
Proceedings of the 31st International Conference on Computational Linguistics, pages 8255–8271
January 19–24, 2025. ©2025 Association for Computational Linguistics

8255

Momentum Posterior Regularization for Multi-hop Dense Retrieval

Zehua Xia*1, Yuyang Wu*1,2, Yiyun Xia1,3, Cam-Tu Nguyen†1,3

1State Key Laboratory for Novel Software Technology, Nanjing University
2School of Computer Science, Nanjing University

3School of Artificial Intelligence, Nanjing University
Emails: {zehuaxia,wuyuyang,xiayiyun}@smail.nju.edu.cn; ncamtu@nju.edu.cn

Abstract

Multi-hop question answering (QA) often re-
quires sequential retrieval (multi-hop retrieval),
where each hop retrieves missing knowledge
based on information from previous hops. To
facilitate more effective retrieval, we aim to dis-
till knowledge from a posterior retrieval, which
has access to posterior information like an an-
swer, into a prior retrieval used during inference
when such information is unavailable. Unfor-
tunately, current methods for knowledge distil-
lation in one-time retrieval are ineffective for
multi-hop QA due to two issues: 1) Posterior
information is often defined as the response
(i.e. the answer), which may not clearly con-
nect to the query without intermediate retrieval;
and 2) The large knowledge gap between prior
and posterior retrievals makes existing distilla-
tion methods unstable, even resulting in perfor-
mance loss. As such, we propose MoPo (Mo-
mentum Posterior Regularization) with two key
innovations: 1) Posterior information of one
hop is defined as a query-focus summary from
the golden knowledge of the previous and cur-
rent hops; 2) We develop an effective training
strategy where the posterior retrieval is updated
along with the prior retrieval via momentum
moving average method, allowing smoother
and effective distillation. Experiments on Hot-
potQA and StrategyQA demonstrate that MoPo
outperforms existing baselines in both retrieval
and downstream QA tasks‡.

1 Introduction

LLMs demonstrate strong language capabilities,
but their knowledge is not frequently updated,
which makes it ineffective in responding to time-
sensitive questions. In addition, LLMs still suf-

*These authors contributed equally to this work and should
be regarded as co-first authors.

†Corresponding author.
‡Our code is available at https://github.com/zeaver/

mopo

fer from hallucinations, especially in knowledge-
intensive question-answering tasks. Although aug-
menting LLMs with retrieval is a promising solu-
tion, a single round of retrieval is often insufficient
for complex, multi-hop queries (Yang et al., 2018).
Recent approaches have focused on multi-hop rea-
soning with LLM (Trivedi et al., 2023; Zhang et al.,
2024), multi-hop reranking (Zhang et al., 2024),
or multi-hop dense retrieval (Xiong et al., 2021).
The first two approaches, when being used without
a retrieval, are less efficient than multi-hop dense
retrieval. This is because they require costly atten-
tion computation between the query and documents
during inference. In contrast, multi-hop dense re-
trieval separately encodes queries and documents,
enabling the precomputation of document embed-
dings for offline indexing and efficient search.

Inspired by the success of distilling posterior
information (e.g. answers) to one-time retrieval
(Chen et al., 2020; Feng et al., 2020), we target
an unexplored research question of “how can we
effectively distill posterior information to facilitate
multi-hop dense retrieval in complex, multi-hop
QA?” Our intuition is that such posterior infor-
mation and the query can play as “anchor infor-
mation,” thus reducing the “semantic shift” issue
(Xiong et al., 2021) and facilitating multi-hop re-
trieval. Unfortunately, two main challenges hinder
the adoption of existing methods in multi-hop QA.
Firstly, most previous methods treat responses as
the posterior information to train the posterior re-
trieval. However, in multi-hop QA, the response
(answer) is not directly related to the original query.
As a result, the posterior retrieval trained on such
information may misguide the prior retrieval, con-
sequently missing the important information at the
intermediate hops. Secondly, the knowledge gap
between prior and posterior retrievals makes it diffi-
cult for knowledge distillation. Although this issue
exists in one-time retrieval, the gap is generally
larger in multi-hop retrieval. Our empirical results

mailto:email@domain
mailto:email@domain
https://github.com/zeaver/mopo
https://github.com/zeaver/mopo

8256

Question
What award was received in 1982 by the professor
that supervised Jun Li's Harvard Ph.D?

Paragraph#1
Jun Li is a Chinese mathematician who is currently a Professor of
Mathematics at Stanford University. He focuses primarily on moduli
problems in algebraic geometry and their applications to mathematical
physics, geometry and topology. He received his Ph.D. from Harvard
University in 1989, under the supervision of Shing-Tung Yau.

Corpus Index

...

MIPS

Paragraph#2
Shing-Tung Yau (born April 4, 1949) is a Hong Kong and naturalised
American mathematician. He was awarded the Fields Medal in 1982. He
is currently the William Caspar Graustein Professor of Mathematics at
Harvard.

1st-hop summary: Shing-Tung
Yau was the PhD supervisor of
Jun Li at Harvard University.

MIPS

Query Summarizer

Corpus Index

...

Query Encoder

Query Encoder

1st-hop query

Question

2st-hop query

Question 1st-hop summary

Posterior Regularization: MoPo

Figure 1: An example from HotpotQA benchmark. Given the 2-hop question, an iterative retriever is expected
to retrieve the 1st and 2nd golden paragraph sequentially. After every retrieval step, a query-focused summary
combining the query and the retrieved paragraph is generated, which is a kind of posterior information before
conducting its retrieval. We utilize it to enhance the retriever training as shown by the red arrow.

show that, even with a suitable posterior informa-
tion, the existing methods (Chen et al., 2020) do not
work well for multi-hop retrieval, even resulting in
a drop in retrieval performance.

To address the aforementioned issues, this study
incorporates posterior information to multi-hop
dense retrieval with two main ideas. Firstly, rather
than defining the final answer as the posterior in-
formation, we employ query-focused summary of
the gold knowledge in the previous and the cur-
rent hops as the posterior information for the cur-
rent hop (see Figure 1). By doing so, we ensure
a stronger correlation between the posterior infor-
mation and the current hop context. To facilitate
training, we develop PostSumQA, a dataset derived
from HotpotQA with 22, 696 questions. In Post-
SumQA, we provide posterior summary annotation
at every hop for all multi-hop questions. Secondly,
we propose Momentum Posterior Regularization
(MoPo), which exhibits smoother convergence and
is easier to train compared to existing posterior
regularization (Chen et al., 2020). In MoPo, the
posterior model is updated at each training step us-
ing a momentum-based moving average of the prior
model, thus reducing the knowledge gap between
the prior and posterior retrieval models. Experi-
mental results on HotpotQA and StrategyQA show
that MoPo effectively exploits posterior informa-
tion, resulting in better retrieval performance com-
pared to previous multi-hop retrieval methods and
existing posterior regularization methods. When
being used in the traditional retrieval-reranking-
generation, MoPo helps improve the downstream

tasks, the reranking and QA tasks. Particularly, a
simple pipeline with MoPo as the retrieval outper-
forms contemporary methods based on multi-hop
reranking and multi-hop reasoning with LLM.

Our contributions can be summarized as follows:

• To our knowledge, we are the first to intro-
duce posterior query-focused summary for
multi-hop dense retrieval. Toward this end,
we present PostSumQA, a high-quality dataset
comprising 22,696 entries in English, tailored
for training models on posterior information.

• This study proposes Momentum Posterior
Regularization (MoPo), a simple yet effective
posterior regularization framework for multi-
hop dense retrieval.

• Our method is empirically tested on the Hot-
potQA and StrategyQA datasets, outperform-
ing recent baselines both in retrieval and
downstream tasks (reranking and QA).

