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Abstract

Visual instruction tuning is crucial for en-
hancing the zero-shot generalization capabil-
ity of Multi-modal Large Language Models
(MLLMs). In this paper, we aim to investi-
gate a fundamental question: “what makes for
good visual instructions”. Through a compre-
hensive empirical study, we find that instruc-
tions focusing on complex visual reasoning
tasks are particularly effective in improving
the performance of MLLMs, with results cor-
relating to instruction complexity. Based on
this insight, we develop a systematic approach
to automatically create high-quality complex
visual reasoning instructions. Our approach
employs a synthesize-complicate-reformulate
paradigm, leveraging multiple stages to gradu-
ally increase the complexity of the instructions
while guaranteeing quality. Based on this ap-
proach, we create the ComVint dataset with
32K examples, and fine-tune four MLLMs on
it. Experimental results consistently demon-
strate the enhanced performance of all com-
pared MLLMs, such as a 27.86% and 27.60%
improvement for LLaVA on MME-Perception
and MME-Cognition, respectively. Our code
and data are publicly available at the link:
https://github.com/RUCAIBox/ComVint.

1 Introduction

To extend the application scope of Large Language
Models (LLMs) (Zhao et al., 2023; Brown et al.,
2020) , a surge of work (Liu et al., 2023b; Ye et al.,
2023) augments LLMs with vision encoders to en-
dow the ability of multi-modal cognition and rea-
soning, leading to the emergence of Multi-modal
Large Language Models (MLLMs) (Yin et al.,
2023; Li et al., 2023c). To achieve good per-
formance, most work first pre-trains the MLLM
on a large collection of image-text pairs (e.g.,
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Figure 1: The relation between the complexity of the
used instruction set and the average performance of four
models on SEED-Bench and MME. The complexity is
measured by the reasoning steps counted by ChatGPT.

LAION (Schuhmann et al., 2021) and CC (Chang-
pinyo et al., 2021)) to align the text and visual
representations, and then fine-tunes it on visual in-
structions to improve the zero-shot generalization
capability (Liu et al., 2023b; Zhang et al., 2023a).

A visual instruction typically consists of an im-
age, a task description, and a text output (Liu et al.,
2023b; Yin et al., 2023). Great efforts have been
made to construct high-quality visual instruction
datasets, including collecting existing datasets (Li
et al., 2023e,a) or synthesis via LLMs (Liu et al.,
2023a; Chen et al., 2023b). Despite the prosper-
ity, there is still a lack of a systematic comparison
of instruction sets in terms of effectiveness, based
on the same settings of the backbone model and
training strategies. Thus, it remains unclear which
instruction sets are more effective and what factors
contribute to good instruction data.

Considering this issue, we would like to inves-
tigate a more fundamental question, i.e., “what
makes for good visual instructions”. For this pur-
pose, we first conduct a comprehensive evaluation
of existing visual instruction sets, aiming to iden-

https://github.com/RUCAIBox/ComVint
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tify the key factors that contribute to effective in-
structions for MLLMs. Specifically, based on six
representative instruction datasets and two popular
MLLM, we mainly consider examining two im-
portant aspects, namely task types and instruction
characteristics. According to the empirical study,
we have two main findings:

• The visual reasoning task is more helpful in
boosting the performance than image captioning
and visual question answering tasks.

• Increasing the instruction complexity is more
helpful to improve the performance, than en-
hancing instruction diversity and integrating fine-
grained spatial information.

Additionally, as shown in Figure 1, as the com-
plexity of visual instruction datasets increases, the
average benchmark performance is also consis-
tently improved, following an approximate lin-
ear trend (details in Section 5). All the above
results motivate us to construct complex visual
reasoning instructions to enhance MLLMs. How-
ever, it is hard to directly prompt GPT-4 (Ope-
nAI, 2023) for synthesizing sufficiently complex
and non-hallucination visual instructions (Li et al.,
2023f). To address this, we developed a system-
atic multi-stage pipeline to gradually enhance the
quality and complexity of the generated instruc-
tions. Concretely, our approach adopts a synthesize-
complicate-reformulate pipeline to generate the
instruction, where corresponding prompts are de-
vised to guide GPT-4. In the complication stage, we
guide GPT-4 to fully utilize both image content and
outside knowledge1 to improve the complexity, and
iteratively verify the accuracy of the instruction to
ensure the quality. Finally, we reformulate it into
multiple formats for better adaptation to various
downstream tasks.

Using the above approach, we synthesize a
Complex Visual reasoning instruction dataset,
namely ComVint, consisting of 32K examples, and
fine-tune four representative MLLMs (i.e., BLIP-2,
LLaVA, MiniGPT-4, and InstructBLIP) on it. Eval-
uation results on two comprehensive benchmarks,
SEED-Bench (Li et al., 2023b) and MME (Fu et al.,
2023), demonstrate that our instruction dataset
significantly enhances the performance of these
MLLMs, outperforming existing visual instruction

1According to (Marino et al., 2019), outside knowledge
refers to the knowledge that is not provided by the image, e.g.,
inferring the latitude of a location in the image.

collections. For instance, leveraging our dataset
leads to a remarkable improvement of 27.86% and
27.60% in the performance of LLaVA on MME-
Perception and MME-Cognition, respectively.

2 Background

Multi-modal Large Language Models. Multi-
modal Large Language Models (MLLMs) (Li et al.,
2023c) are advanced generative models capable
of processing information from various modali-
ties (e.g., image, video, and audio) and generat-
ing corresponding textual responses. This work
focuses on MLLMs in the visual modality, typi-
cally consisting of an image encoder, an LLM, and
a connection module. The image is first encoded
into patch embeddings by the image encoder and
the connection module, then concatenated with text
embeddings, enabling the LLM to comprehend the
image and generate the response auto-regressively.
MLLMs undergo vision-language pre-training to
align the vision encoder and LLM, followed by
visual instruction tuning to enhance instruction fol-
lowing and understanding ability (Liu et al., 2023b;
Zhang et al., 2023b).

Visual Instruction Tuning. Instruction tun-
ing (Wei et al., 2022; Chung et al., 2022) is im-
portant to improve the ability of LLMs in in-
struction following and generalization on unseen
tasks (Longpre et al., 2023; Wang et al., 2023).
It employs a text-formatted task description and
the expected outcome to fine-tune LLMs in a su-
pervised way. Inspired by the success of LLMs,
instruction tuning has been adapted to develop
MLLMs for visual tasks, termed visual instruction
tuning (Zhu et al., 2023; Liu et al., 2023b). Typi-
cally, a visual instruction comprises an image XI ,
a textual task instruction XT , and a corresponding
output text YT . During training, MLLMs learn to
generate YT conditioned on XI and XT .

