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Abstract

Automatic biomedical annotation is essential
for advancing medical research, diagnosis, and
treatment. However, it presents significant chal-
lenges, especially when entities are not explic-
itly mentioned in the text, leading to difficulties
in extraction of relevant information. These
challenges are intensified by unclear terminol-
ogy, implicit background knowledge, and the
lack of labeled training data. Annotating with
a specific ontology adds another layer of com-
plexity, as it requires aligning text with a prede-
fined set of concepts and relationships. Manual
annotation is time-consuming and expensive,
highlighting the need for automated systems to
handle large volumes of biomedical data effi-
ciently. In this paper, we propose an entailment-
based zero-shot text classification approach to
annotate biomedical text passages using the
Homeostasis Imbalance Process (HoIP) ontol-
ogy. Our method reformulates the annotation
task as a multi-class, multi-label classification
problem and uses natural language inference to
classify text into related HoIP processes. Exper-
imental results show promising performance,
especially when processes are not explicitly
mentioned, highlighting the effectiveness of our
approach for ontological annotation of biomed-
ical literature.

1 Introduction

Biomedical information extraction plays a criti-
cal role in advancing medical research, diagnosis,
and treatment. Systematically analyzing extensive
biomedical literature helps uncover insights into
disease mechanisms, drug interactions, genetic as-
sociations, and treatment effectiveness. However,
the task is challenging due to unclear terminology,
implicit background knowledge, and diverse vo-
cabularies. Manual annotation is time-consuming
and labor-intensive, emphasizing the need for au-
tomatic extraction systems to efficiently manage
large volumes of data.

Figure 1: HoIP dataset example.

Biomedical annotation is the process of labeling
or tagging specific terms or phrases in biomedical
texts with predefined categories or classes. These
entities can include diseases, genes, proteins, chem-
icals, drugs, biological processes, and other rele-
vant biomedical concepts. In this paper, we aim
to annotate biomedical articles from PubMed with
HoIP processes. Homeostasis imbalance process
ontology (HoIP) organizes a wide range of terms
related to homeostasis imbalance courses and pro-
cesses. It focuses on the course of COVID-19 infec-
tious processes and cellular senescence (Yamagata
et al., 2024). By annotating PubMed texts with
HoIP process, researchers can better understand
the mechanisms of COVID-19 diseases and how
they progress. This helps in developing more effec-
tive treatments and diagnostic methods. Figure 1
shows examples from HoIP1 dataset. Each text pas-
sage from the HoIP dataset is manually annotated
by biomedical experts with a set of HoIP processes,
though these processes do not always explicitly
appear in the text. Shorter passages often have mul-
tiple annotations, while longer passages may have
fewer. This demonstrates the selective annotation
approach, where only the most relevant processes
are captured.

Traditional methods for automatic biomedical
entity use rule-based systems and dictionaries de-

1https://github.com/norikinishida/HOIP-dataset
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rived from specific ontologies, relying on prede-
fined term lists and patterns. While effective to
some extent, they struggle with language varia-
tions, context, and require frequent manual updates.
These methods assume that entities are explicitly
mentioned, and such mentions provide clear fea-
tures for extracting information. However, in real-
world scenarios, entities often appear implicitly,
which poses significant challenges. Machine learn-
ing methods usually depend on large amounts of
annotated data, which can be challenging and ex-
pensive to acquire due to the manual effort and
expertise needed for precise labeling. This data de-
pendency can also limit their ability to handle new
or unexpected variations, especially when anno-
tated data is scarce. As a result, zero-shot learning
is gaining popularity for its ability to perform tasks
without needing large annotated datasets.

In this paper, we propose text entailment-based
zero-shot text classification methods. We view
HoIP processes as classes and reframe the anno-
tation task as a multi-class and multi-label classi-
fication problem. Since each passage may con-
tain multiple HoIP processes and different pas-
sages might share similar associated processes, we
use zero-shot text classification to predict potential
classes/processes for each passage. We also ex-
plored a predictive method based on ontology map-
ping. In this approach, we align MeSH (Medical
Subject Headings) with the HoIP ontology. Predict-
ing HoIP processes directly from text is difficult
due to implicit mentions, limited data, and complex
language, so we use a mapping-based method that
predicts MeSH headings and infers HoIP processes
through established mappings. Both approaches
show promising results, particularly given the chal-
lenges of the dataset. The entailment-based zero-
shot classification proves to be the most effective
for tackling this type of complex task. However,
the mapping based predictive method serves as a
valuable complementary model, further enhancing
overall performance when combined with zero-shot
predictions. The major contributions and findings
of the paper are as follows:

• We created a biomedical annotator system that
doesn’t rely on explicit mentions. It automati-
cally tags biomedical text with specific HoIP
ontology terms, even when the knowledge is
described indirectly in the text.