2 Related Works

Multi-hop Dense Retrieval Recent studies ex-
tend the dense retrieval framework (Devlin et al.,
2019) to support multi-hop QA. MDR (Qi et al.,
2021) proposes an iterative framework, where the
retrieval of each hop depends on the previous re-
trieved documents in the previous steps. Here,
MDR exploits a dual-encoder (Karpukhin et al.,
2020) as the single-time retrieval for each hop re-
trieval. BeamDR (Zhao et al., 2021) is similar to
MDR in that it aims to retrieve the next document

8257

depending on the document candidates in the beam.
Its optimization objective, however, is based on
contrasting positive retrieval chain to the negative
retrieval chain, rather than contrasting hop-level
samples as in MDR. Our research builds on these
studies, yet we aim to incorporate posterior infor-
mation into the retrieval process.

Multi-hop Reranking It is common to exploit
an inefficient but effective cross-encoder to rerank
the retrieved candidates (Xiong et al., 2021) for bet-
ter knowledge selection. The cross-encoder model
requires the expensive cross-attention between a
query and a document at the inference time; thus,
is only efficiently used with a small set of candi-
dates, typically from an efficient retrieval. Recently,
Ma et al. (2023) proposes Chain-of-Skills (CoS)
that adopts a similar framework with MDR but
performs reranking after every hop. Unlike CoS,
which interleaves between retrieval and reranking,
BeamRetrieval (Zhao et al., 2021) performs direct
multi-hop reranking from a set of document candi-
dates, that is obtained in advance.

Multi-hop Reasoning with LLM Thanks to the
strong reasoning capability of LLM (Wei et al.,
2022), recent studies treat LLM as a sophisticated
retrieval-generation agent for multi-hop QA. Repre-
sentative works being SelfAsk (Press et al., 2023),
IRCoT (Trivedi et al., 2023), FLARE (Jiang et al.,
2023), and BeamAggR (Chu et al., 2024). In gen-
eral, these methods combine LLM and retrieval in
two ways: 1) Performing question decomposition
with LLM and using a retrieval to help generate
K answers for each simple question in the ques-
tion tree (Chu et al., 2024); 2) Interleaving between
query reformalization and retrieval (Press et al.,
2023; Trivedi et al., 2023; Jiang et al., 2023). The
latter bears some resemblance to our framework,
yet we focus on improving the retrieval with poste-
rior information. It is noteworthy that these meth-
ods are much more costly than MoPo due to the
use of resource-intensive LLM for reranking, query
formalization, and answer generation.

Posterior Knowledge Enhancement Posterior
knowledge has been used to refine knowledge se-
lection in dialogue systems using (Kim et al., 2020;
Chen et al., 2020). In general, these methods aim
to perform knowledge distillation between the pos-
terior and the prior retrievals by minimizing the KL
divergence. Unlike these methods, however, we
focus on mult-hop dense retrieval setting.

3 Methodology

3.1 Problem Definition

For open-domain multi-hop question answering re-
trieval: given the question q and a large textual
corpus D, a retriever need to retrieve a sequence
Dseq = {d1, . . . , dL} of L relevant documents to
construct the reasoning chain and finally find the
target answer a. In practice, the retriever returns
the K documents with the highest scores as can-
didates for downstream modules, like reranker or
reader/generation, where |D| ≫ K.

3.2 Iterative Multi-hop Dense Retriever

Inspired by MDR (Xiong et al., 2021), we model
the probability of a sequence of documents given
the query based on the dense retrieval model Mθ

with the parameters θ:

Pθ(Dseq|q) =
L∏

t=1

Pθ(dt|q, d1, ..., dt−1) (1)

where, dt represents the retrieved document at step
t, and when t = 1, query is the original question.
After finishing t−th retrieval, we apply some post-
processing to qt for next time. We define Gs as the
query post-processing module:

qt = Gs(qt−1, dt−1) (2)

Accordingly, the Equation (1) is simplified as:

Pθ(Dseq|q) =
L∏

t=1

Pθ(dt|qt) (3)

Then the InfoNCE contrastive loss (van den Oord
et al., 2019) function for a tuple within a batch
(q,Dseq) ∼ B is as follows

LInfoNCE(θ,B) (4)

= Er∼B

[L∑
t=1

− log
exp

(
fθ(qt, d

+
t)

)∑
d∈d±t

exp (fθ (qt, d))

]
with r = (q,Dseq) where q is the original ques-
tion, qt, d+t and d−t represent the query at the t-hop
and the corresponding positive (d+t ∈ Dseq) and
negative documents at t-th hop, respectively. Here,
fθ(·) indicates the similarity function, which ex-
ploits Mθ to map the query and the document into
two dense vectors for similarity measurement like
Exact Inner Product in MoPo.

8258

3.3 Posterior Summary Utilization
We introduce posterior summary to reformulate
query and enhance the retrieval capability of Mθ.

Query Reformulation In MDR, the post-
processing module Gs performs a simple concate-
nation of the query and retrieved documents. How-
ever, such a method will cause an increment in the
query length. On the other hand, if Gs is just a
simple summarization, the semantic drift issue is
highly likely to occur. As a result, we retain the
original question q, and concatenate the summary
st−1 generated from retrieved documents as the
query for the t−th step retrieval:

qt = q ⊕ st−1 = q ⊕Gs(st−2, dt−1, q) (5)

The symbol ⊕ represents concatenation operation.
Intuitively, the syntactic and semantic consistency
across retrieval steps can be ensured in this way.
For syntactic consistency, the query length will not
increase significantly thanks to the summarization
operation. In addition, except for the first-hop re-
trieval step, subsequent queries all have the same
structure — the original question and the summary
of all previously retrieved documents. For seman-
tic consistency, the original question is included at
every step, subsequently mitigating the semantic
drift issue. Equation (3) is then rewritten as:

P (Dseq|q) =
L∏

t=1

P (dt|st−1, dt−1, q) (6)

Posterior Summary Enhanced Retriever It is
intuitive that a retrieval that exploits both the ques-
tion and the answer (the posterior information) is
more effective than a retrieval that only uses a ques-
tion for the search (Chen et al., 2020). In this paper,
we define the posterior information for each hop
(step) as the query-aware summary up to that step.
Specifically, for the retrieval step t, as the search
query qt is formed by the original query q and the
previous step summary st−1, the summary st is the
posterior information for this particular step. Here,
we denote the posterior-enhanced retriever with
parameters ϕ by Mϕ, which has the same architec-
ture and similarity function with Mθ for simplicity.
Given a tuple (st, d

+
t ,d

−
t), similar in Equation (4),

the posterior similarity during training is:

pϕ(dt|st) =
exp

(
fϕ(st, d

+
t)

)∑
d∈d±t

exp (fϕ (st, d))
(7)

To train Mθ, we sample a tuple (q,Sseq,Dseq) ∼
B

′
, where Sseq indicates the query-focused sum-

mary sequence. We then calculate the posterior
regularized InfoNCE loss as follows:

L(θ,B′
) = LInfoNCE(θ,B

′
) (8)

+ λ · Er′∼B′
[L∑
t=1

DKL(pϕ(dt|st)∥pθ(dt|qt))
]

with r
′

= (q,Sseq,Dseq), and λ is the Kull-
back–Leibler (KL) divergence loss weight.

3.4 Momentum Posterior Regularization
Usually, we adopt a two-stage training strategy
for Posterior Regularization (PR): firstly train a
posterior model Mϕ on the whole training tuples
{(Sseq,Dseq,d

−)}, and then employ Mϕ to com-
pute the KL divergence with the retriever Mθ train-
ing on {(q,Sseq,Dseq)}. However, this solution
yields poor results on retrieval evaluation.

Analysis of PR Loss We analyze the training loss
to understand the failure cause of 2-stage PR strat-
egy. In the first stage, during the training of the pos-
terior model Mϕ, we observe that the training loss
converges rapidly. In contrast, in the second stage,
which involves training the prior model Mθ, both
the InfoNCE and Kullback-Leibler (KL) losses ex-
hibit slow convergence rates. This is particularly
pronounced for the KL term. Moreover, we note
that the KL term consistently accounts for a high
proportion of the total loss, even when we reduce
its weight λ. This behavior is unexpected and po-
tentially problematic, as the KL term is intended
to serve as a regularization component rather than
dominate the training process.