2.1 Visual Instruction Collections

To get a sense of what constitutes good visual in-
structions, we review and categorize existing col-
lections in Table 1. Broadly, visual instructions are
crafted to address specific tasks and incorporate
various considerations (e.g., diversity and complex-
ity). Thus, we discuss prior efforts in two major
aspects: task types and instruction characteristics.

Task Types. Most visual instruction datasets (Liu
et al., 2023b; Li et al., 2023e) are derived from
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existing multi-modal datasets and primarily focus
on three types of tasks:

• Image captioning: it requires the model to gener-
ate a free-form description of an image.

• Visual question answering (VQA): it requires the
model to answer a question about the image, e.g.,
counting the objects and recognizing the color.

• Visual reasoning: it requires the model to per-
form reasoning based on the image context, e.g.,
conjecturing the relationship between two ob-
jects, and answering questions involving com-
monsense reasoning.

We examine the effects of task type using the
LLaVA-Instruct (Liu et al., 2023b), which in-
cludes 23K image captions, 58K conversations,
and 77K visual reasoning questions. We divide
it into three subsets corresponding to the three task
types, namely LLaVA-Caption, LLaVA-VQA, and
LLaVA-Reasoning, respectively.

Instruction Characteristics. In addition to the
task types, recent studies (Liu et al., 2023a; Chen
et al., 2023b; Zhang et al., 2023c; Chen et al.,
2023a) also attempt to endow visual instruction
collection with special characteristics to further im-
prove the performance of MLLMs.

• Task diversity: existing work (Wei et al., 2022;
Liu et al., 2023a) has found that increasing the
task diversity can improve the zero-shot ability
for task solving. This can typically be achieved
by aggregating instructions from different tasks.

• Instruction complexity: enhancing instruction
complexity is a widely used strategy to improve
the performance of LLMs (Xu et al., 2023), and
we can also utilize complex multi-modal tasks
(e.g., multi-hop cross-modal reasoning) to im-
prove the performance of MLLMs.

• Fine-grained spatial information: it is important
for MLLMs to recognize fine-grained spatial de-
tails of objects in an image. For this purpose, the
spatial coordinates annotations can be included
in the textual instructions (Chen et al., 2023b,a).

To study the effect of these characteristics, we se-
lect LRV (Liu et al., 2023a), A-OKVQA (Schwenk
et al., 2022), and Shikra-RD (Chen et al., 2023b),
three representative instruction sets with diverse
task types, complex outside knowledge, and fine-
grained spatial information, respectively.

Instruction Number Task Type Characteristics

LLaVA-Cap 23K Cap \
LLaVA-VQA∗ 256K VQA \
LLaVA-Rea 77K Rea \
LRV 150K Cap, VQA, Rea Diverse
Shikra-RD 4K Rea Fine-grained
ComVint (Ours) 32K Rea Complex

Table 1: Comparison of existing synthesized visual in-
struction collections. “Cap” shorts for Caption and “Rea”
shorts for Reasoning. *We divide the multi-turn conver-
sation in LLaVA into individual questions, resulting in
256K VQA instructions.

3 Empirical Analysis of Visual
Instructions

In this section, we empirically study the effect
of different task types and different in visual in-
struction tuning by fine-tuning two representa-
tive MLLMs (i.e., BLIP-2 (Li et al., 2023d) and
MiniGPT-4 (Zhu et al., 2023)) on the visual instruc-
tion collections selected in Section 2.

3.1 Experiment Setup

Backbone MLLMs. We select two models with
minimal or no instruction tuning to clearly study
the effect of different factors:

• BLIP-2: it incorporates a lightweight querying
Transformer to connect a fixed vision encoder
and a fixed LLM. It is only pre-trained on large-
scale image-text pairs, and has not been fine-
tuned with visual instructions.

• MiniGPT-4: it employs the similar architecture
as BLIP-2 and adopts Vicuna as the LLM. It is
first pre-trained on 5M image-text pairs and then
fine-tuned on 3,500 image captions.

We follow the training strategies in (Zhu et al.,
2023; Li et al., 2023d), fine-tuning the Q-Former in
BLIP-2 and the linear layer between the Q-Former
and LLM in MiniGPT-4.

Evaluation Benchmark. We select two widely-
used benchmarks, i.e., MME (Fu et al., 2023) and
SEED-Bench (Li et al., 2023b) for evaluation:

• MME: it aims to measure the perception and
cognition abilities of MLLMs. Each instance
comprises one image and two questions. Fol-
lowing (Fu et al., 2023), we report the accuracy
of whether both questions of an instance are an-
swered correctly, denoted as ACC+.
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Baseline Model MiniGPT-4 BLIP-2

Benchmark
SEED-Bench
Image ACC

MME-P
ACC+

MME-C
ACC+

Average
SEED-Bench
Image ACC

MME-P
ACC+

MME-C
ACC+

Average

Original 43.31 26.96 10.77 27.01 53.68 41.25 15.38 36.77

A
+LLaVA-Cap 41.60 10.12 1.54 17.75 52.31 28.38 11.54 30.74
+LLaVA-VQA 45.97 12.87 5.38 21.41 51.00 31.88 14.62 32.50
+LLaVA-Rea 43.69 40.59 16.15 33.48 50.94 43.33 20.77 38.35

B
+LRV 50.92 3.12 0.77 18.27 54.64 10.88 5.38 23.63
+Shikra-RD 41.75 8.33 1.54 17.21 52.92 36.05 16.15 35.04
+A-OKVQA 43.99 36.71 21.54 34.08 52.60 46.83 24.62 41.35

Table 2: The results on SEED-Bench and MME after fine-tuning MiniGPT-4 and BLIP-2 using different instruction
collections. MME-P and MME-C short for MME-Perception and MME-Cognition, respectively. Cells shaded in
orange indicate that fine-tuning enhances the performance, while blue indicates performance degradation.

• SEED-Bench: it contains 12 tasks to evaluate
the image and video understanding capacity of
MLLMs. Since most MLLMs do not consider
video understanding ability, we only evaluate the
models on image understanding tasks. Follow-
ing (Zhang et al., 2023a), we employ accuracy
in image understanding tasks as the evaluation
metric and denote it as Image ACC.

3.2 Results and Analysis

We categorize the results into two groups based
on the task types and special characteristics of
the instructions: (A) includes LLaVA-Cap (image
captioning), LLaVA-VQA (visual question answer-
ing), and LLaVA-Rea (visual reasoning); (B) in-
cludes LRV (diversity), A-OKVQA (complexity),
and Shikra-RD (spatial annotation). We can obtain
the following insights from the results in Table 2.