• We introduce two novel approaches:
entailment-based zero-shot text classification

(ZPA) and ontology mapping-based predictive
model (MPA) for annotating biomedical
text passages with HoIP processes, without
relying on large labeled datasets.

• Textual entailment-based zero-shot text classi-
fication, treats the annotation task as a multi-
class and multi-label classification problem
and predict potential HoIP process candidate
for a given text sample.

• Mapping-based predictive model (MPA) lever-
ages ontology alignment by mapping MeSH
headings to the HoIP ontology, enabling the
inference of HoIP processes from text pas-
sages.

• Both methods showed promising results in
correctly identifying HoIP processes despite
the challenges posed by the dataset. We
observed that zero-shot text classification
performed better than the MeSH predictive
model. However, the highest annotation cov-
erage can be achieved through combining pre-
dictions from both models.

2 Homeostasis Imbalance Process
Ontology (HoIP)

HoIP Ontology The Homeostasis Imbalance Pro-
cess Ontology (HoIP) systematically classifies
a wide range of processes triggered by homeo-
static imbalances. It primarily focuses on cellu-
lar senescence and the infectious processes related
to COVID-19. The HoIP ontology is manually
annotated with COVID-19-related articles from
PubMed, specifically focusing on COVID-19 in-
fectious processes. These COVID-19-specific pro-
cesses are used as our primary dataset (El Khettari
et al., 2024) for this study.

HoIP Dataset The primary objective of this study
is to (semi-)automatically annotate biomedical arti-
cles with entities from a specific ontology. We used
the HoIP dataset, which is derived from the HoIP
ontology. The dataset comprises passages from
PubMed articles discussing biomedical processes
related to COVID-19, each passage describing at
least two specific processes. These processes are
manually annotated into triples head entity, relation,
tail entity, detailing relationships based on the HoIP
ontology. The dataset was then split into training,
development, and test sets, ensuring that passages
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Figure 2: (a) Entailment based ZPA model for label fully unseen and (b) Ft-ZPA model fine-tuned with HoIP-NLI
for label partially seen.

extracted from the same article were not scattered
across different splits. The dataset statistics are
shown in Table 1.

This HoIP dataset presents several unique chal-
lenges:

• Absence of Explicit Mentions: Entities and
processes are often not clearly named in the
text, with mentions being partial, implicit, or
missing, which makes it hard to match them
directly with ontology entries.

• Selective Annotation: Only the most signifi-
cant HoIP processes are annotated, focusing
on the most relevant information and avoiding
over-annotation of all related processes.

• Variable Annotation Scope: Annotations
range from single lines to entire paragraphs,
reflecting the varying lengths and complexi-
ties of the text.

• Overlapping Text: Text passages can overlap
but may have different entities, adding com-
plexity to the annotation process.

The complex annotation process of the dataset
makes it challenging for traditional supervised

Train Dev Test

# passages 255 35 37
# entities 1988 143 211
# triples 1848 137 177
Avg. words per passage 75.5 70.4 61.8
Avg. entities per passage 7.8 4.1 5.7
Avg. triples per passage 7.2 3.9 4.8

Table 1: Dataset statistics for the HoIP dataset.

models to achieve accurate alignment with the
HoIP ontology. The selective annotation of only
significant processes further complicates this task.
Therefore, we need an advanced method that can
handle implicit information, manage overlapping
contexts, and ensure precise alignment with the
HoIP ontology. (see Appendix A for ontology)

3 HoIP Process Identification

Biological process entities in the HoIP dataset are
annotated based on their presence in the text, ei-
ther explicitly or implicitly, without marking the
exact phrase in the passage. This approach re-
flects real-world conditions but makes automatic
process identification difficult. Traditional Named
Entity Recognition (NER) methods rely on explicit
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mention-text links for training, which are not avail-
able here. In the following sections, we will dis-
cuss our proposed methods for addressing this chal-
lenge.

3.1 Zero-shot Classification-Based Process
Annotation (ZPA)

Zero-shot classification is becoming popular in
biomedical information extraction due to its abil-
ity to handle limited annotated data. By leverag-
ing knowledge from large general datasets, these
models classify biomedical data without specific
training. This is particularly useful for the HoIP
ontology, where limited annotated data and implicit
processes make traditional supervised methods in-
adequate. To convert HoIP process annotation into
a classification task, we use the ZPA model, which
applies zero-shot classification based on textual en-
tailment. Figure 2. demonstrate the model architec-
ture. In this model, the input text passage serves as
the premise, HoIP processes act as hypotheses, and
the zero-shot classifier identifies which processes
are logically entailed by the text.

We simplify the traditional natural language
inference (NLI) model by combining the "neutral"
and "contradiction" categories into a single
"not-entailment" class, effectively turning the task
into a binary entailment problem. This approach
helps the model better differentiate between
entailed and non-entailed processes, improving
precision and simplifying decision-making by
using deep contextual understanding to map input
text to relevant HoIP processes.