Momentum Update We hypothesize that this
suboptimality may be attributed to the overly influ-
ential supervised training signal from the posterior
summary. For this reason, it is desirable that the
posterior regularization is smooth and not overly
strong. Therefore, we propose a momentum poste-
rior regularization framework to address this issue.
At training step τ , given the momentum coefficient
m, we update ϕ by:

ϕ(τ) ← mϕ(τ−1) + (1−m)θ(τ−1) (9)

The posterior distribution is obtained only by
passing the query with posterior information (st)
through Mϕ in forward-passing. In essence, only
the parameters of prior model θ are updated by

8259

Algorithm 1: Momentum Posterior Regularization
Input: Momentum coefficient m; Prior model Mθ

Data: Training dataset X
1 Mϕ ←Mθ; // Initialize posterior model Mϕ

2 for (q,Dseq,Sseq) in X do
3 Pθ(Dseq|q)←Mθ(q,Dseq); // Compute prior logit in Equation (4)
4 ϕ← mϕ+ (1−m)θ; // Momentum update Mϕ in Equation (9)
5 Pϕ(Dseq|Sseq)←Mϕ(q,Sseq,Dseq); // Compute posterior logit in Equation (7)
6 L(θ)← LInfoNCE [Pθ(Dseq|q)] + λ ·KL [Pϕ(Dseq|Sseq)∥Pθ(Dseq|q)]; // Equation (8)
7 Update Mθ with L(θ) by Adam optimizer (Kingma and Ba, 2015);
8 end

back-propagation. By doing so, it simplifies the
original two-stage training for posterior regular-
ization to one-stage training strategy, making the
training simpler compared to PR.

4 Data Preparation with Backward
Summary Generation

MoPo training requires a dataset with posterior
information annotation, i.e. query-focused sum-
maries. In this paper, we aim at an automatic
method to construct such a dataset from a multi-
hop QA dataset. More specifically, given a se-
quence of (q, d1, d2, ..., dL, a), where q, a are the
question, answer and (d1, d2, ..., dL) is the doc-
ument sequence containing key information to
derive the answer, the objective is to generate
(q, . . . , dt, st, . . . , a), where st is the summary at
the t-th hop. The direct intuition is to exploit LLM
to help generate such summaries in the forward
direction. In other words, we can aim to generate
st given q, dt, st−1. However, doing so can lead
to semantic drift as LLM may include redundant
information from dt, for it does not know which
key information is needed for the final answer.

In this paper, we propose a backward summary
generation for data generation. Specifically, for
the last hop (the L-th hop), we use the rule-based
method QA2D (Demszky et al., 2018) to generate
sL from q and a, making sure that there is no re-
dundant information in dL included in sL. For the
intermediate t-th step, given st+1 summary in the
next hop, the query q, and the current hop document
dt, we ask LLM to generate st from q, dt, st+1 by
removing redundant information in st+1 that is not
included in dt. Our experience shows that having
access to the “look ahead” information in st+1 facil-
itates the hop summary generation. Experiments in
Appendix A show the advantage of backward sum-

mary generation in generating high-quality data
compared to the forward summary process. By
applying the above process to a subset of the Hot-
potQA training set (Yang et al., 2018), a multi-hop
QA set in English, we obtain 22,696 data points
for MoPo training. We refer to this dataset as Post-
SumQA and publish it for future research. Detailed
information and analysis of this dataset are pro-
vided in the Appendix.

5 Retrieval Experiments

5.1 Experimental Setup

Datasets We test the retrieval and comprehensive
reasoning ability of MoPo on two datasets: Hot-
potQA (Yang et al., 2018) and StrategyQA (Geva
et al., 2021). HotpotQA is a multi-hop question
answering dataset in the open domain, necessitat-
ing information from two separate Wikipedia pages
to respond to a query. It includes 113K multi-hop
questions and ∼5M documents. Both dev/test sets
of HotpotQA have ∼7K samples. StrategyQA is an-
other open-domain multi-hop question answering
dataset with 2,780 examples and ∼36M documents,
where the reasoning process is not explicitly stated
in the question, requiring 2 hops of information
retrieval and strategic thinking to derive the answer.
On StrategyQA, we directly utilize the model fine-
tuned on HotpotQA for evaluation. As a result, we
consider StrategyQA is a held-out dataset that al-
lows us to the generalization of compared methods.

Metrics Like (Xiong et al., 2021), we use Recall
and Exact Match (EM) metrics to evaluate the per-
formance. Retrieval EM measures the percentage
of test queries of which at least one of the retrieved
sequences exactly matches that of the golden docu-
ment sequence. On the other hand, Recall measures
the percentage of test queries of which at least one

8260

Model R@2 R@20 R@50 R@100 EM@2 EM@20 EM@50 EM@100

HotpotQA

BeamDR - - - 92.90 60.70 - - 79.20
MDRorigin 65.90 80.20 - - - - - -
MDRzero 92.12 92.64 93.77 94.62 46.11 58.27 69.37 73.09
MDR 94.34 94.85 95.63 96.38 55.96 71.73 76.82 79.70
MDRsum 94.66 95.27 95.85 96.38 60.04 72.65 76.98 79.94
PRfixed 94.49 95.07 95.88 96.55 57.67 72.18 76.93 79.95
PRdyn 94.52 95.13 95.69 96.61 57.33 72.67 77.13 80.17
MoPo 94.77 95.43 96.27 96.70 63.03 76.74 80.27 82.20

StrategyQA

MDRzero 42.80 43.15 43.52 43.85 27.96 32.44 35.83 37.34
MDR 42.64 42.85 43.21 43.70 25.31 31.87 35.29 36.06
MDRsum 42.85 43.31 43.66 43.87 28.88 32.92 36.46 37.40
PRfixed 42.38 42.92 43.39 43.80 25.76 32.31 36.05 36.53
PRdyn 42.80 43.14 43.47 43.78 25.81 32.84 36.14 37.14
MoPo 43.36 43.61 43.94 44.15 31.91 35.61 37.90 39.24

Table 1: Retrieval performance in recall and EM at k retrieved passages within 10×20 search space. Results of
MDRorigin and BeamDR come form their own paper. We also evaluate retrieval performance in different base
models in Table C3 and Table C4.

of the retrieved sequences containing at least one
document of the golden document sequence. More
detailed information can be found in Appendix B.2.
As multi-hop QA requires information from all the
hops to get the answer, EM is a more important
metric for multi-hop retrieval. Additionally, the
beam size, or the number of candidate documents
to achieve at each hop, is an essential parameter for
final retrieval performance. We follow the golden
passages order of MDR (Xiong et al., 2021) but re-
duce the beam size from 50×50 to 10×20. EM@K
and Recall@K are EM and Recall metrics mea-
sured by retrieving top K/L sequences from 10×20
candidates, where sequence scores are measured
by Equation 1 and L = 2 is the maximum number
of hops in HotpotQA and StrategyQA.

Implementation Details All the experiments are
conducted on 4×32G V100 GPUs. We initialize
MoPo with a powerful pre-trained text embedder
E5-v2-base (Wang et al., 2024) as retrieval model.
In addition, flan-t5-large (Chung et al., 2022) is
used as summary-generation model. After train-
ing, we exploit the retrieval model Mθ to obtain
document embeddings and index them with the Ex-
act Inner Product (IndexFlatIP) in FAISS (Johnson
et al., 2021) for efficient search. More implementa-
tion details are shown in Appendix B.

5.2 Baselines

There are two groups of baselines for retrieval:

Models without posterior information This
group of baselines contains BeamDR (Zhao et al.,
2021), MDRorigin (Xiong et al., 2021), and sev-
eral variants of MDR. Here, MDR is the variant
of the original one where we exploit E5-v2-base
as the hop dense retrieval instead of RoBERTa
(Liu et al., 2019) in the original MDR. MDRsum

and MDRzero are the variants of MDR with
two modifications: 1) The hop retrieval is E5-
v2-base; 2) We exploit the summary model as
in MoPo for query formalization instead of con-
catenating queries with retrieved documents as in
MDR. Different from MDR and MDRsum, the re-
trieval model of MDRzero are not finetuned on Post-
SumQA. The inclusion of MDRzero is for measur-
ing the zero-shot performance when applying E5-
v2-base as the hop retrieval in the MDR framework
without further training. Note that once MoPo is
trained, it is used for inference in the same way with
MDRsum. In other words, there is no additional
inference cost associated with MoPo in comparison
with MDRsum.

