (one of the au-
thors) then reviewed each verbalization, identified
any errors, and proposed corrected versions, while
being as critical as possible. The results showed
that 45.5% of the verbalizations contained at least
one minor error (Wilson’s 95% CI = [34.8, 56.5]),
indicating that small artifacts are very common
in template-based verbalization. However, no
major errors were reported (Appendix B).

Know. Measure Robustness

ROUGE-L 0.47
LLM-as-a-judge 0.58
BERT-Score 0.61
Probability 0.63
Dist. ApprOpt 0.92

Table 4: Robustness of knowledge measures to verbal-
ization artifacts.

Experiment. To measure robustness to these ar-
tifacts, we kept the 32 flawed verbalizations along
with their correct counterparts and fed them to the
studied measures. The robustness of a knowledge
measure to verbalization artifacts is determined
by how similar the outputs are between the cor-
rect and incorrect verbalizations. This similarity is
computed using Kendall’s τ averaged over the best
configurations of each measure (Table 4).

Results. Although the Probability measure is al-
most as correlated to human judgement as our mea-
sure, it is more sensitive to verbalization artifacts.
Conversely, Dist. ApprOpt is the by far the least
sensitive with a Kendall’s τ of 0.92, making our
measure the one that is well correlated to human
judgement, while being the most robust to artifacts.

5 Exploration

In this section, we delve deeper into the factors
influencing the alignment of our studied measures
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Figure 3: Relation between the number of distractors
and the correlation to human judgement.

with human judgment, in a first part, before study-
ing how model size influences the robustness to
distractors in a second part.

5.1 Influence of different factors

We study the impact of the number of distractors
for our knowledge measure, and the impact of the
number of cloze sentences for all measures. This is
useful in resource-limited applications to determine
how much correlation is lost when reducing either
distractors or cloze sentences.

Impact of the number of distractors. We group
the best configurations (from Section 4) of our
knowledge measure per retrieval strategy, and we
vary the number of distractors from 1 to 200, while
computing the mean correlation with human judge-
ment for each number over the cross-validation
folds. The results appear in Figure 3.

The Random and Temp+Sem retrieval strategies
reach optimum at around 130 and 110 distractors re-
spectively. On the other hand, ApprOpt strategy re-
quires less and converges rapidly to a near-optimal
correlation at approximately 15 distractors.

Impact of the number of cloze sentences. We
group the best configurations of the studied knowl-
edge measures (from Section 4) and we vary the
number of cloze sentences from 1 to 5, while com-
puting the mean correlation with human judgement
for each number over the cross-validation folds.
Results are shown in Figure 4.

All knowledge measures benefit from a larger
number of cloze sentences, indicating the impor-
tance of varying verbalizations to obtain a score
representative of human rating. This is especially
the case for BERT-score, ROUGE-L, and LLM-
as-a-judge which proportionally gain +5%, +3%,
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Figure 4: Relation between the number of cloze sen-
tences and the correlation to human judgement.
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Figure 5: Mean knowledge measure over S on different
model sizes using the ApprOpt retrieval strategy

and +7%, of correlation respectively. It appears
that ApprOpt reaches its peak at 3 sentences, indi-
cating that this number is sufficient for an optimal
correlation with human judgement.

5.2 Are larger models more robust to
distractors?

In this section, we use our measure to investigate
the robustness of language models to ApprOpt dis-
tractors and how it scales with the LM size.

To achieve this, we repeat the experiment from
the Section 4, varying the model size within the
Pythia family and using ApprOpt as the retrieval
strategy. Pythia models are ideal because while
their size changes, they are trained on the same
number of tokens and iterations.