3.1.1 Converting labels into hypotheses.
The first step of the ZPA model is to convert the
HoIP processes into hypotheses. To achieve this,
we start by transforming the HoIP process label
names into a format suitable for text entailment.
We utilize two hypothesis templates: one that uses
the direct format of the "HoIP process label" itself,
and the other rephrases it into a more descriptive
template, such as "This text is about <HoIP process
label>." These templates help the model better
understand the relationship between the input text
passage (the premise) and each potential HoIP
process (the hypothesis), allowing for a more
accurate classification of the processes relevant to
the passage. In our experiment, the first template
performed the best.

3.1.2 Converting classification data into
entailment data.

For a data split (train, dev and test), each input text,
acting as the premise, has a positive hypothesis
corresponding to the positive label, and all negative
labels in the data split provide negative hypotheses.
Note that unseen labels are not used as negative
samples during training, so they are entirely
zero-shot.

3.1.3 Entailment model learning.
We used three widely recognized state-of-the-art
pretrained model for zero shot classification tech-
niques: BART-Large-MNLI (Lewis et al., 2020),
DeBERTa-Large-ZeroShot (He et al., 2021; Laurer
et al., 2023), and RoBERTa-Large-ZeroShot
(Laurer et al., 2023). Proposed model explores
two setups namely label-fully-unseen (ZPA) and
label-partially-seen (Ft-ZPA). For label-fully-
unseen setup, we directly apply the pretrained
entailment model on the test sets of zero-shot
text classification task. For label-partially-seen
setup fine-tuned the pretrained NLI model with our
small-scale HoIP-NLI dataset.

Label-partially-seen: In zero-shot text clas-
sification, a common approach is to train a
system on a subset of labels from a dataset and
then evaluate it on the entire set of labels. This
method is commonly applied to tasks such as topic
categorization or emotion detection. The setup,
referred to as ’Label-partially-seen’, trains the
model on a subset of labels, where some classes
have very few examples, and others are entirely
absent. Unlike traditional few-shot learning, which
requires at least a few examples from each class,
this approach challenges the model to generalize to
both seen and unseen labels. During testing, each
input passage (the "premise") is compared with all
possible class labels (the "hypotheses"). When the
model encounters new documents or previously
unseen classes, it leverages pre-trained knowledge
from models like BART-LARGE-MNLI, which
are specifically designed for natural language
inference, to generate accurate predictions.

Label-fully-unseen: This approach takes "zero-
shot" to its most extreme form, where no annotated
data is available for any labels. The idea is to
develop a system using whatever methods are
available and then test it on zero-shot text classifier
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datasets that cover completely new and open-ended
aspects.

Fine tune with HoIP-NLI Since the HoIP dataset
was not initially designed for an NLI task, we cre-
ated the HoIP-NLI dataset to adapt it for this pur-
pose. We converted the positive examples into a
pairwise format, where each example includes the
text input passage and the hypothesis, labeled with
"entailment." For instances with multiple HoIP pro-
cesses, we generated several positive pairwise ex-
amples, each corresponding to a different HoIP pro-
cess. Additionally, for each positive example, we
generated a random negative example by pairing
the premise with an unrelated hypothesis, labeled
as "not-entailment," to provide the model with a
balanced set of entailed and non-entailed pairs for
training. The process of constructing negative ex-
amples is discussed in section 5.2.1.

HoIP Process Prediction We have transformed
the process prediction task into a classification
problem, where each input passage is assigned one
or more classes from a set of 360 processes in our
dataset. Since a single passage can be annotated
with multiple processes, and multiple passages can
share the same process, this task becomes a multi-
class, multi-label classification problem. To ad-
dress this, the model predicts the top@k candidate
processes for each passage, based on the scores
from the zero-shot classifier.

3.2 Mapping-Based Predictive Process
Annotation (MPA)

Annotating HoIP processes is challenging due to
the lack of explicit mentions in the text and lim-
ited training data. To overcome these challenges,
we propose a mapping-based predictive approach
that utilizes semantic similarities and predictive
modeling techniques. Our MPA model includes:
(1) Mapping similarities between MeSH and HoIP
terms, (2) Predicting MeSH headings for text pas-
sages, and (3) Mapping these headings to HoIP
processes.

Semantic Mapping To calculate the similarity
between MeSH headings and HoIP processes, we
use the descriptive data from each ontology. MeSH
scope notes provide definitions and context for each
MeSH term, while HoIP process definitions explain
the roles of processes within HoIP. We convert
these descriptions into embeddings with PubMed-
BERT and compare them using cosine similarity to

assess their semantic similarity. The model refines
mappings by adjusting HoIP mappings based on an-
notated training data, creating a comprehensive list
of potential HoIP processes for each MeSH head-
ing. Given the conceptual differences, MPA model
supports many-to-many relationships, allowing for
flexible alignment between MeSH and HoIP terms.