Models with Posterior Information The base-
lines in this group includes PRfixed and PRdyn,

8261

which are MDR with two-stage training for pos-
terior regularization (Chen et al., 2020). PRfixed

(Chen et al., 2020) is trained with a fixed λ=0.3,
determined through grid search over the range
[0.1, 1.0] and a step size of 0.1. For PRdyn, we
design a linear decay scheduler, analogous to learn-
ing rate scheduling, where λ decreases from 0.3 to
0.1 over the course of training.

5.3 Retrieval Results

Table 1 shows that MoPo outperforms all other
baselines on both datasets. From the results, sev-
eral findings can be obtained: (1) The fact that
MDR is better than MDRorigin shows that the adop-
tion of the powerful (single-time) dense retrieval
model, E5-v2-base, is essential for multi-hop re-
trieval. Notably, even MDRzero attains decent per-
formance without training; (2) MDRsum is signif-
icantly better than MDR, demonstrating that our
query re-formalization is effective; (3) Although
the dynamic adjustment of the proportion of PR
term does enhance retrieval performance, both PR
methods exhibit inferior performance compared to
MDRsum. PRdyn is better than PRfixed but worse
than MoPo, showing that dynamic scheduling can
help but not that much. (4) MoPo introduces a more
effective training strategy for posterior knowledge
distillation, resulting in superior performance com-
pared to other baselines, particularly in EM metrics,
which are critical for multi-hop QA systems.

Further evaluation of the held-out dataset, Strat-
egyQA, provides some insightful observations: (1)
The superior performance of MDRzero over MDR,
which is trained on HotpotQA, indicates that MDR
exhibits limited generalization to StrategyQA. The
possible reason is that MDR concatenates the query
and the retrieved document for next-hop retrieval,
making it prone to over-fitting to dataset-specific
characteristics such as document length or irrele-
vant information. In contrast, MDRsum and MoPo,
which use a summary model to rewrite the query,
may avoid this issue. (2) Despite being trained
exclusively on PostSumQA, a derived set of Hot-
potQA training data, the summary model still fa-
cilitates retrieval performance, as being seen by
the superior performance of MDRsum compared to
MDRzero; (3) MoPo, trained on PostSumQA, also
demonstrates its robustness when being tested on
StrategyQA, significantly outperforming all other
baselines in EM metrics.

lambda=0.3

Figure 2: Total absolute and relative loss curve of PR
and MoPo, λ=0.3, where relative Loss Ratio = InfoNCE
Loss / Total Loss. All curves are processed with the
same smoothing factor.

5.4 Analysis of Training Loss Curve

Our experimental results show that PRfixed strug-
gles to improve over MDRsum even with hyper-
parameter tuning. To further explore the reason, we
draw the total and relative loss curves of PRfixed

with λ=0.3, the grid-searched value. Here, the rel-
ative loss measures the ratio of InfoNCE loss over
the total loss (InfoNCE plus PR term). The lower
the loss ratio is, the bigger the role of PR term is in
optimization.

From the total loss plot in Figure 2, we see
that the posterior model (the teacher model) con-
verges much faster compared to the student models.
Specifically, the teacher model converges around
∼80 steps while the student models (PR, MoPo) do
not. From the relative loss plots, it is observable
that the posterior regularization (PR) term always
occupies a big ratio in the total loss. As training
progresses, the proportion of PR terms increases
faster than the decrease rate of total loss. By dy-
namically adjusting the weights of PR terms, we
can mitigate this issue, resulting in a better results
for PRdyn compared to PRfixed (see Table 1), yet
the performance is still not satisfactory. Figure 2
also shows that MoPo total loss is smoother com-
pared to PRfixed, and the higher relative loss curve
indicates that MoPo can limit the domination of PR
term during optimization.

5.5 Analysis on Hyper-parameter Sensitivity

Less Sensitive to λ We study how the the perfor-
mance of PRfixed and MoPo change with differ-
ent values of the posterior regularization weight λ.
The results in Table 2 show that MoPo has much
lower performance gap compared to PRfixed, ver-
ifying the robustness of MoPo in multi-hop dense
retrieval.

Momentum Update is More Effective We mea-
sure the impact of the parameter m in Equation

8262

R@2 R@20 R@50 R@100

PR

λ = 0.3 94.49 95.07 95.88 96.55
λ = 0.5 93.85 94.39 95.13 95.75
λ = 1.0 93.93 94.59 95.29 95.85
PG(‰) ↓ -6.773 -7.153 -7.822 -8.286

MoPo

λ = 0.3 94.76 95.42 96.17 96.85
λ = 0.5 94.97 95.69 96.48 96.98
λ = 1.0 94.77 95.43 96.27 96.70
PG(‰) ↓ -2.211 -2.821 -3.213 -2.887

Table 2: Retrieval performance on HotpotQA with dif-
ferent λ values. PG means Performance Gap, the ratio
that deviates the most from the best performance among
all performances

Models R@2 R@20 R@50 R@100

PRfixed 94.49 95.07 95.88 96.55
PRdynamic 94.52 95.13 95.69 96.61
m = 0 94.53 95.27 95.92 96.62
m = 0.5 94.61 95.36 96.24 96.68
m = 0.9 94.69 95.33 96.25 96.67
m = 0.99 94.77 95.43 96.27 96.70
m = 1.0 94.73 95.33 96.21 96.67

Table 3: Retrieval performance of MoPo on HotpotQA
with different momentum coefficient m.

9 on MoPo. Utilizing a grid search on a smaller
validation set, we identified several representative
values for testing as shown in Table 3. Note that,
m=0 means the posterior model is the same as prior
during every training step, and m=1 means that the
posterior model is kept to be the initial encoder
during training. As depicted in Table 3, all models
are better than PRdynamic on Recall@100. Besides,
m=0.99 and 0 performs the best and worst, respec-
tively. The best value of m falls into the range
between 0.9 and 1, indicating that MoPo prefers
slower updating.

6 Downstream Tasks

6.1 Reranking

We utilize the pre-trained jina-reranker-v2-
multilingual (Günther et al., 2023) as a reranker
to test MoPo retrieval performance. After the
retrieval stage, for each retrieved sequence
{(d1, d2, . . . , dL)}, we use the reranker model

Methods EM@2

MDR (reranking) (Xiong et al., 2021) 81.2
Beam Retrieval (Zhang et al., 2024) 82.2
Chain-of-Skills (Ma et al., 2023) 88.9
MoPo (reranking) 89.4

Table 4: Fullwiki HotpotQA reranked retrieval results.
The beam size here is 50×50. Results of baseline meth-
ods come from their own paper.

to calculate the relevance score of each doc and
calculate the sequence score as follows:

P (d1, . . . , dL, q) ∝
∏
t

P (dt, q)

P (dt, q) = Reranker([q, dt]) (10)

Although this simple reranking assumes an in-
dependence assumption among documents in the
sequence, its documents are retrieved in the se-
quencial order with DPR. In this experiment, we
compare our results with two other competitive
retrieval models that incorporate reranking tech-
niques: Beam Retrieval (Zhang et al., 2024), Chain-
of-Skills (CoS) (Ma et al., 2023). Both Beam
Retrieval and CoS exploit MDR as the retrieval
framework and perform reranking at every hop. In
contrast, we perform only ranking at the last hop.
In addition, CoS incorporates multiple additional
tasks, such as entity span prediction and linking,
making the model much more complicated than
MoPo+reranking. To be consistent with previous
work, we set the beam size here at 50. In other
words, for two hops in HotpotQA, the search space
is 50× 50. Experimental results in Table 4 demon-
strate the advantages of MoPo over the baselines
regardless of being more efficient compared to the
stronger baselines (Beam Retrieval and CoS). It is
noteworthy that, in comparison with CoS, MoPo
achieves better performance with less computing
requirement. Specifically, we need 4 V100 32G for
training MoPo while CoS requires 16 V100 32G
for training.