Finding 1: among task types in group A, the
visual reasoning task yields the best performance
compared to image captioning and visual ques-
tion answering. Concretely, fine-tuning MLLMs
on the LLaVA-Cap leads to a noticeable perfor-
mance degradation across all benchmarks, while
LLaVA-Rea results in significant improvements,
with LLaVA-VQA results showing intermediate
results in most cases. This suggests that the perfor-
mance advantage may correlate positively with the
difficulty of visual instructions.

Finding 2: for instruction characteristics in
group B, complexity is more important than task
diversity and fine-grained information. Concretely,
MLLMs fine-tuned on A-OKVQA achieve the
highest accuracy across all benchmarks, empha-
sizing the pivotal role of complex instructions in
boosting model performance. In contrast, LRV and
Shikra-RD show minimal or negative impacts, indi-

cating limited benefits from increased task diversity
or spatial details.

To summarize, reasoning-oriented (LLaVA-Rea)
and complexity-enhanced (A-OKVQA) instruction
sets are particularly useful in improving the perfor-
mance of MLLMs in our experiments. However,
LLaVA-Rea still has limited complexity. Though
A-OKVQA contains complex task instructions, it
is mainly constructed by human annotators, and
the instruction complexity is limited to the annota-
tor’s abilities. Therefore, it is desirable to develop
automatic approaches to produce complex visual
reasoning instructions at scale.

4 Approach

Based on the findings in Section 3.2, we propose a
method to create high-quality, complex visual rea-
soning instructions to improve the performance of
MLLMs. For image XI with captions {CI} and ob-
jects {OI}, we first synthesize two common kinds
of visual reasoning instructions, i.e., cross-modal
reasoning instruction ⟨X(C)

T , Y
(C)
T ⟩ and outside-

knowledge reasoning instruction ⟨X(K)
T , Y

(K)
T ⟩.

Subsequently, we use an iterative complicate-then-
verify procedure to gradually improve their com-
plexity and quality, obtaining ⟨X̃(C)

T , Ỹ
(C)
T ⟩ and

⟨X̃(K)
T , Ỹ

(K)
T ⟩. Finally, we merge and reformulate

these instructions to increase data format diversity,
resulting in the final dataset.

4.1 Visual Reasoning Instruction Synthesis

Cross-modal reasoning (Hudson and Manning,
2019) and outside-knowledge reasoning (Marino
et al., 2019) are key visual reasoning tasks that
focus on image content and external knowledge,
respectively. We synthesize instructions for both
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Response:
The dog might chase 
the squirrel, as it's a 
natural instinct for 
dogs to chase small 
moving objects or 
animals.

Complicate Verify ReformulateSynthesize

Man [301, 150, 426, 278]
Dog [357, 154, 429, 254] 
Bench [354, 193, 44, 29]
Tree [365, 233, 30, 28]

Instruction: 
What is a common 
reason for a person 
sitting on a park 
bench with a dog, as 
depicted in the 
image?

Response:
A common reason 
could be the man is 
taking the dog out 
for a walk and they 
are taking a break.

Complicated 
Instruction: 
What would happen if 
a squirrel suddenly ran 
across the path in front 
of the bench?

Judgement Evidence: 
The instruction matches 
the image, focusing on 
the man and dog. It 
prompts hypothetical 
thinking, with responses 
referencing general dog 
behaviors, not the 
image directly. It’s 
reasonable and requires 
critical thought.

Judgement :Yes

Reformulated 
Instruction: 
What would happen if a 
squirrel suddenly ran 
across the path in front 
of the bench?
Options:
A: Dog chases squirrel
B: Squirrel hides
C: Dog remains calm
D: Squirrel escapes

A man and a dog on 
a bench in the park.
The man sits with
his dog on a bench
in a park.
…

Response: 
A. Dog chases squirrel

Figure 2: Our approach to synthesizing complex visual reasoning instructions involves three stages: synthesizing
the primary reasoning instructions, iterative complication and verification, and reformulating instruction formats.

types to capture their essential information, re-
sulting in the primary cross-modal and outside-
knowledge reasoning instructions.

4.1.1 Cross-modal Reasoning Instructions.
We aim to synthesize cross-modal reasoning in-
struction that requires MLLMs to accurately map
text entities to image objects and describe object
relationships in natural language. To achieve this,
we first select images that contain rich objects and
then utilize GPT-4 to generate the instruction based
on the image annotations.

Image Selection. To ensure the instruction com-
plexity, we select images containing diverse ob-
jects and relationships from the Flickr30k Entities
dataset (Plummer et al., 2015). Each image has
five detailed captions linking objects with entities
and coordinates. Empirically, we find that more in-
formative images usually come with more detailed
captions, so we consider the total character count
in the five captions for each image as the indicator
of informativeness. We filter out those with fewer
than 700 characters in the caption and retain only
the most informative ones for instruction synthesis.

Instruction Generation. After selecting infor-
mative images and their associated captions and
objects, i.e., {⟨XI , CI , OI⟩}, we employ GPT-
4 to generate cross-modal reasoning instructions
{⟨XI , X

(C)
T , Y

(C)
T ⟩} as follows:

X
(C)
T , Y

(C)
T = GPT-4(PC , CI , OI) (1)

where PC is the prompt for cross-modal reason-
ing instructions. We carefully design the prompt
to instruct GPT-4 to synthesize three instructions
simultaneously, while guaranteeing instruction di-
versity. By incorporating specific requirements and
in-context demonstrations into PC , we can reduce
the probability of synthesizing instructions that are
too simple or contain irrelevant information. The
prompt is shown in Figure 5 of the Appendix.

4.1.2 Outside-knowledge Reasoning
Instruction.

In addition to understanding the visual semantics of
an image, MLLMs also require world knowledge
and common sense to help understand complex
relationships in complex tasks. Following the pro-
cess in Section 4.1.1, we employ image selection
and instruction generation for synthesizing outside-
knowledge reasoning instructions.

Image Selection. To synthesize outside-
knowledge reasoning instructions, we require
detailed object information from images (e.g.,
the brand of a T-shirt) to capture outside knowl-
edge (e.g., the price of the T-shirt). We select
Visual Genome (Krishna et al., 2017) as the image
source, which provides an average annotation of 21
objects per image, each with a corresponding cap-
tion. However, if an image contains an excessive
number of object annotations, these annotations
often lack detailed information about individual
objects, which is essential for the generation of
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outside-knowledge reasoning instructions. Hence,
we set a threshold (e.g., 7) and remove images
exceeding this limit to ensure quality.