MeSH Headings Prediction We have extended
WellcomeBertMesh2 model, originally designed
for tagging MeSH headings in PubMed abstracts,
to generate headings for our specific input passages.
WellcomeBertMesh utilizes PubMedBert for se-
mantic indexing and incorporates a multi-label at-
tention head to focus on relevant tokens for each
label and it is trained using binary cross-entropy
loss. (Details in Appendix C)

HoIP Process Inference During testing, MeSH
headings are generated for each text passage and
matched with established HoIP mappings. This
process helps predict relevant HoIP processes, even
when they are not explicitly mentioned in the text.

3.3 Optimizing Predictions: Combine MPA
and ZPA (ZMPA)

ZPA generates k candidate HoIP processes, while
the MPA method predicts HoIP processes based on
aligned MeSH Headings. By integrating these ap-
proaches into the ZMPA model, we achieve better
recall, covering more entities per text passage. Al-
though this combination may increase the number
of candidates and affect precision, the improved
recall ensures higher annotation coverage and rep-
resents a significant advancement in capturing rel-
evant processes. The complete illustration of the
ZMPA model architecture and case study can be
found in Appendix B and Section 6.

4 Experiments

The experiments presented in this section are de-
signed to evaluate the effectiveness of our ZPA and
ZMPA methods on both completely unseen data
and partially seen data. Additionally, we assess the
effectiveness of the proposed models in addressing
these challenges:

Q1. Can the textual entailment-based zero-shot
model (ZPA) accurately annotate challenging
biomedical data, particularly when entities are
implicitly mentioned or selectively annotated,
without any direct training?

2https://huggingface.co/Wellcome/WellcomeBertMesh
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Q2. How well do our models perform in handling
a multi-class, multi-label classification task
where each input text can be associated with
multiple labels from a broad set of process
classes?

Q3. How effective are these models when limited
training data is available? Does the incorpora-
tion of partially seen data enhance the perfor-
mance of the system?

Implementations setup We evaluate our zero-
shot process annotation (ZPA) model using three
distinct pretrained language models: BART-Large-
MNLI , DeBERTa-v3-Large-ZeroShot-V2, and
RoBERTa-Large-ZeroShot-V2C. These models are
renowned for their expertise in textual entailment,
natural language understanding, and zero-shot clas-
sification capabilities. For Ft-ZPA model we fine-
tune these pretrained models using the HoIP-NLI
dataset. All training sessions utilized the Adam
optimizer with a learning rate of 2 × 10−5 and
a weight decay of 0.01. The fine-tuning process
was executed using PyTorch and the Hugging Face
Transformers library.

Evaluation Protocol In our performance evalu-
ation, we used standard metrics: F1 score, accu-
racy, precision, and recall. Metrics were averaged
across all samples to provide an overall measure
of performance. To determine the final set of pro-
cess candidates, we select top@k processes from
the model’s output, with k evaluated at 5, 10, and
20. This choice is based on the dataset, where the
maximum number of labels per text is 19 and the
average is 8 for training and 5 for test set. Selecting
these k values ensures coverage of a broad range of
potential processes, ensuring both comprehensive
coverage and practical alignment with observed
process frequencies.

5 Results and Discussion

5.1 Label-fully-unseen evaluation

In this setup, we are not conducting any training.
Instead, we use a similarity-based model and a
generative zero-shot model as baselines, alongside
our entailment-based zero-shot model. We also
report results from combining the MPA model with
our proposed zero-shot classifier (ZMPA) for fully
unseen settings.

Baselines

Similarity mapping Annotation (SMA) We use
semantic similarity mapping to link HoIP processes
with text passages by leveraging vector representa-
tions from advanced models like BioBERT, SciB-
ERT, and PubMedBERT. Each process and passage
is embedded into a high-dimensional vector space,
capturing their meanings. We then compute co-
sine similarity between these vectors to assess how
closely related each process is to the passage. No
training is envolved in the process.

Generative Prompt based Annotaion (GPA)
This approach uses advanced language models like
LLaMA and ChatGPT to link text with candidate
processes by assessing their relevance to the infor-
mation in the text. We create prompts to query the
models about each candidate’s relatedness with the
text. The models respond to questions about the
relevance of each candidate, and positive responses
help identify which processes are most relevant.

Discussion As shown in Table 2, Semantic sim-
ilarity mapping struggles with detecting entities
without explicit mentions because they rely on gen-
eral embeddings and don’t capture contextual clues
or relationships effectively.

The Generative Prompt-based Annotation (GPA)
model faces challenges with consistency, as re-
sponses from models like LLaMA (Touvron et al.,
2023) and ChatGPT (OpenAI, 2024) can vary. Am-
biguity also leads to vague or incomplete answers,
especially for complex or resembling processes.
Additionally, these models lack domain-specific
knowledge, resulting in inaccurate or irrelevant an-
notations, which results in low accuracy in our
experiments.