6.2 Question Answering
We evaluate MoPo when being used in a traditional
retrieval-reranking-generation for QA task. Here,
we utilize Flan-T5-large(Chung et al., 2022) as
the generation for answer and supporting sentence
generation.

Table 5 shows the results of MoPo and other
baselines on the whole test set of HotpotQA with

8263

Methods
Dev Test

Ans Sup Joint Ans Sup Joint

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

MDR (Xiong et al., 2021) 62.3 75.1 56.5 79.4 42.1 66.3 62.3 75.3 57.5 80.9 41.8 66.6
MDR(new) 64.2 76.7 60.1 82.7 42.3 67.5 - - - - - -
IRRR+ (Qi et al., 2021) - - - - - - 66.3 79.9 57.2 82.6 43.1 69.8
HopRetriever-plus (Li et al., 2021) 66.6 79.2 56.0 81.8 42.0 69.0 64.8 77.8 56.1 81.8 41.0 67.8
TPRR (Zhang et al., 2021) 67.3 80.1 60.2 84.5 45.3 71.4 67.0 79.5 59.4 84.3 44.4 70.8
AISO (Zhu et al., 2021) 68.1 80.9 61.5 86.5 45.9 72.6 67.5 80.5 61.2 86.0 44.9 72.0
Chain-of-Skills (Ma et al., 2023) 68.2 81.0 61.1 85.3 46.4 72.3 67.4 80.1 61.3 85.3 45.7 71.7

MoPo 68.4 81.5 61.9 86.9 46.7 72.7 67.6 80.8 61.4 86.1 45.7 72.1

Table 5: Downstream QA results on HotpotQA fullwiki set. MDR(new) means MDR reproduced with the same
base models as MoPo. Results of other models come from their own paper.

Model Overall Bridge Comp.

Self-Ask (Press et al., 2023) 49.4 45.3 68.6
IRCoT (Trivedi et al., 2023) 56.2 53.4 69.6
FLARE (Jiang et al., 2023) 56.1 54.2 54.4
BeamAggR (Chu et al., 2024) 62.9 60.5 74.2
MoPo 64.3 61.2 76.2

Table 6: Downstream QA performance in F1 on Hot-
potQA subset of 100 samples (Trivedi et al., 2023). Re-
sults of other models come from (Chu et al., 2024).

fullwiki setting, where MoPo establishes the state-
of-the-art (SOTA) benchmark on both HotpotQA
dev and test datasets. Furthermore, we observe a
1.2% enhancement in performance when the base
models of MDR are updated in MDR (new). Nev-
ertheless, MoPo surpasses the revised MDR by a
margin of 5.2%, which demonstrates the effective-
ness of our methodology.

In addition, we compare MoPo-based pipeline
with some other latest methods that exploit LLM
for reasoning. We test on the same test set provided
by IRCoT, which contains only 100 instances. Ta-
ble6 shows the results, where MoPo outperforms
all baselines on HotpotQA set while maintaining a
more efficient inference time.

7 Conclusion

This paper introduces Momentum Posterior Reg-
ularization (MoPo), the first attempt to distill pos-
terior information into multi-hop dense retrieval.
In MoPo, we define posterior information for each
hop as a query-focused summary, and introduce
a smooth and effective training strategy based on
momentum-based moving average method. To fa-
cilitate MoPo training, we automatically construct
PostSumQA from HotpotQA using a novel method,

namely backward summary generation. Our experi-
mental results show the effectiveness of our method
in exploiting posterior information, resulting in an
improvement in retrieval performance. When being
used in a traditional pipeline of retrieval-reranker-
generation (Re2G), MoPo-based Re2G exhibits su-
perior performance compared to strong baselines
for two downstream tasks, reranking and QA.

Limitations

The present study is subject to two principal limita-
tions. First, although our training method is proven
to be useful, the theory behind training controlla-
bility needs further exploration. We plan to further
explore this in our future work. Second, a compre-
hensive evaluation should include detailed analysis
on the inference time of MoPo-based pipeline and
other baselines in Reranking and QA tasks. How-
ever, the diversity of the baselines and the cost of
such models prevent us to perform such analysis at
the present. We aim to address these limitations in
future research endeavors.

Ethics Statement

MoPo aims to improve the performance of multi-
hop dense retrieval and the training processing of
posterior regularization. We exclusively utilized
existing datasets from previously published works.
No new data collection was conducted for this
study. All experiments and query-focused sum-
mary constructions were performed strictly within
the confines of these pre-existing datasets. The na-
ture of our generation process ensures that even in
cases of inaccuracy, the outputs remain controllable
and pose no potential harm. This is due to the con-
strained scope of the input data and the controlled

8264

nature of our experimental environment. The cur-
rent model operates solely in English, which in-
herently limits its practical applications in diverse,
multilingual real-world scenarios.

References
Xiuyi Chen, Fandong Meng, Peng Li, Feilong Chen,

Shuang Xu, Bo Xu, and Jie Zhou. 2020. Bridging
the gap between prior and posterior knowledge se-
lection for knowledge-grounded dialogue generation.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3426–3437, Online. Association for Computa-
tional Linguistics.

Zheng Chu, Jingchang Chen, Qianglong Chen, Haotian
Wang, Kun Zhu, Xiyuan Du, Weijiang Yu, Ming Liu,
and Bing Qin. 2024. BeamAggR: Beam aggregation
reasoning over multi-source knowledge for multi-hop
question answering. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1229–
1248, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Preprint, arXiv:2210.11416.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. Preprint,
arXiv:1809.02922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shaoxiong Feng, Hongshen Chen, Kan Li, and Dawei
Yin. 2020. Posterior-gan: Towards informative and
coherent response generation with posterior genera-
tive adversarial network. Proceedings of the AAAI
Conference on Artificial Intelligence, 34:7708–7715.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with

implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaed-
dine Abdessalem, Tanguy Abel, Mohammad Kalim
Akram, Susana Guzman, Georgios Mastrapas, Saba
Sturua, Bo Wang, Maximilian Werk, Nan Wang, and
Han Xiao. 2023. Jina embeddings 2: 8192-token
general-purpose text embeddings for long documents.
Preprint, arXiv:2310.19923.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Unsupervised dense infor-
mation retrieval with contrastive learning. Preprint,
arXiv:2112.09118.

Zhengbao Jiang, Frank Xu, Luyu Gao, Zhiqing Sun,
Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie
Callan, and Graham Neubig. 2023. Active retrieval
augmented generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 7969–7992, Singapore. As-
sociation for Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Byeongchang Kim, Jaewoo Ahn, and Gunhee Kim.
2020. Sequential Latent Knowledge Selection for
Knowledge-Grounded Dialogue. In ICLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Shaobo Li, Xiaoguang Li, Lifeng Shang, Xin Jiang, Qun
Liu, Chengjie Sun, Zhenzhou Ji, and Bingquan Liu.
2021. Hopretriever: Retrieve hops over wikipedia
to answer complex questions. In Proceedings of the
AAAI conference on artificial intelligence, volume 35,
pages 13279–13287.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

https://doi.org/10.18653/v1/2020.emnlp-main.275
https://doi.org/10.18653/v1/2020.emnlp-main.275
https://doi.org/10.18653/v1/2020.emnlp-main.275
https://aclanthology.org/2024.acl-long.67
https://aclanthology.org/2024.acl-long.67
https://aclanthology.org/2024.acl-long.67
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/1809.02922
https://arxiv.org/abs/1809.02922
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://arxiv.org/abs/2310.19923
https://arxiv.org/abs/2310.19923
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.18653/v1/2023.emnlp-main.495
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://openreview.net/forum?id=Hke0K1HKwr
https://openreview.net/forum?id=Hke0K1HKwr
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692

8265

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Kaixin Ma, Hao Cheng, Yu Zhang, Xiaodong Liu, Eric
Nyberg, and Jianfeng Gao. 2023. Chain-of-skills:
A configurable model for open-domain question an-
swering. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1599–1618, Toronto,
Canada. Association for Computational Linguistics.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014–2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah Smith, and Mike Lewis. 2023. Measuring and
narrowing the compositionality gap in language mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5687–5711, Singa-
pore. Association for Computational Linguistics.