Instruction Generation. To generate high-
quality outside-knowledge reasoning instructions,
we first select suitable objects as topic entities from
the chosen images, and then prompt GPT-4 to syn-
thesize instructions about them. For topic entity se-
lection, we mainly consider long-tail world knowl-
edge that MLLMs may overlook. Specifically, we
utilize Inverse Document Frequency (IDF) to mea-
sure the importance of a certain object. We select
the object with the highest IDF and denote it as
O

′
I . Based on the topic entity and image annota-

tion, we utilize GPT-4 to generate the instructions
{⟨XI , X

(K)
T , Y

(K)
T ⟩} as:

X
(K)
T , Y

(K)
T = GPT-4(PK , CI , O

′
I) (2)

where PK is the prompt for outside-knowledge in-
structions. Additionally, we sample knowledge cat-
egories from the category set in OK-VQA (Marino
et al., 2019) and incorporate them into PK , guiding
GPT-4 to produce instructions related to these cate-
gories. This ensures balanced knowledge coverage
across the instruction dataset. The detailed prompt
is shown in Figure 6 of the Appendix.

4.2 Visual Reasoning Instruction
Complication

Through this instruction synthesis process, we ob-
tain two types of instruction sets. Despite the care-
fully designed prompts, the synthetic instructions
are still relatively simple and even contain hallu-
cinated objects. To address this, we propose an
iterative complicate-then-verify procedure to gradu-
ally increase the complexity of the instructions and
meanwhile ensure the quality and avoid contradic-
tions or hallucinations.

Instruction Complication. Inspired by existing
work (Xu et al., 2023), we instruct GPT-4 to it-
eratively complicate the instructions and generate
the corresponding response, based on the primary
instructions and image annotations, denoted as:

X̃T , ỸT = GPT-4(PComp, XT , YT , CI , OI) (3)

where PComp is the prompt sent to GPT-4, shown
in Figure 7 in the Appendix. Empirically, we find
that very few iteration turns (e.g., 1 or 2) are suf-
ficient to obtain high-quality instructions, thereby
reducing the cost of APIs invocation.

Instruction Verification. To ensure instruction
quality, we use a verification process to filter out
instructions that contradict the image. Specifically,
we prompt ChatGPT to determine if the synthe-
sized instruction aligns with the provided image
annotations. The prompt is shown in Figure 8 in the
Appendix. Based on the judgment of ChatGPT, we
only retain the instructions that pass the verification
and discard the failed ones.

4.3 Visual Reasoning Instruction
Reformulation

After the synthesis and complication processes, we
obtain many high-quality, complex instructions.
However, these open-ended responses may not
suit tasks requiring specific formats (e.g., multiple-
choice or boolean QA), potentially affecting zero-
shot generalization.

To address this, we incorporate a reformulation
stage, in which we sample some synthetic instruc-
tions and use ChatGPT to convert them into two
distinct representative formats: boolean QA and
multiple-choice QA. Boolean QA offers binary an-
swers, i.e., “yes” or “no”, while multiple-choice
QA provides several predefined options. After the
reformulation stage, we combine the original open-
ended instructions with the newly reformulated in-
structions to create the final ComVint dataset.

To evaluate the quality of the data synthesized by
GPT-4, we randomly sample some instances for hu-
man review. The results in Table 5 in the Appendix
show that most instructions are of high quality. We
also compare cases in LLaVA-Reasoning, LRV, and
our ComVint in Figure 4 in the Appendix, and find
that instructions in ComVint are more complex and
involve more reasoning steps.

5 Experiment

5.1 Experimental Setup

To exhibit the generality of our instructions, we
fine-tune four representative MLLMs on ComVint:
BLIP-2, MiniGPT-4, LLaVA, and InstructBLIP.
These models were selected because they employ
diverse architectures, training strategies, and train-
ing datasets, making them ideal for verifying the
generalizability of our conclusions. A detailed in-
troduction to these models is in the Appendix. We
fine-tune these models on our instruction dataset
and the other six representative visual instruction
collections (LLaVA Caption, LLaVA VQA, LLaVA
Reasoning, LRV, Shikra-RD, and A-OKVQA) used
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Model Benchmark Original
+LLaVA

Cap
+LLaVA

VQA
+LLaVA

Rea
+LRV +

Shikra
-RD

+A-OKVQA +ComVint

MiniGPT4
SEED-Bench 43.31 41.60 45.97 43.69 50.92 41.75 43.99 50.13

MME-P 820.37 643.59 650.51 929.82 552.75 722.38 924.47 856.30
MME-C 198.57 154.29 218.21 265.71 199.29 172.14 257.50 227.14

BLIP-2
SEED-Bench 53.68 52.31 51.00 50.94 54.64 52.92 52.60 53.73

MME-P 1151.26 1115.52 907.21 1162.47 643.02 1102.43 1115.69 1216.24
MME-C 241.07 224.64 238.93 271.07 216.43 231.43 247.14 250.71

LLaVA
SEED-Bench 49.43 48.52 46.86 46.82 56.58 49.01 54.01 54.74

MME-P 949.42 1091.41 1002.42 1043.53 1154.99 915.64 1140.23 1213.87
MME-C 232.86 238.21 257.14 211.07 272.14 260.00 310.36 297.14

InstructBLIP
SEED-Bench 56.14 55.44 52.63 55.22 56.57 57.49 56.12 57.49

MME-P 1178.95 1211.72 972.29 1205.13 918.15 1176.63 1262.29 1199.91
MME-C 301.79 340.00 302.86 287.14 219.64 279.29 277.50 305.36

Table 3: The performance of four representative MLLMs fine-tuned on different instruction collections. The best
performance and the second-best performance are denoted in bold and underlined fonts, respectively.

in Section 3 for comparison.

Implementation Details. For BLIP-2, MiniGPT-
4, and InstructBLIP, we set the learning rate to 1e-5
and train for 2 epochs, while for LLaVA, we set the
learning rate to 2e-5 and train for 3 epochs. The
batch size for BLIP-2, LLaVA, and InstructBLIP is
128, while the batch size for MiniGPT-4 is 64. Con-
cerning the mixture of our synthesized instructions,
the final instruction collection comprises approxi-
mately 12K cross-modal reasoning instructions and
20K outside-knowledge reasoning instructions.

Evaluation Benchmarks. We follow Section 3
and mainly evaluate the models on SEED-Bench
Image and MME. Additionally, we also incor-
porate three traditional visual reasoning bench-
marks, i.e., OK-VQA (Marino et al., 2019), A-
OKVQA (Schwenk et al., 2022), and GQA (Hud-
son and Manning, 2019).

5.2 Main Results
The results of the four models fine-tuned on seven
instruction collections are shown in Table 3. Based
on the results, we have the following findings:

Firstly, among all the existing visual instruc-
tion collections, complex visual reasoning instruc-
tions (i.e., A-OKVQA and LLaVA Reasoning) gen-
erally lead to the most substantial improvements
across the three evaluation dimensions compared
to others. The enhancements in InstructBLIP and
LLaVA are not as significant, as they had already
utilized these data during instruction tuning.