ZPA employs an entailment-based zero-shot clas-
sifier and gives the best results compared to all the
baselines due to its ability to leverage a pretrained
model’s understanding of language and logic. This
method excels with limited annotated data by us-
ing natural language inference (NLI) to determine
logical relationships between text pairs, thus gen-
eralizing well from fewer examples. Among the
three pretrained models we used, bart-large-mnli
achieved the best performance. This is because
the model is well-suited for textual entailment
tasks due to its pretraining on a diverse range of
textual entailment data. In the extreme scenario
"label-fully-unseen", it achieves recall rates be-
tween 26.25% and 54.10% by selecting the top
5 to 20 candidate processes. However, precision
is affected by the dataset’s class imbalance and
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multi-label nature. Incorporating the MPA model
improves recall by nearly 5% but increases the
number of candidates. Despite these challenges,
the model performs comparably well in zero-shot
scenarios, leveraging text entailment effectively.
Among the three pretrained models we use bart-
large-mnli achieves the best performance as the
generative pretrained model is well suited for tex-
tual entailment task.

5.2 Label partially seen evaluation
In this setup, we have annotated data for partial
labels (HoIP-NLI), which serves as our training
set. For evaluation, we compare our proposed
entailment-based zero-shot model, which is fine-
tuned with HoIP-NLI, against a binary classifier
fine-tuned on HoIP-NLI. Additionally, we report
the results of combining the MPA model with our
proposed zero-shot classifier in this setting.

Binary-BERT (supervised) We fine-tune BERT-
based models like BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019), and PubMed-
BERT(Gu et al., 2020) for a binary classification
task to determine whether a passage entails any of
the 360 processes. During testing, the model selects
the label with the highest probability in single-label
scenarios, while in multi-label cases, it chooses all
labels higher than an ’entailment’ threshold.

Discussion Supervised binary classification
tends to perform well with seen labels because it
effectively learns patterns specific to these classes
from the training data. However, its performance
drops for unseen classes due to limited general-
ization beyond the training examples. Our main
challenges are the lack of enough annotated data
and missing explicit entity mentions making it
hard for the model to identify new entities. As
shown in Table 3, the Ft-binaryBERT model
performs poorly. In contrast, both the ZPA and
ZMPA models show significant improvements
after fine-tuning with HoIP-NLI. Despite the small
amount of training data, both models achieve over
a 7% improvement in recall, with notable gains in
precision and F1-score.

5.2.1 Negative sample Influence
In Figure 3, we show the influence of negative sam-
ples over the fine-tuned ZPA model. We applied
three different negative sampling methods.

• NS-R (Random Sampling): For each "Entail-
ment" instance, a "Not-entailment" example

is generated by randomly selecting a process
name from the dataset that does not appear in
the positive set.

• NS-S (Similarity-Based Sampling): We use
a pretrained BERT model to create embed-
dings for each process name and calculate
their cosine similarity. For each "Entailment"
instance, we find the top most similar process
names. If the closest match isn’t in the "Entail-
ment" set, it is labeled as "Not-entailment."

• NS-D (Dissimilarity-Based Sampling): We
generate negative examples by identifying the
process name that is least similar to each "En-
tailment" instance, based on cosine similarity
of their BERT embeddings.

NS-R works better for our model as shows in Fig-
ure 3. because it introduces diversity and reduces
bias, helping the model generalize more effectively.
NS-S can lead to over-fitting, while NS-D sam-
ples might be too far from the true class, making
it harder for the model to learn useful distinctions.
For our model, a 1:1 positive-to-negative sample
ratio works best.

5.3 Ablation study
In this section, we conduct an ablation study
to assess the impact of different model compo-
nents. We evaluate the Mapping-based model
(MPA), the zero-shot classification model (ZPA),
the hybrid model ZMPA, and their fine-tuned ver-
sions (Ft-ZPA and Ft-ZMPA). Table 4 shows that
MPA achieves a recall of 23.07% and precision
of 28.65%, indicating limited coverage. ZPA im-
proves recall to 54.01% but reduces precision
to 26.00%, with an F1-score of 31.28%. Fine-
tuning ZPA (Ft-ZPA) increases recall to 61.08%
and slightly improves precision to 26.24%, result-
ing in a better balance with an F1-score of 33.53%.
ZMPA, combining MPA and ZPA, raises recall to
64.14% but lowers precision to 23.30%, achiev-
ing an F1-score of 31.45%. The fine-tuned hybrid
model, Ft-ZMPA, has the highest recall at 71.39%,
though precision is 23.87%, with an F1-score of
32.50%. The study reveals that while Ft-ZPA bal-
ances recall and precision, Ft-ZMPA excels in max-
imizing recall. For tasks requiring extensive an-
notation coverage, increased recall across models
ensures nearly all relevant processes are captured,
which is crucial for real-world biomedical appli-
cations. Figure 4 illustrates how each model com-
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Model Pre-train Model
Top@5 Top@10 Top@20