Peng Qi, Haejun Lee, Tg Sido, and Christopher Man-
ning. 2021. Answering open-domain questions of
varying reasoning steps from text. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3599–3614, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2023. Interleaving retrieval
with chain-of-thought reasoning for knowledge-
intensive multi-step questions. In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 10014–10037, Toronto, Canada. Association
for Computational Linguistics.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019.
Representation learning with contrastive predictive
coding. Preprint, arXiv:1807.03748.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2024. Text embeddings by
weakly-supervised contrastive pre-training. Preprint,
arXiv:2212.03533.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Zehua Xia, Qi Gou, Bowen Yu, Haiyang Yu, Fei Huang,
Yongbin Li, and Nguyen Cam-Tu. 2023. Improving
question generation with multi-level content planning.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 800–814, Singapore.
Association for Computational Linguistics.

Wenhan Xiong, Xiang Lorraine Li, Srinivasan Iyer,
Jingfei Du, Patrick Lewis, William Yang Wang,
Yashar Mehdad, Wen-tau Yih, Sebastian Riedel,
Douwe Kiela, and Barlas Oğuz. 2021. Answer-
ing complex open-domain questions with multi-hop
dense retrieval. International Conference on Learn-
ing Representations.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Jiahao Zhang, Haiyang Zhang, Dongmei Zhang, Liu
Yong, and Shen Huang. 2024. End-to-end beam re-
trieval for multi-hop question answering. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 1718–1731, Mexico City,
Mexico. Association for Computational Linguistics.

Xinyu Zhang, Ke Zhan, Enrui Hu, Chengzhen Fu, Lan
Luo, Hao Jiang, Yantao Jia, Fan Yu, Zhicheng Dou,
Zhao Cao, and Lei Chen. 2021. Answer complex
questions: Path ranker is all you need. In Proceed-
ings of the 44th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’21, page 449–458, New York, NY,
USA. Association for Computing Machinery.

Chen Zhao, Chenyan Xiong, Jordan Boyd-Graber, and
Hal Daumé III. 2021. Multi-step reasoning over un-
structured text with beam dense retrieval. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4635–4641, Online. Association for Computational
Linguistics.

Yunchang Zhu, Liang Pang, Yanyan Lan, Huawei Shen,
and Xueqi Cheng. 2021. Adaptive information seek-
ing for open-domain question answering. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 3615–3626,

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2023.acl-long.89
https://doi.org/10.18653/v1/2023.acl-long.89
https://doi.org/10.18653/v1/2023.acl-long.89
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2021.emnlp-main.292
https://doi.org/10.18653/v1/2021.emnlp-main.292
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://doi.org/10.18653/v1/2023.findings-emnlp.57
https://doi.org/10.18653/v1/2023.findings-emnlp.57
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2024.naacl-long.96
https://doi.org/10.18653/v1/2024.naacl-long.96
https://doi.org/10.1145/3404835.3462942
https://doi.org/10.1145/3404835.3462942
https://doi.org/10.18653/v1/2021.naacl-main.368
https://doi.org/10.18653/v1/2021.naacl-main.368
https://doi.org/10.18653/v1/2021.emnlp-main.293
https://doi.org/10.18653/v1/2021.emnlp-main.293

8266

Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

A Methods and Analyses of Data
Synthesis

A.1 Detailed pipeline of data synthesis

Rule-based method: QA2D The second-hop
summaries of all bridge questions are generated
by the rule-based method QA2D(Demszky et al.,
2018). The original intention of this method
is to create a large-scale semi-supervised NLI
(Natural Language Inference) dataset. Compared
with the single NLI dataset, there are more pub-
licly available manually annotated QA datasets.
QA2D can convert question-answer pairs into cor-
responding declarative forms. Although the orig-
inal QA2D paper only conducted experiments on
SQuAD(Rajpurkar et al., 2016), Xia (Xia et al.,
2023)also verified the effectiveness of this method
on the HotpotQA dataset. The inherent disadvan-
tage of rule-based methods is poor generalization.
The answers to comparison-type question-answer
pairs in the HotpotQA dataset are mainly "yes"
and "no", while SQuAD is mainly factoid question
answering, and the answers are extractive. QA2D
developed on SQuAD cannot cover all examples
in HotpotQA, especially comparison-type question
answering pairs. Therefore, this paper only uses
this method to generate the second-hop summary
of the bridging problem. If we encounter a sam-
ple that QA2D cannot calculate, we will directly
discard it.

LLM-based method We use GPT-3.5-Turbo to
complete the first-hop and second-hop summary
generation of all comparison type samples, and
the first-hop summary generation task of all bridge
type samples. We write the prompt words for sum-
mary generation according to the following points,
taking the prompt words for the first-hop summary
generation of bridge type samples as an example:

1. Complex task decomposition: The query-
centric summary generation task with multiple
thinking steps is decomposed into multiple
subtasks, namely reasoning step generation
and query-centric summary generation.

2. The requirements should be clear. Use Mark-
down syntax to write (1) a detailed explana-
tion of each item entered; (2) clearly state
each step required to complete the task;

3. Two examples are provided: the examples
are input in order: Context, Statement,
Reasoning steps and Output. The context
only uses the title and crowd-sourced support-
ing fact sentences instead of the entire sup-
porting paragraph to provide more effective
information.

4. Write the steps of the Chain of Thought into
the example. And the output should include
the Reasoning Steps.

5. If an input example is too difficult for the
LLM, skip that example.

We provide a detailed example in Appendix A.2.

Semi-supervised data generation method for
comparing type samples Considering that com-
parison type problems are relatively difficult prob-
lems, we add a specific interpretation of compari-
son type problems to the prompt words for the first-
hop summary generation of bridge type samples,
and modify the execution steps and requirements
of specific tasks. Considering that multi-task text
generation, that is, it is difficult to generate the first-
hop and second-hop summaries at the same time,
and to avoid the mutual influence of the genera-
tion results, we perform two tasks separately. The
input for the first-hop summary generation is the
input question and a supporting document, and the
input for the second-hop summary generation is
the question, the answer, and two supporting doc-
uments. The reasoning step requirements in the
prompt words of the two tasks are shown in Fig-
ure A3. In general, the specific interpretation of
comparison type problems has been given, and the
overall idea of the two generation tasks is to find
common content first and then generate summaries.

A.2 Data synthesis example

LLM-based method example Figure A1 shows
the prompt words for generating the first-hop sum-
mary of the bridge type. For the sake of conve-
nience, the examples and input forms in the prompt
words are ignored. The reasoning chain of the
example is completed using GPT and manually
corrected. Taking the content in Figure 1 as an
example, the reasoning process for generating the
first-hop summary is shown in Figure A2, and its
reasoning steps are strictly carried out in accor-
dance with the requirements in Figure A1. Intu-
itively, this can ensure the consistency of the gener-

8267

" " " You ' r e a c o n t e n t w r i t e r , and
your t a s k i s t o re −w r i t e t h e
S t a t e m e n t by removing t h e
c o n t e n t s t h a t ### C o n t e x t does
n o t m e n t i o n s .

The i n p u t c o n t a i n s :
C o n t e x t : A t i t l e and i t s

c o r r e s p o n d i n g s e n t e n c e s .
S t a t e m e n t : A s t a t e m e n t b u t

c o n t a i n s t h e i n f o r m a t i o n t h a t
i s n o t appears i n t h e , ###
C o n t e x t and maybe has some
grammar e r r o r s .