Secondly, baseline instruction datasets can en-
hance model performance on specific benchmarks.
For instance, MiniGPT-4, BLIP-2, and LLaVA

Instruction OK-VQA A-OKVQA GQA

Original 57.82 77.12 50.98
+ 1⃝: LLaVA-Rea 46.54 72.93 46.88
+ 2⃝: A-OKVQA 57.48 78.86* 50.90
+ 3⃝: ComVint 58.71 78.08 51.75

Table 4: Results of InstructBLIP on traditional VQA
evaluation benchmarks. The result marked with * de-
notes that the model is fine-tuned on the training set of
the evaluation benchmark.

fine-tuned on LRV outperform those fine-tuned
on ComVint when evaluated on the SEED-Bench
benchmark. This is because LRV is specially
designed with valuable features, such as various
task types and formats, which can be beneficial
for improving MLLMs in related tasks. How-
ever, introducing certain characteristics can de-
grade performance on unrelated tasks. For example,
BLIP-2 fine-tuned on LRV shows significant drops
in MME benchmark (MME-Perception decreases
from 1151.26 to 643.02, and MME-Cognition de-
creases from 241.07 to 216.43). In comparison, our
ComVint effectively balances various capabilities
and yields improvements across all benchmarks.
We also display the results of LLaVA on all the
sub-tasks of SEED-Bench in Table 7 in the Ap-
pendix. We can observe that ComVint significantly
improves the performance on all the sub-tasks.

Thirdly, since InstructBLIP achieves the best
performance on these benchmarks, we also evalu-
ate it on three traditional VQA benchmarks: OK-
VQA (Marino et al., 2019), A-OKVQA (Schwenk
et al., 2022), and GQA (Hudson and Manning,
2019). The results in Table 4 show that all previ-
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LRV LLaVA-Rea ComVint

Instruction 88.00 90.00 88.00
Response 65.00 86.00 84.00

Table 5: The correct rate of each instruction dataset
evaluated by humans.

ous instruction datasets hurt performance on these
benchmarks, while ComVint is the only instruction
dataset that can further boost performance.

Besides the quantitative results, we present case
examples from ComVint in Figure 3 and Figure 4,
comparing them to previous instruction sets. We
can observe that LLaVA-Reasoning primarily fo-
cuses on scene descriptions, while LRV emphasizes
object recognition. In contrast, ComVint is more
complex and includes more reasoning steps.

5.3 In-Depth Analysis

Data Quality Analysis. We randomly sample
100 instances from ComVint, LRV, and LLaVA-
Reasoning and have three of our authors manually
assess their quality. Following prior work (Liu
et al., 2023a), we separately check whether the
instructions and responses are correct. The evalu-
ation criteria for correctness are in the Appendix.
We calculate the Fleiss’ Kappa among the three an-
notators, obtaining a value of 0.91, which indicates
near-perfect agreement. As shown in Table 5, most
instructions are accurate. Besides, the responses
in ComVint exhibit comparable quality to LLaVA-
Reasoning, and superior to LRV, highlighting the
high quality of our dataset.

The Effect of Complication. For each instruc-
tion set, we ask gpt-3.5-turbo-0125 to count the
reasoning steps in each instruction, defining the
average reasoning steps as the complexity score of
the dataset. We then plot the relationship between
complexity scores and the average accuracy of four
models on these benchmarks. The result in Figure 1
shows that as the complexity of the visual instruc-
tion datasets increases, the average performance
consistently improves, following a roughly linear
trend. Notably, ComVint, with the most complex
instruction set, achieves the best results. Please re-
fer to the Appendix C for more details. Meanwhile,
to test the effectiveness of the complication opera-
tion in our pipeline, we create a basic instruction set
by removing all complexity constraints and skip-
ping the complication stage (denoted as w/o Comp

Instruction SEED-Bench MME-P MME-C Avg

Original 49.43 39.36 12.31 33.70
+ComVint 54.74 55.53 26.15 45.47

w/o Comp 50.89 44.94 12.31 36.05
w/o O-K Rea 51.40 49.29 24.62 41.77
w/o C-M Rea 53.85 46.74 27.69 42.76
w/o Reform 53.75 45.60 19.23 39.53

Table 6: Results of ablation study. “Comp” stands for
complication, “C-M Rea” for cross-modal reasoning,
“O-K Rea” for outside-knowledge reasoning, and “Re-
form” for reformulation.

in Table 6). We fine-tune LLaVA on ComVint and
this basic set. The results in Table 6 show signifi-
cant degradation on all benchmarks, demonstrating
the importance of instruction complexity.

The Effect of Two Types of Instructions. In our
reasoning instruction synthesis stage, we generate
cross-modal and outside-knowledge reasoning in-
structions. To assess their effectiveness, we remove
either of them and fine-tune LLaVA on the remain-
ing instructions (denoted as w/o O-K Rea and w/o
C-M Rea in Table 6). The results show that remov-
ing either type hurts performance on SEED-Bench
and MME-Perception. As for the MME-Cognition
tasks, removing cross-modal reasoning instructions
yields the best performance. This is because an-
swering questions in MME-Cognition most rely on
cognition ability, thus our outside knowledge rea-
soning instructions are more beneficial. Generally,
incorporating both types of instruction leads to the
best average performance.

The Effect of Instruction Format. We remove
the reformulation module to obtain 32K open-
ended instructions (denoted as w/o Reform) and
fine-tune LLaVA on them, with the results pre-
sented in Table 6. We can observe that removing
the reformulation module would lead to perfor-
mance degradation compared to the instructions
with diverse formats, highlighting the importance
of the reformulation module. On the other hand,
fine-tuning the model only on the open-ended in-
structions also significantly improves the perfor-
mance, implying that the reformulation module is
not the only factor contributing to the improvement.

5.4 Case Study

In this section, we display some instructions in our
ComVint dataset in Figure 3. The first instruction
requires the model to compare the painting of the
woman and the painting on the wall, and then under-
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[Instruction]
Is the woman replicating the work
of another artist in her painting?

[Instruction]
Is it the man in the blue suit
that is making the woman with
the long brown hair laugh?

[Instruction]
Are there three people,
including a man and a woman,
looking at the sculptures ?

[Response]
Yes, the woman is painting a
picture same as the one in the
middle on the wall, indicating
that she is replicating the work
of another artist.

[Response]
No, the clown is making the
woman laugh, and the man in
blue suit is accompanying her.

[Response]
No, there is only one man
looking at the sculptures,
while another man and a
woman are talking.