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score

SMA
BioBERT 3.89 4.89 3.81 5.78 4.45 4.55 8.97 3.45 4.56
PubMedBERT 6.53 7.56 5.89 8.54 6.22 6.17 12.82 4.56 6.13
SciBERT 6.45 7.56 6.29 12.71 8.22 9.05 16.77 5.89 8.09

GPA
GPT 10.02 26.05 14.47 - - - - - -
Llama 12.51 15.41 13.81 - - - - - -

ZPA
roberta-large-zeroshot-v2c 23.01 31.60 26.76 28.76 28.13 28.01 37.34 19.78 25.89
deberta-v3-large-zeroshot-v2 22.36 30.39 25.38 35.35 29.54 29.54 52.18 24.36 30.70
bart-large-mnli 26.25 35.68 26.83 40.55 32.48 31.65 54.01 26.00 31.28

ZMPA
roberta-large-zeroshot-v2 42.04 25.77 31.34 43.61 22.35 29.10 51.83 16.94 25.50
deberta-v3-large-zeroshot-v2 40.72 26.98 31.77 50.21 24.84 31.89 60.87 21.63 30.21
bart-large-mnli 44.61 30.51 32.45 54.89 28.10 33.84 64.14 23.30 31.45

Table 2: Evaluation in Label Fully Unseen setting

Model Fine-tune Model
Top@5 Top@10 Top@20

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score
Ft-binary

bert-base-uncased + HoIP-NLI 9.34 19.11 12.22 14.24 20.15 16.85 20.34 16.35 17.78
BERT

Ft-ZPA
roberta-large-zeroshot-v2-HoIP-NLI 26.01 43.10 32.44 31.16 28.82 29.94 48.56 21.48 29.72
deberta-v3-large-zeroshot-v2-HoIP-NLI 24.01 42.21 30.60 38.72 39.83 36.49 55.35 25.01 32.78
bart-large-mnli-HoIP-NLI 31.73 48.89 34.46 47.41 38.41 38.63 61.08 26.24 33.53

Ft-ZMPA
roberta-large-zeroshot-v2-HoIP-NLI 47.43 34.55 36.50 50.93 27.88 36.03 58.27 18.94 28.58
deberta-v3-large-zeroshot-v2-HoIP-NLI 44.32 33.03 36.15 56.65 30.54 39.69 65.21 21.37 32.19
bart-large-mnli-HoIP-NLI 55.68 39.42 37.81 68.15 34.56 40.02 71.39 23.87 32.50

Table 3: Evaluation in Label Partially Seen setting

ponent and the number of candidates contribute to
continuous improvements in recall.

5.4 Robustness of Entailment-Based
Zero-Shot Performance

To evaluate the robustness of our entailment-based
zero-shot learning (ZSL) model, we assessed its
performance on a different dataset, demonstrating
the model’s generalizability beyond the initial prob-
lem. Specifically, we used the Medical-Abstracts
dataset from Kaggle, as proposed by Schopf et
al. (2022) (Schopf et al., 2022), which consists
of 28,880 abstracts across five patient condition
classes. The dataset is divided into 14,438 training
abstracts and 2,888 test abstracts.

The goal of the task is to classify these ab-
stracts into the five condition classes. Table 5
presents a comparative analysis of F1-scores be-
tween Lbl2TransformerVec and ZPA model pre-
trained in DeBarta. Our model shows compara-
ble results to the existing methods. However, in
the "partially seen label" setting, we significantly
enhance performance by improving nearly 10%
through fine tuning on a small NLI dataset that we
created from the training split. This fine tuning
step allowed the model to better handle unseen la-
bels, further demonstrating the effectiveness of our
approach in real-world scenarios.

Settings Model F1-score
Similarity Lbl2TransformerVec* 55.84

Label Fully Unseen
Zero-shot Entailment* 57.88

ZPA 57.18
Label Partially Seen Ft-ZPA 67.34

Table 5: Comparison of F1-scores across different mod-
els and settings.*Results from(Schopf et al., 2022)

6 Case Study

In biomedical research, understanding the underly-
ing mechanisms of diseases is crucial for effective
diagnosis and treatment. The Homeostasis Imbal-
ance Process (HoIP) ontology serves as a pivotal
tool, categorizing diverse processes implicated in
disease progression. Annotating PubMed text with
HoIP processes offers valuable insights into the un-
derlying molecular pathways and disease dynam-
ics. Our dataset comprises segments from PubMed
texts alongside their corresponding annotated HoIP
processes. For instance, the text "Isolated right
ventricular failure with and without confirmed pul-
monary embolism has also been reported" is as-
sociated with annotated HoIP processes like "em-
bolus formation in lung," "vasoconstriction," and
"thrombus formation." This example clearly illus-
trates that the HoIP processes are not explicitly
referenced within the text. We utilize two annota-
tion methods for predicting HoIP processes from
the text. Our first method Predictive Model from
MeSH relies on semantic understanding, yielding
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Figure 3: Influence of Negative
Samples on Performance