You can f i n i s h t h i s as f o l l o w
s t e p s :

1 . Find t h e common c o n t e n t s t h a t
bo th ### C o n t e x t and ###
S t a t e m e n t c o n t a i n .

2 . Remove t h e n o i s e i n f o r m a t i o n
t h a t i s n o t appears i n ###
C o n t e x t .

3 . F ix t h e grammar e r r o r , and
keep c o n t e n t c o n s i s t e n c y .

" " "

Figure A1: Main content of the prompt words generated
by the first hop summary of the bridge type sample

ated content. The specific explanations of Figure
A1 and Figure A2 are as follows:

• First, find the common content between the
context and the complete answer, mainly "Jun
Li" and "Harvard University";

• Second, find the content mentioned in the
complete answer but not covered by the con-
text, which is "Fields Medal received in 1982",
and remove it from the complete answer;

• Finally, considering that the complete answer
is based on the output of the rule model, there
may be minor errors such as grammar, which
can be corrected using LLM.

The method shown in Figure A1 does not directly
use the context and the given question to directly
generate the first-hop summary, but instead in-
puts the complete answer constructed based on the
QA2D method, which is equivalent to removing

" " " 1 . Common c o n t e n t s : Both t h e
c o n t e x t and s t a t e m e n t men t ion
Jun L i and h i s a s s o c i a t i o n
w i t h Harvard U n i v e r s i t y .

2 . Removing i r r e l e v a n t
i n f o r m a t i o n : The s t a t e m e n t
m e n t i o n s t h e F i e l d s Medal
r e c e i v e d i n 1982 , b u t t h i s
i n f o r m a t i o n i s n o t p r e s e n t i n
t h e c o n t e x t . T h e r e f o r e , i t i s
removed from t h e o u t p u t .

3 . Grammar and c o n t e n t
c o n s i s t e n c y : The o u t p u t
s e n t e n c e i s r e p h r a s e d t o
m a i n t a i n grammat i ca l
c o r r e c t n e s s and c o n t e n t
c o n s i s t e n c y . I t s t a t e s t h a t
Shing −Tung Yau was t h e PhD
s u p e r v i s o r o f Jun L i a t
Harvard U n i v e r s i t y , which i s
t h e r e l e v a n t i n f o r m a t i o n
men t ioned i n t h e c o n t e x t . " " "

Figure A2: Example of reasoning steps for first-hop
summary generation in bridge-type question answering

redundant content in the complete answer based on
the context content, that is, content not included in
the context.

A.3 Quality analysis of LLM-filtering data

In Table A2, rule filtering primarily refers to GPT’s
string outputs unaccounted for by QA2D rules or
unparseable in JSON format; LLM filtering denotes
tasks that GPT deems unanswerable based on input
instructions. The sample type distribution reveals
that rules filtered approximately 3% of the data,
while LLM filtered around 9%, predominantly com-
parison type data. This could stem from the in-
creased complexity of generating comparison type
summaries compared to bridge type, with LLM
potentially struggling to comprehend or extract the
compared entities.

Considering that the proportion of samples fil-
tered out by LLM in Table A2 is relatively high,
we further analyze the proportion of first-hop and
second-hop summary generation failures in failed
samples. We found that LLM filtered 1210 first-
hop summaries and 59 second-hop summaries. The
loss of 59 second-hop samples is normal data it-
eration loss, so we manually screened the reasons

8268

F i r s t _ h o p = " " "
1 . I d e n t i f y what t h e ### Q u e s t i o n

asks , and f i n d t h e r e l e v a n t
i n f o r m a t i o n i n t h e ### C o n t e x t .

2 . I d e n t i f y t h e common c o n t e n t s
t h a t t h e ### C o n t e x t c o n t a i n s
and t h e ### Q u e s t i o n a s k s .

3 . I n g o r e or move t h e i n f o r m a t i o n
t h a t ### Q u e s t i o n a s k s b u t ###

C o n t e x t does n o t men t ion .
4 . Accord ing t o t h e common

c o n t e n t s , w r i t e a q u e s t i o n −
o r i e n t e d s t a t e m e n t o f t h e ###
C o n t e x t . " " "

Second_hop = " " "
1 . F i r s t check t h e ### Answer i s

y e s / no or some s p e c i f i c
c o n t e n t s .

2 . I d e n t i f y t h e r e l e v a n t c o n t e n t
t o t h e ### Q u e s t i o n ask i n ###
C o n t e x t 1 .

3 . I d e n t i f y t h e r e l e v a n t c o n t e n t
t o t h e ### Q u e s t i o n ask i n ###
C o n t e x t 2 .

4 . Combine t h e ### Answer and ###
Q u e s t i o n a c c o r d i n g t o t h e
r e l e v a n t c o n t e n t " " "

Figure A3: Main content of inference hint words for
summary generation of comparative question-answer
pairs

for the failure of the first-hop samples. Table A1
shows an example of a comparison type where the
first-hop summary generation failed. GPT made
two misjudgments. The first was that the question
was about nationality, and the second was that the
given context and the question had no common
content. The possible reason is that the input ques-
tion specifies the specific content of the occupation,
while the input context is only related to nationality,
which is too difficult for GPT. When generating the
second summary, both target paragraphs are used
as input, so it is easier to generate the second-hop
summary.

In addition, we also explored the effect of di-
rectly using GPT-3.5-Turbo to generate first-hop
summaries. The first step of the input instruction
is to summarize the common content, and the sec-
ond step is to remove the content not mentioned

Key Content

Question Who was an American former pro-
fessional baseball left fielder, An-
drea Martin or Chuck Essegian?

Context Andrea Martin. Andrea Louise Mar-
tin (born January 15, 1947) is an
American actress, singer, author and
comedian, best known for her work
in the television series ”SCTV”.

Decline Reason

(1) Identify what the Question asks:
The Question asks for a comparison
of nationality between two individ-
uals, Andrea Martin and Chuck Es-
segian.
(2) Identify the common content be-
tween the Context and the Question:
Andrea Martin.
(3) Remove the information that the
Question asks but the Context does
not mention: Chuck Essegian.
(4) No common content found be-
tween the Context and the Question.

2nd Hop sum-
mary

Charles Abraham ’Chuck’ Essegian
was an American former profes-
sional baseball left fielder, while An-
drea Martin is an American actress,
singer, author, and comedian.

Table A1: Example of first-hop summary generation
failure in LLM filter comparison type

Stage Bridge Comparison

Original 20165(80.66%) 4835(19.34%)
Rule-filtering 19398(80.11%) 4815(19.87%)
LLM-filtering 19120(84.24%) 3576(15.76%)

Table A2: Distribution of two types of questions in the
semi-supervised data production process

in the input context.The results in Table A3 show
that this is worse than the indirect method used in
this paper: stripping the full answer into a first-hop
summary.Manual evaluation found that the first-
hop summary output by this method still carries
content that is not mentioned in the input context
but included in the question. Figure A4 shows 9559
statistics of first-hop summary lengths. As can be
seen from Figure A4b, the first-hop summary gen-
erated by GPT is shorter than the input long context
in terms of text length, which is in line with the
summary task scenario. However, as can be seen
from A4a, the text length of the first-hop summary
is almost the same as the input question. Consider-
ing that the input is a multi-hop question involving
two related paragraphs, the statistical result is con-
sistent with the result of manual evaluation. In
FigureA5, the relative length distribution results of

8269

0 100 200 300 400

0.004

0.008

(a) Ratio of first-hop summary
to question length

0 40 80 120

0.01

0.02

(b) Ratio of first-hop summary
to supporting facts

Figure A4: Relative length distribution of first-hop sum-
maries generated using only GPT

0 100 200 300

0.005

0.010

(a) Ratio of first-hop summary
to question length

0 50 100 150 200

0.01

0.02

0.03

(b) Ratio of the second hop
summary to question length

Figure A5: Relative length distribution of first- and
second-hop summaries and questions in the semi-
supervised dataset

22696 semi-supervised data are shown. FigureA5a
shows that the relative length of the first-hop sum-
mary produced by the final method is concentrated
around 0.8 to 0.9. FigureA5b shows that the rela-
tive length of the second-hop summary is closer to a
normal distribution with a smaller variance, further
verifying the effectiveness of our semi-supervised
dataset production method.