Figure 3: Examples from the ComVint dataset, highlighting instructions designed to emphasize cross-modal
reasoning over basic visual perception.

stand that the woman is replicating the painting on
the wall. The second instruction requires the model
to understand the relationships among these people.
The third instruction requires the model to observe
the image carefully and understand the activity of
these people. We also display several cases from
LLaVA-Reasoning, LRV, and ComVint in Figure 4
for comparison. Please refer to Appendix A for
more details.

6 Conclusion

In this paper, we investigated key factors contribut-
ing to effective visual instructions for MLLMs.
Our empirical experiments demonstrated that in-
structions with the visual reasoning task type and
complexity characteristic were more useful for im-
proving the capabilities of MLLMs. Based on
these insights, we devised a systematic approach to
automatically create high-quality complex visual
reasoning instructions, employing a synthesize-
complicate-reformulate paradigm to gradually im-
prove the complexity while guaranteeing quality.
Using this approach, we synthesized a visual rea-
soning instruction dataset, namely ComVint, for
fine-tuning MLLMs. Experimental results have
demonstrated the efficacy of our dataset in improv-
ing the capability of representative MLLMs.

7 Limitation

First, many factors influence the final performance
of an MLLM: training data, model architecture,

and training strategies, etc. In this work, we focus
solely on training data, identifying what makes for
good visual instructions regarding task type and in-
struction characteristics, while leaving other factors
unchanged. In the future, we plan to explore how
these factors, in coordination with training data,
affect the overall performance of MLLMs. Second,
the scale of ComVint is not large enough. While
we achieve strong results with limited data, demon-
strating the value of “less is more”, we believe
that scaling up the amount of high-quality visual
instruction data will further enhance performance.
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A Case Study

We also display several cases from LLaVA-
Reasoning, LRV, and ComVint in Figure 4 for
comparison. The instruction in LLaVA-Reasoning
mainly focuses on the description of the scene,
which can be answered easily once the model rec-
ognizes the helmet in the image. The instruction in
LRV is relatively shorter and simpler, focusing on
the object recognition ability of the model. In con-
trast, the instruction in ComVint is more complex
and includes more reasoning steps. To answer the
question in the image, the model needs to first iden-
tify the three women according to the color of their
clothes. Then, the model needs to identify their
actions and finally, distinguish the commonalities
and differences between them.

[LLaVA-Reasoning]

[Instruction]
What precautions is the woman taking while
riding the horse?

[LRV]

[Instruction]
What are some of the road markings and
features visible in the image?

[Response]
The woman riding the brown horse in the
field is taking precautions by wearing a
helmet. Wearing a helmet while horseback
riding is essential for safety as it protects the
rider's head from potential injuries in…

[Response]
a white line, a gray lamp post, and trees

[ComVint]

[Instruction]
What does the woman in the green
wardrobe have in common with the other
three women, and what distinguishes her
from them?

[Response]
The woman in the green wardrobe belongs to
the same group of four women walking
down the street as the other three women,
which is their commonality, and …

Figure 4: Sampled instructions from LLaVA-Reasoning,
LRV, and ComVint, where the instruction in ComVint
is more complex than LLaVA-Reasoning and LRV.

B Baseline Models

In this section, we elaborate on the details of our
baseline models.

• BLIP-2 (Li et al., 2023d) is based on FLAN-T5-
XXL and utilizes a Q-Former to connect the vi-
sion encoder and the LLM. It freezes the vision
encoder and the LLM during fine-tuning and only
updates the parameters of the Q-Former. The
training data contains 129M image-caption pairs.

• MiniGPT-4 (Zhu et al., 2023) is based on Vicuna-
7B and reuses the Q-Former in BLIP-2 to connect
the vision encoder and the LLM. It freezes the Q-
Former, the vision encoder, and the LLM during
fine-tuning and only updates the parameters of
the linear layer between the Q-Former and the
LLM. The training data includes 5M image-text
pairs and 3,500 high-quality image-caption pairs.

• LLaVA (Liu et al., 2023b) is based on Vicuna-7B
and utilizes linear layers to connect the vision

encoder and the LLM. It freezes the vision en-
coder during fine-tuning and updates the linear
layers and the LLM. The training data is 158K
visual instructions, including 58K in conversa-
tions, 23K in detailed descriptions, and 77K in
visual reasoning.

• InstructBLIP (Dai et al., 2023) is based on FLAN-
T5-XXL and the architecture and the trainable
parameters are the same as BLIP-2. The training
data includes 10 vision-language tasks as well as
the instruction data used in LLaVA.

C Discussion

To analyze the impact of instruction complexity
on the performance of the MLLM, we randomly
sample 1000 instructions from each instruction set
listed in Table 3. Utilizing the gpt-3.5-turbo-0125
model, we parse these instructions into a series of
sub-questions, with each sub-question representing
a reasoning step. The complexity of a question is
measured by the number of reasoning steps, and
we calculate the average number of reasoning steps
for each instruction set to derive its complexity
score. Subsequently, we average the results for the
MME and SEED-Bench benchmarks as presented
in Table 3. Further, we average the results across
the four MLLMs to obtain the final average accu-
racy. The results depicted in Table 1 reveal that,
overall, an increase in instruction complexity corre-
sponds to an improvement in MLLM performance,
demonstrating a trend that can be approximated by
a linear function. An exception is observed with
LRV, possibly due to its inclusion of more incor-
rect instructions, as indicated in Table 5. Moreover,
LLaVA-Cap, characterized by the lowest complex-
ity, yields the lowest accuracy, while LLaVA-Rea
and A-OKVQA, with higher complexity, exhibit
better performance, aligning with findings from our
empirical study in Table 3. Notably, ComVint, with
the most complex instruction set, achieves the best
results.

D More Experimental Results

We display the accuracy of LLaVA on all the sub-
tasks on the SEED-Bench Image in Table 7. The
results show that ComVint can improve the perfor-
mance of LLaVA on all the sub-tasks on SEED-
Bench Image, especially on instance attributes, in-
stance interaction, visual reasoning, and text recog-
nition. This demonstrates the effectiveness of our
instruction dataset.
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Inst
instance
counting

instance
attributes

scene
understanding

instance
identity

instance
interaction

visual
reasoning

instance
location

spatial
relations

text
recognition

Average

Original 38.95 51.90 57.09 53.69 47.42 47.43 41.21 38.36 30.59 49.43
+ComVint 42.54 59.65 62.13 56.96 57.73 53.47 44.38 40.79 43.53 54.74

Table 7: The performance of LLaVA on all the sub-tasks of SEED-Bench Image.