Figure 4: Recall@K results for each
model component ;K=[5,10,15,20]

Model R@20 P@20 F1-score
MPA 23.07 28.65 21.52
ZPA 54.01 26.00 31.28

Ft-ZPA 61.08 26.24 33.53
ZMPA 64.14 23.30 31.45

Ft-ZMPA 71.39 23.87 32.50

Table 4: Ablation Study. The re-
sults for the top 20 candidates.

predictions such as "vasoconstriction," "increas-
ing blood pressure," and "detaching of blood clot."
Meanwhile, our second method zero-shot text clas-
sification leverages advanced natural language in-
ference techniques, resulting in predictions such
as "right ventricular damage," "decreasing cardiac
output," and "embolus formation in lung." By com-
bining the results from both methods, we generate
a comprehensive prediction of HoIP processes for
the text, providing a robust understanding of the
molecular mechanisms at play. This integrated ap-
proach enhances our ability to discern disease path-
ways and inform biomedical research and clinical
practice effectively.

7 Related Work

Recent advances in biomedical text annotation
leverage supervised models, pretrained language
models, and Large Language Models (LLMs).
Supervised methods, such as the BiLSTM-CRF
model (Gong et al., 2021) and the hybrid approach
of Li et al. (2020), excel in process classification.
Pretrained models like BERT (Devlin et al., 2019)
and BioBERT (Lee et al., 2020) enhance perfor-
mance by utilizing extensive biomedical corpora
and fine-tuning on specific datasets. Traditionally,
these studies assume biomedical entities are explic-
itly mentioned multiple times and rely on these
mentions for features and struggle when mentions
are implicit. Perera et al. (2015) introduces one
of the few methods for implicit entity recognition
in clinical documents, proposing an unsupervised
approach that leverages knowledge base definitions.
Only a few studies focus on multi-label classifica-
tion task due to its complexity. Rios and Kavu-
luru (2018) use label embedding to attend the text
representation in the developing of a multi-label
classifier. Zero shot classification based methods
are gaining popularity in annotating biomedical
documents. Yin et al. (2019) proposed to treat
zero-shot text classification as a textual entailment

problem, while Gera et al. (2022) tackled the task
with a self-training approach. Koutsomitropoulos
(2021) uses zero-shot learning to validate ontology-
based annotations in biomedical texts. Pàmies
et al. (2023) enhances zero-shot text classification
through weak supervision and textual entailment
techniques, while Košprdić et al. (2024) general-
izes across unseen entities in zero-shot and few-
shot settings. GPT models have gained popularity
for NLP tasks. ChatGPT, with specific prompt de-
sign, has been applied in zero-shot clinical NER
(Hu et al., 2023). Although these models have
made significant progress in biomedical annota-
tion, they fall short in addressing challenges such
as limited labeled data, implicit entity recognition,
out-of-vocabulary concepts, and the complexities
of multi-label classification. Annotating biomedi-
cal text using the HOIP process poses all of these
challenges. Our proposed methods show promising
performance in overcoming these limitations.

8 Conclusion

In conclusion, our proposed system provides an ef-
ficient solution for automating biomedical text an-
notation by addressing challenges like implicit enti-
ties and limited labeled data. Using an entailment-
based zero-shot approach, we reformulate the an-
notation task into a multi-class, multi-label clas-
sification problem, enabling accurate predictions
of relevant processes from unstructured biomed-
ical texts. The integration of ontology mapping
boosts flexibility and coverage, making the sys-
tem scalable and efficient for large biomedical
datasets. This approach has the potential to sig-
nificantly advance medical research, diagnosis, and
treatment by streamlining and improving annota-
tion processes.

Limitations

Although our proposed annotation method for
biomedical documents without relying on mentions
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has shown promising results, several challenges
remain. The task is inherently complex due to
its multi-class, multi-label nature, which requires
precise identification of all relevant labels while
minimizing false positives. Additionally, while
our model leverages textual entailment, this can
sometimes lead to over-generalization or overlook
subtle details. Additionally, due to the imbalanced
class distribution and variability in label counts,
we use a top@k approach for predictions. This
method may not fully address the challenges of
managing candidate selection. Future work should
explore developing adaptive thresholds to enhance
prediction accuracy and better handle the variabil-
ity in label distribution. Moreover, the potential
to enhance prediction accuracy by incorporating
additional metadata—such as document structure,
context, or other relevant information has not yet
been fully explored in our current model. Lever-
aging such metadata could provide more detailed
insights and improve the overall performance of the
annotation system. Therefore, future work should
consider integrating these additional sources of in-
formation to address the existing limitations and
refine the annotation process further.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:

A pretrained language model for scientific text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3615–3620.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-Training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT), pages 4171–4186, Minneapolis,
MN, USA.