In Figure 5, a trend emerges: the larger the
model, the more robust it is to distractors. However,
the gain in performance as the model size grows
is quite low. LMs are inherently vulnerable to dis-
tractors and increasing the model size helps but is
insufficient to attain a satisfactory robustness.
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6 Conclusion

In this paper, we introduced a new interpretable
measure to assess factual knowledge in language
models, by leveraging distractors. We defined and
compared different retrieval strategies in terms of
the difficulty of the distractors that find. We com-
pared our measure with others in the field on the
base of theoretical arguments (Table 1), human
judgment correlation and robustness to verbaliza-
tion artifacts. Our results demonstrate that our
distractor-based knowledge measure aligns well
with human knowledge assessment, while being
the most resilient to verbalization artifacts. Overall,
our distractor-based knowledge measure offers a
promising direction for more accurately evaluating
the factual knowledge embedded in LMs.

7 Limitations

Human Annotations. Because human valida-
tions are expensive to obtain, we rely on a lim-
ited set of human annotations to validate our con-
clusions. A larger human knowledge assessment
dataset and verbalization errors dataset are advis-
able to solidify our findings.

Out-of-subject continuations can be informative.
Out-of-subject continuations, that are generated
by the LM, were assumed to be uninformative of
whether they know the tested fact. While in fact,
they can be informative and at different degrees.
For example, assuming an LM is tested on the
fact (Paris, capital of, France), the LM continuing
“Paris is the capital of” with “a country”, is less
informative than “a European country”, which is
less informative than “France”. We did not explore
this aspect as it is very difficult to measure precisely
the information provided by a continuation.

8 Ethical Considerations

The detection of misinformation and inaccuracies
in language models is a significant challenge in arti-
ficial intelligence research. Our work contributes to
this goal by offering a tool and resources designed
to assess the factuality of LMs using reliable in-
formation from the Wikidata knowledge base, and
could potentially contribute to the enhancement
of the truthfulness and reliability of these models.
This is especially crucial in an era where misinfor-
mation can spread rapidly through digital channels.

However, it should be remembered that while
Wikidata is a reliable source, it is not immune to

biases and inaccuracies that may arise from the
contributions of its vast user base.
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A Extending the template database of
WikiFactDiff

WikiFactDiff (Ammar Khodja et al., 2024) is
a dataset that describes the evolution of factual
knowledge between 2021 and 2023, where facts are
represented as triples. This dataset also provides
a database of templates to convert these facts to
natural language, covering 1123 Wikidata relations.
To build this database, the authors asked GPT3.5
to verbalize 26K facts from Wikidata, which were
then post-processed to produce many templates for
each relation.

To cover a larger number of relations, we in-
crease the number of verbalized facts to 437954
(346702 from triples in WikiFactDiff and 91252
from Wikidata) using the same procedure as in Wik-
iFactDiff, resulting in a coverage of 1866 relations.

B Taxonomy of Verbalization Errors

This section describes in detail the annotation pro-
cess of verbalization errors and their correction,
to assess their impact on the studied knowledge
measures (Section 4.3).

The annotation process involves an NLP expert
(an author of this paper) and it is performed as
follows. First, 77 triples with various levels of pop-
ularity are sampled from the preprocessed Wikidata
dump of 2021-01-04 and verbalized using a ran-
dom template. Then, the annotator iterates through
each verbalization with access to the triple being
verbalized. Then, for each verbalization, the anno-
tator detects the errors, defines them in Table 8, and
corrects the verbalization. It has to be noted that
the annotator was asked to be as critical as possi-
ble when annotating errors. Each verbalization can
have zero, one, or many errors at the same time.

Now that each verbalization has an annotation
and potentially a correction, the proportion of each
error are computed and reported in Table 5.

To produce the summary shown in Table 6, we
group all the errors in three categories:

• minor errors : obj_deter, sub_deter,
obj_unclear, sub_unclear, adj_noun_conjug,
better_verb, wrong_conjug

• blunders : out_of_subject, wrong_language

We note that most errors concern the bad usage
of determiners which are probably the easiest errors
to correct automatically in this list.