E Prompt Design

We display the prompt used to synthesize visual in-
structions. The prompt for instruction synthesizing
is in Figure 5 and Figure 6, the prompt for compli-
cation is in Figure 7, the prompt for verification is
in Figure 8, and the prompt for reformulation is in
Figure 9 and Figure 10.

F Data Quality Evaluation Criteria

In Section 5.3, we have three authors to assess the
quality of the visual instructions manually. Specifi-
cally, the evaluation criteria for correctness are as
follows:

Instructions: (1) necessitate visual information
from the image to response (2) are clear and in-
terpretable, and (3) align with the image context
without ambiguity.

Responses: (1) contain no hallucinations or con-
tradictions to the image, (2) accurately follow the
instruction, and (3) are factually and logically co-
herent.
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System prompt:
Here are 5 captions for an image, some entities in the caption are followed by "[x1, y1, x2, y2]" to indicate the 
bounding box coordinates of the entity in the image. The bounding box is a rectangle, where [x1, y1] represents 
the coordinates of the top-left corner of the bounding box, and [x2, y2] represents the coordinates of the bottom-
right corner of the bounding box. Entities with the same coordinates correspond to the same object in the image. 
Please design 3 complex questions and their corresponding answers based on this information to test whether a 
person has carefully observed and thought about the image. These 3 questions and answers must meet the 
following conditions:
1. Do NOT mention anything that is not mentioned in the 5 captions.
2. The questions must be definitely answered according to the 5 provided captions.
3. The questions should involve details in the image and use as many entities as possible.
4. Do NOT use phrases like "according to the caption" in both the questions and answers, you should ask and 

answer as if you observe the image by yourself.
5. The questions and answers should be as diverse as possible.
Some useful tips: you can swap some entities to confuse the test-taker, which will make the questions more 
challenging. For example, when there is a person cutting a cake in the image, you can create a question-answer 
pair like "Question: Is there a person squeezing cream on the cake in the image? Answer: No, the person is 
cutting the cake instead of squeezing cream." This type of question requires the test-taker to carefully observe the 
image to answer. Do not ask simple questions like "What color is the cake in the image?" because it is too simple.

Demonstration:
user: 
Captions:\n1. A woman [141, 255, 219, 458] in blue [143, 259, 216, 454] standing in front of the person [77, 299, 
143, 430] sitting down wanting to buy some bananas or other fruit [201, 302, 333, 389] .\n
2. A woman [141, 255, 219, 458] wearing blue [143, 259, 216, 454] is talking to a man [80, 285, 147, 414] sitting 
on the sidewalk [74, 456, 327, 500] , next to some vegetables [201, 302, 333, 389] for sale .\n
3. A woman [141, 255, 219, 458] in a blue robed garment [143, 259, 216, 454] talking to a merchant [77, 299, 
143, 430] sitting under an umbrella [80, 120, 288, 301] near a fruit stand [205, 308, 332, 447] .\n
4. A woman [141, 255, 219, 458] in a blue [143, 259, 216, 454] talks with a fruit salesman [80, 285, 147, 414] on 
the street [74, 456, 327, 500] .\n
5. A woman [141, 255, 219, 458] talks to a man [80, 285, 147, 414] at the market .
assistant: 
Question1: Who is selling the fruits and who is the buyer? Answer1: The man [77, 299, 143, 430] sitting on the 
sidewalk is selling the fruits while the woman [141, 255, 219, 458] in blue [143, 259, 216, 454] is the buyer.\n
Question2: Is the woman in blue selling fruits to the man? Answer2: No, the man is selling fruits to the woman in 
blue.\n
Question3: What is the woman in blue buying? Answer3: The woman in blue is buying fruits or vegetables.

Figure 5: The prompt we give to GPT-4 for constructing cross-modal reasoning instructions.
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System prompt:
I want you to act as a Prompt Generator. Give an image with the following information: region captions and their 
corresponding bounding box, positions that are the region left-top corner coordinates (X, Y), region covered sizes 
(Width, Height). Highly overlapping bounding boxes may refer to the same object. 
According to the region description provided above, design some instructions and corresponding responses. Your 
instructions need to come up with complex knowledge of one or more hops according to the image, but please 
ensure that the answers to this knowledge are accurate. The knowledge needs to be hard enough that only well-
educated people and experts in the relevant field can reply. 
The instructions must meet the following conditions:1. Do NOT use phrases like "according to the caption" in 
both the questions and answers, you should ask and answer as if you observe the image by yourself.\n2. The 
questions and answers should be as diverse as possible.\n3. Please don't ask some simple questions about the 
color and position of the objects in the picture, your questions must involve some knowledge.\n4. Your 
instructions should not be answered directly based on the image and your instructions. Instead, it requires the 
test-taker to carefully observe the image and have a deep knowledge of the content within the image in order to 
answer correctly.\n4. If a question cannot be answered, please do not ask."
Topic: Vehicles and Transportation; Brands, Companies, and Products; Objects, Materials and Clothing; Sports 
and Recreation; Cooking and Food; Geography, History, Language and Culture; People and Everyday Life, 
Plants and Animals; Science and Technology; and Weather and Climate. 
Come up with 3 diverse instructions for the knowledge topics above with different language styles and accurate 

answers. The instructions should contain interrogative sentences and declarative sentences. The answers should 
be less than 30 words. 
Output format: 

Instruction: instruction example
Answer: answer example
Knowledge topic: The specific knowledge topic

Demonstration:
user: 
man has short hair X: 664 Y: 241 Width: 93 Height: 126\nblack computer is off X: 320 Y: 243 Width: 188 Height: 
122\na soda bottle has some sodas X: 111 Y: 350 Width: 75 Height: 107\ncoke can is on the table X: 305 Y: 345 
Width: 40 Height: 57\nman is wearing black tshirt X: 650 Y: 329 Width: 136 Height: 139\nmonitor is white and 
on X: 749 Y: 255 Width: 50 Height: 162\nkeyboard is white in colour X: 357 Y: 353 Width: 116 Height: 
50\nbrown shelf is wooden X: 448 Y: 153 Width: 195 Height: 126\nman is busy working on the computer X: 650 
Y: 235 Width: 128 Height: 128\nwindow is clean and clear X: 180 Y: 153 Width: 122 Height: 144\……
assistant: 
Instruction: Where was the company that produces the red beverage bottle on the production table established? In 
what year was it established? 
Answer: Atlanta, Georgia in 1892. The drink on the table is produced by the Coca-Cola Company, which was 
founded in Atlanta, Georgia in 1892 
Knowledge topic: Brands, Companies and Products

Instruction: What is the purpose of this room? 
Answer: Office room. You can see that there is only an office desk with two office computers on it, and it appears 
that someone is working.
Knowledge topic: People and Everyday Life
……