Oumaima El Khettari, Noriki Nishida, Shanshan Liu,
Rumana Ferdous Munne, Yuki Yamagata, Solen
Quiniou, Samuel Chaffron, and Yuji Matsumoto.
2024. Mention-agnostic information extraction for
ontological annotation of biomedical articles. In Pro-
ceedings of the 23rd Workshop on Biomedical Natu-
ral Language Processing, pages 457–473.

Ariel Gera, Alon Halfon, Eyal Shnarch, Yotam Perlitz,
Liat Ein-Dor, and Noam Slonim. 2022. Zero-shot
text classification with self-training. In Conference
on Empirical Methods in Natural Language Process-
ing.

Lejun Gong, Xingxing Zhang, Tianyin Chen, and
Li Zhang. 2021. Recognition of disease genetic
information from unstructured text data based on
bilstm-crf for molecular mechanisms. Security and
Communication Networks, 2021:1–8.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Yan Hu, Iqra Ameer, Xu Zuo, Xueqing Peng, Yujia
Zhou, Zehan Li, Yiming Li, Jianfu Li, Xiaoqian Jiang,
and Hua Xu. 2023. Zero-shot clinical entity recogni-
tion using chatgpt. arXiv preprint arXiv:2303.16416.
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A HoIP Ontology

The Homeostasis Imbalance Process Ontology
(HoIP) systematically classifies a wide range of
processes triggered by homeostatic imbalances. It
primarily focuses on cellular senescence and the in-
fectious processes related to COVID-19. The HoIP
ontology is annotated based on COVID-19 related
articles in PubMed using Protégé 5.5.03 and the
Web Ontology Language (OWL). The COVID-19
infectious processes are manually annotated from
PubMed articles. Passages corresponding to the
annotated terms are included, and article identi-
fiers (e.g., PubMed ID (PMID: 25301932), DOI)
are provided using the database cross-reference
annotation property. Process relationships are an-
notated with object properties. Causal relationships
between processes are primarily annotated using
the ‘has result’ relationship while sub-processes
are identified using the ’has part’ relation. HoIP
defines a "COVID-19 infectious course" as a se-
quence of processes that describe the infectious
mechanisms.These courses are organized into an
is-a (subclass of) hierarchy by severity, ranging
from mild to severe. Notably, the "COVID-19 se-
vere course" includes a subclass associated with
acute respiratory distress syndrome (ARDS). These
COVID-19-specific processes are used as our pri-
mary dataset for this study.

B ZMPA: Optimizing Predictions

Figure 5. illustrates the ZMPA architecture with a
real-time example from the HoIP dataset. It shows
how the ZMPA model integrates predictions from
both the ZPA and MPA models to maximize entity
coverage. The The ZPA model bridges the gap in
biomedical information extraction by leveraging
zero-shot classification to map implicit processes
with high precision and adaptability. Additionally,
the MPA model maps HoIP processes to MeSH
headings (Munne and Ichise, 2023), and the inte-
gration of ontology mapping (Rahman et al., 2024,
2020) enhances the model’s flexibility and cover-
age, making it a robust solution for handling com-
plex biomedical datasets. For the Ft-ZMPA variant,
we use the fine-tuned ZPA (Ft-ZPA) in place of the
standard ZPA to enhance performance.

3https://protege.stanford.edu
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Figure 5: ZMPA model architecture

C WellcomeBertMesh

WellcomeBertMesh is utilising the latest state of
the art model in the biomedical domain which is
PubMedBert from Microsoft and In addition, it
integrates a Multilabel attention head, a crucial
component that enables the model to dynamically
focus on different tokens for each label. This func-
tionality enhances the model’s ability to assess the
relevance of various labels, thereby improving its
performance in complex biomedical text analysis
tasks

WellcomeBertMesh is trained the model using
data from the BioASQ competition which consists
of abstracts from PubMed publications. They use
2016-2019 data for training and 2020-2021 for test-
ing which gives us 2.5M publications to train and
220K to test. This is out of a total of 14M publica-
tions. It takes 4 days to train WellcomeBertMesh
on 8 Nvidia P100 GPUs. The model achieves 63%
micro f1 with a 0.5 threshold for all labels.

J(θ) = − 1

NK

N∑
i=1

K∑
j=1

[yij log(ŷij) + (1− yij) log(1− ŷij)]

(1)

where: N is the number of samples, K is the
number of labels. ŷij ∈ [0, 1] is the predicted
probability for the i-th sample and the j-th label.
yij ∈ {0, 1} is the true value for the i-th sample
and the j-th label.
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