Error type Proportion (%) Wilson’s CI

adj_noun_conjug 1.3 (0.2, 7.0)
better_verb 3.9 (1.3, 10.8)
obj_deter 13.0 (7.2, 22.3)
obj_unclear 5.2 (2.0, 12.6)
out_of_subject 0.0 (-0.0, 4.8)
sub_deter 14.3 (8.2, 23.8)
sub_unclear 5.2 (2.0, 12.6)
wrong_conjug 14.3 (8.2, 23.8)
wrong_language 0.0 (-0.0, 4.8)
Free of errors 54.5 (43.5, 65.2)

Table 5: Proportion (%) of the presence of each error in
the verbalizations produced by our verbalizer with their
respective 95% Wilson’s confidence interval

Error type Proportion (%) Wilson’s CI

only minor errors 45.5 (34.8, 56.5)
contain blunder(s) 0.0 (0.0, 2.5)
Free of errors 54.5 (43.5, 65.2)

Table 6: Proportion (%) of error categories in the verbal-
izations produced by our verbalizer with their respective
95% Wilson’s confidence interval

C Which measure benefits the most from
a large number of cloze sentences?

Proportional gain in Kendall’s τ for a particular

knowledge measure is defined as
τm + 1

τ1 + 1
, where

τm is the mean Kendall’s τ with human judgement
over the test folds of the cross validation, using
m cloze sentences. We plot the proportional gain
in Figure 6. We conclude from the results that
decoding methods (BERT-score, ROUGE-L, and
LLM-as-a-judge) are the ones that benefit the most
from multiple cloze sentences which can be ex-
plained by the fact that a larger number of cloze
sentences reduces the probability of falling in an
OOS continuation when decoding, giving more in-
formation to the knowledge measure to judge the
LM’s knowledge. On the other hand, our knowl-
edge measure, which is well correlated to human
knowledge, reaches the peak of correlation after 3
cloze sentences, which indicates that our method is
frugal with respect to the needed number of close
sentences.
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Figure 6: Proportional gain in Kendall’s τ with respect
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Figure 7: Proportion of temporal distractors per distrac-
tor position in S′.

D LLM-as-a-judge prompt

We adapt the prompt in Sun et al. (2024) which
used questions to assess the LM’s knowledge to
fit our data which contains cloze declarative sen-
tences.

You need to check whether the prediction of a question-answering
system to a query is correct. You should make the judgment based
on a list of ground truth answers provided to you in a form of a list
of aliases of the gold answer. Your response should be "correct" if
the prediction is correct or "incorrect" if the prediction is wrong.

Query: The author of The Taming of the Shrew (published in 2002)
is ____
Ground truth: ["William Shakespeare", "Roma Gill"]
Prediction: W Shakespeare
Correctness: correct

Query: The author of The Taming of the Shrew (published in 2002)
is ____
Ground truth: ["William Shakespeare", "Roma Gill"]
Prediction: Roma Gill and W Shakespeare
Correctness: correct

Query: The author of The Taming of the Shrew (published in 2002)
is ____
Ground truth: ["William Shakespeare", "Roma Gill"]
Prediction: Roma Shakespeare
Correctness: incorrect

Query: The country where Maharashtra Metro Rail Corporation
Limited is located is ____
Ground truth: ["India"]
Prediction: Maharashtra
Correctness: incorrect

Query: The job of Song Kang-ho in Parasite (2019) is ____
Ground truth: ["actor"]
Prediction: He plays the role of Kim Ki-taek, the patriarch of the
Kim family.
Correctness: correct

Query: The era to which Michael Oakeshott belongs is ____
Ground truth: ["20th-century philosophy"]
Prediction: 20th century.
Correctness: correct

Query: The department where Edward Tise (known for Full Metal
Jacket (1987)) was is ____
Ground truth: ["sound department"]
Prediction: 2nd Infantry Division, United States Army
Correctness: incorrect

Query: The wine region to which Finger Lakes AVA belongs is ____
Ground truth: ["New York wine"]
Prediction: Finger Lakes AVA
Correctness: incorrect

Query: [QUERY]
Ground truth: [LIST OF REFERENCES OF CORRECT OBJECT]
Prediction: [LM PREDICTION]
Correctness:

E Extrapolating the relation between LM
size and robustness to distractors

In Figure 5, a trend emerges: the larger the model,
the more robust it is to distractors. However, the
gain in performance as the model size grows is
quite low. Extrapolating this evolution with a log-
scale linear regression that fit very well the data
(R2 = 0.995), an absurd number of 2 × 1019

(twenty quintillion) parameters is needed to achieve
a 90% Avg@20 (Figure 8). This indicates that rea-
sonably increasing the size of LMs is not a solution
to this problem.
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Random Distractors Semantic Distractors Temporal+Semantic
Distractors

Approx. of Optimal
Distractors

Hugo Heermann Barron Trump Barack Obama Barack Obama
Suzanna von Nathusius Donald Trump Jr. George W. Bush George W. Bush
Bernhard Heinrich Overberg Ivanka Trump Bill Clinton John F. Kennedy
Joseph Siffert Eric Trump George H. W. Bush William Howard Taft IV
Bep Vriend Mary Anne MacLeod Trump Ronald Reagan Kim Jong-un
Lucien Carr Tiffany Trump Jimmy Carter Donald Trump Jr.
Andries van Dam Joe Biden Gerald Ford George H. W. Bush
Gilles Simeoni Melania Trump Richard Nixon Michael Phelps
Ghatam Udupa Marla Maples Lyndon B. Johnson Donald Rumsfeld
Kris Long Haim Saban John F. Kennedy Mike Ditka
Maxlei dos Santos Luzia Mark Warner Dwight D. Eisenhower Colin Kaepernick
Yael Lotan Michael Eisner Harry S. Truman John F. Kennedy Jr.
Dorman Bridgman Eaton Barack Obama Franklin Delano Roosevelt Thomas S. Monson
Harry Biedermann George Lindemann Herbert Hoover Dmitry Medvedev
Ischke Senekal Morgan Fairchild Calvin Coolidge Mikhail Gorbachev

Table 7: Sample of distractors retrieved using different retrieval strategies given the fact (USA, president, Donald
Trump). The cloze sentence used for the ApprOpt strategy is The president of USA is ____ and the model used is
Pythia-12B.
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Figure 8: Relation of model size to Avg@20 using the
ApprOpt retrieval strategy
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Name Description Example

adj_noun_conjug
A noun or adjective is mistakenly considered to
be the verb to conjugate

The language uses in France is French

better_verb
The verbalization does not perfectly conveys
the fact in the triple and could be mistaken for
another meaning

The language used in Nigeria is Koenoem
(except that Nigeria has 525 native languages
and Koenoem is not the predominant one)

(sub|obj)_deter
There is a determiner missing before the subject
or object

Alexander Macomb House was where (the)
president of the United States officially resides

(sub|obj)_unclear
The subject or object cannot be easily
determined and “blends” with the sentence
because it is too long for instance

Nikhil Dwivedi is part of the cast of
Scam 1992: The Harshad Metha story

wrong_conjug The verb is conjugated in the wrong tense.
Last year, the president of USA will be Joe Biden

or
Bluetooth is created in Sweden (“was” is better)

wrong_language
The verbalization is performed in a language
other than English

Il presidente degli Stati Uniti è Joe Biden

out_of_subject
The verbalization is out-of-subject and does
not convey the fact in the triple at all

-

Table 8: Definition of the verbalization errors

Know. measure Retr. strategy Agg. Num. distractors Beam width n τ

BERT-score 100 0.21
1 0.09
2 0.17

Dist. ApprOpt Min@n 200 0.31
0.26
0.27

Sem Min@n 80 0.22
200 0.27
120 0.24

Random Min@n 200 0.24
0.20

180 0.23
Temp+Sem Min@n 80 0.22

200 0.27
120 0.24

LLM-as-a-judge 1 0.27
2 0.28

0.33
Probability 0.32

0.24
0.23

Precision@n 100 0.17
0.17
0.22

ROUGE-L 100 0.25
1 0.01

0.15

Table 9: Best configuration of each knowledge measure per cross-validation fold with respect to the Kendall’s τ
correlation with human judgement.
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