Figure 6: The prompt we give to GPT-4 for constructing outside-knowledge reasoning instructions.
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System prompt:
I want you to act as a Prompt Rewriter. Your goal is to draw inspiration from the given visual 

question and given image annotations to create a brand new outside-knowledge visual question to 
make those famous AI systems (e.g., GPT4-V and GPT4) and well-educated humans a bit harder to 
handle. \nThis new prompt should belong to the same domain as the given visual instruction but be 
even rarer. \nThe given question contain and your new generated question should contain one of the 
following four types of knowledge: 1. Commonsense Knowledge: this type of knowledge is about 
human social behavior (e.g., that many donuts being made in a cart implies they are for sale rather 
than for personal consumption) 2. Visual Knowledge: this type of knowledge is about visual 
knowledge in the image  (e.g., muted color pallets are associated with the 1950s) 3. Knowledge 
Bases: (e.g., hot dogs were invented in Austria) 4. Physical knowledge: this type of knowledge is 
about the world that humans learn from their everyday experiences (e.g., shaded areas have a lower 
temperature than other areas). I will provide you with a preliminary visual question, corresponding 
image annotation, and their knowledge type. The image annotation is some captions for an image, 
some entities in the caption are followed by “[x1, y1, x2, y2]” to indicate the bounding box 
coordinates of the entity in the image. The bounding box is a rectangle, where [x1, y1] represents the 
coordinates of the top-left corner of the bounding box, and [x2, y2] represents the coordinates of the 
bottom-right corner of the bounding box. Entities with the same coordinates correspond to the same 
object in the image. \nThe process of generating more complex visual instructions should take into 
consideration all of the following points: 1. Focus on introducing multi-hop the four types outside-
knowledge about the key entities in the image or employ complex reasoning to enhance the 
instruction's complexity. 2. The rewritten instruction must be reasonable and must be understood and 
responded by humans. 3. The instruction must be definitely answered according to the provided 
image annotations. 4. You should try your best not to make the new generated question and its 
answer become verbose, and can only add 10 to 20 words into new instruction as most. 5. Your 
generated question must require the test taker to carefully observe the given image before they can 
answer it. The correct answer cannot be answered just based on the text-only question.
Output with the following format:
Complicated Instruction: <your new generated instruction here>
Answer: <the response of the complicated instruction here>
Knowledge Type: <The specific knowledge type of question>
Demonstration:
user: 
Captions:\n1. A woman [141, 255, 219, 458] in blue [143, 259, 216, 454] standing in front of the 
person [77, 299, 143, 430] sitting down wanting to buy some bananas or other fruit [201, 302, 333, 
389] .\n ...
Preliminary Instruction: Based on the image, what is the girl's reaction to the praying mantis 
crawling on her arm?
Answer: The girl looks in awe at the praying mantis.
assistant: 
Complicated Instruction: In the image, what would be a likely scenario if the woman had been 
wearing a formal dress
instead?
Answer: The woman would probably not engage in play with the puppies, considering the formal 
attire.
Knowledge Type: Commonsense Knowledge

Figure 7: The prompt we give to GPT-4 for complicating instructions.
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System prompt:
I want you to act as a Prompt Judge. I will provide you with image annotations, visual instruction, and its 
response, which is generated based on the given image annotations.
The image annotations are some captions for an image, some entities in the caption are followed by "[x1, y1, x2, 
y2]" to indicate the bounding box coordinates of the entity in the image. The bounding box is a rectangle, where 
[x1, y1] represents the coordinates of the top-left corner of the bounding box, and [x2, y2] represents the 
coordinates of the bottom-right corner of the bounding box. Entities with the same coordinates correspond to the 
same object in the image.
You need to judge whether the quality of this visual instruction is high enough. The principles for high-quality 
visual instructions are as follows:
1. Both the instruction and the response must align with the image content consistently.
2. The visual instruction requires the test-taker to carefully observe the image and understand the instruction's 
content in order to provide a correct response; both components are indispensable. 
3. Instruction that can be answered solely based on the textual component without relying on image information is 
not considered good visual instruction.
4. The instruction must be reasonable and must be understood and responded by humans.
Note: Good visual instruction should meet all these conditions. 

When deciding whether an instruction is good, please first provide a full explanation of your judgment and then 
simply answer "yes" or "no" to indicate whether you think the instruction meets the principles of good visual 
instruction.
Output with the following format:

Judgement evidence: <your judgement explanation here>
Judgement result: <your judgement result here>

Figure 8: The prompt we give ChatGPT for verifying instructions.

System prompt:
I will provide you a question. According to this question and answer, generate two questions, in which the positive 
instruction's answer should be yes, and the negative instruction's should be no. Please note that the new positive 
instruction should have the same inner meaning as the provided question answer. The negative example needs to 
be very similar to the positive directive, but with the wrong factual substitutions for important entities.

Output format: 
Positive Instruction: <the modified question and the answer must be yes>
Negative Instruction: <the modified question and the answer must be no>

Demonstration:
user: 
The provide question: Where was the company that produces the red beverage bottle on the production table 
established? In what year was it established?
The question's answer: The drink on the table is produced by the Coca-Cola Company, which was founded in 
Atlanta, Georgia in 1892

assistant: 
Positive Instruction: Was the company that produced red drink bottles on the bench founded in Atlanta, Georgia in 
1892?
Negative Instruction: Was the company that produced red drink bottles on the bench founded in Los Angeles, 
California in 1898?

Figure 9: The prompt we give ChatGPT for generating Bool QA instructions.
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System prompt:
I will provide you with a question. 
Please modify this question into a multiple-choice format. 
The correct answer to the multiple-choice question has the same meaning as the answer to this question, and the 
choice of correct answer must be A!!!
Please make sure that the other three options B, C, and D are all wrong, and the wrong answers cannot be too 
simple.
Some useful tips: For the wrong option, you can replace some entities in the correct answer to accomplish this.

Output format: 
Instruction: same with the provide question
A: <the correct answer>
B: <the wrong answer>
C: <the wrong answer>
D: <the wrong answer>
Answer: A

Demonstration:
user: 
The provide question: Where was the company that produces the red beverage bottle on the production table 
established? In what year was it established?
The question's answer: Atlanta, Georgia in 1892. The drink on the table is produced by the Coca-Cola Company, 
which was founded in Atlanta, Georgia in 1892.

assistant: 
Question: Where was the company that produces the red beverage bottle on the production table established? In 
what year was it established?
A: Atlanta, Georgia in 1892
B: Paris, France in 1898
C: San Francisco, California in 1912
D: Los Angeles, California in 1889
Answer: A

Figure 10: The prompt we give ChatGPT for generating multi-choice QA instructions.
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