B Training Details

B.1 Implementation Details

Base Model We use E5-base(Wang et al., 2024),
Jina-Reranker-v2(Günther et al., 2023) and Flan-
T5-large(Chung et al., 2022) as the base models for
retrieval tasks, reranking tasks and query-centric
summary generation tasks respectively. The net-
work structure of E5-base is the same as BERT,
with 110M parameters. Its pre-training data does
not include HotpotQA, and its performance has
achieved excellent results on MTEB(Muennighoff
et al., 2023) and BEIR(Thakur et al., 2021). The
Jina-Reranker-v2 is a transformer-based model that
has been fine-tuned for text reranking task, which
has demonstrated competitiveness across a series
of benchmarks targeting for text retrieval against
other reranker models. Flan-T5-large is a gener-
ative model that is fine-tuned based on T5-large

Correctness Coverage

PostSumQA 9.36 9.03
GPT-generated 9.23 8.52

Table A3: Human review between summaries in Post-
SumQA and GPT-generated data

Learning Rate 2e-5
Data batch size 128
Paragraph cutoff size 350
Query cutoff size 350
Learning rate warm-up rate 0.1
Gradient clipping 2.0
Training steps 200
Weight Decay 0.1

(a) Retrieval model training hyperparameters

Learning Rate 2e-5
Data batch size 32
Gradient accumulation times 4
Number of training rounds 1
Learning rate warm-up rate 0.1
Enter the cutoff length 400
Maximum output length 60
Whether to sample No

(b) Query-centric summary generation model training hyper-
parameters

Table B1: Training hyperparameter settings

and has excellent performance in various natural
language processing tasks. We use a simple in-
struction template and removes the samples and
specific explanations of the tasks in the previous
data augmentation instructions.

Parameter Setting In the retrieval task, the base-
line model MDR, the retrieval model enhanced
by summary enhancement mθ, the teacher model
mϕ, the basic posterior regularization model (here-
inafter referred to as PR) and MoPo are all trained
for 200 steps. The momentum factor m is set to
0.99. Other hyperparameters are shown in Ta-
bleB1a. In the query-centric summary genera-
tion task, two sample examples are used, which
is consistent with the instruction format when semi-
supervised data is produced. All linear layers in the
attention mechanism are enhanced using LoRA(Hu
et al., 2022) and only trained once. The train-
ing hyperparameters are shown in TableB1b. All
model optimizers are AdamW(Loshchilov and Hut-
ter, 2019).

8270

Relevance Correctness Accuracy Coverage

ChatGLM4 review

QFS 2.98 5.97 5.61 5.49
DBS 2.56 4.66 3.92 4.26

Human review

QFS 2.40 8.40 4.30 4.91
DBS 1.80 5.71 3.70 4.12

Table C1: Human and LLM review results of query-
focused summary and decomposition-based summary.
QFS means query-focused summary, DBS means
decomposition-based summary

B.2 Details of Evaluation Metrics
EM measures whether the predicted answer ex-
actly matches the ground truth answer. For a single
query, if the predicted answer is identical to the
ground truth (ignoring case and punctuation), the
score is 1; otherwise, it is 0. The final EM score is
the average of exact matches across all queries:

EM =

∑N
i=1 1(Predicti = Answeri)

N

where N is the total number of queries.
Recall measures how many relevant answers

from ground truth are retrieved by the model. For
Top-K retrieval, Recall@K is calculated as:

R@K =

∑N
i=1 1(Answeri ∈ Top-K Predsi)

N

where N is the total number of queries, and Top-K
Predictions are the top K returned answers.

C Additional Experiments and Details

C.1 Ablation Study
Influence of posterior summary utilization. Re-
sults in Table 1 have already shown that Posterior
Summary Utilization can greatly improve the per-
formance of MDR, especially when reasoning is
required. In this section, we further evaluate the
difference between query-focused summary gen-
eration and decomposition-based summary gener-
ation originally used by MDR through reviewed
by 3 human experts and ChatGLM4, a powerful
multilingual LLM. Results are shown in Table C1.
Our method achieves better performance. This re-
sult demonstrates the superiority of our method.
Furthermore, the overall standard deviation of our
method is 1.65, while that of decomposition-based
summary generation is 2.86. This further proves
the stability of our method.

Bridge Comparison Total

MDR 89.26 96.26 90.44
PR 77.46 97.20 80.67

MoPo 93.74 99.13 94.67

Table C2: Retrieval performance in Recall@100 on
HotpotQA using 1st hop golden summary

Model R@2 R@20 R@50 R@100

MDR 94.38 94.85 95.76 96.49
MDR w/ S 94.71 95.31 96.08 96.58
PR 94.49 95.22 95.91 96.51
MoPo 94.71 95.34 96.12 96.81

Table C3: Retrieval performance in recall at k retrieved
passages with Contriever as embedding model on Hot-
potQA dev set

Influence of momentum posterior regulariza-
tion. To evaluate the effectiveness of Momentum
Posterior Regularization, we evaluate the 2nd hop
retrieval performance using 1st hop golden sum-
maries on HotpotQA dev set. The results are shown
in Table C2. As the results show, MoPo shows
a great improvement over MDR baseline model,
while PR even performs worse than our baseline
model. This experiment confirms Momentum Pos-
terior Regularization’s effectiveness.

C.2 Experiment with Different Base Model

We also evaluate the retrieval ability of different
models with Contriever(Izacard et al., 2022) as
base embedding model. Results are shown in Ta-
ble C3. From the results. we can find that MoPo
still has a better performance compared with other
baseline models.

Moreover, we further evaluate the retrieval abil-
ity of different base embedding models using MDR
framework in Table C4. The main difference be-
tween e5-base and e5-base-v2 in this experiment
is that the pre-training data of e5-base-v2 contains
HotpotQA while the other one does not. Compared
with results in Table 1, the results show that multi-
hop framework is more effective.

C.3 Loss Trend Comparison with MDR

Following the analysis in Section 5.4. We further
compared the loss curve of MoPo, PRfixed. As
shown in Figure C1, teacher model converges much
faster than other methods, which makes the training
effect weakened.

8271

Model R@2 R@20 R@50 R@100

e5-base 49.32 68.52 73.24 76.41
e5-base-v2 55.26 75.92 80.55 83.62

Table C4: Retrieval performance in recall at k retrieved
passages with different zero-shot embedding base mod-
els and using MDR framework on HotpotQA dev set

lambda=1.0

Figure C1: Total absolute and relative loss curve of PR
and MoPo, λ=1.0, where relative Loss Ratio = InfoNCE
Loss / Total Loss. All curves are processed with the
same smoothing factor.

D Selected Baseline Details

SelfAsk (Press et al., 2023) exploits LLM to de-
cide and generate next hop (follow-up) query, and
uses a search engine for direct answer selection.

IRCoT (Trivedi et al., 2023) interleaves between
CoT generation (Wei et al., 2022) and retrieving K
documents.

FLARE (Jiang et al., 2023) iteratively uses LLM
to predict the upcoming sentences to anticipate
future content and a retrieval to obtain relevant
documents for sentence generation if it contains
low-confidence tokens.

BeamAggr (Chu et al., 2024) exploits LLM for
question decomposition. For complex (multi-hop)
questions, BeamAggr exploits a retrieval to get
relevant documents for generating K (beamsize)
answers for each question in the question tree.

MoPo+reranker+generation vs Reasoning with
LLM LLM-based methods are much more costly
compared to our method due to the use of LLM for
reranking, query formalization and answer gener-
ation. For example, IRCoT (Trivedi et al., 2023)
also requires L hops of iteration, each retrieves
K documents and generate the next CoT (ques-
tion reformalization) or the final answer. However,
our method exploits lightweight generation models
for query reformalization and answer generation,
whereas IRCoT requires resource-intensive LLMs
to reason over a set of K retrieved documents. As

a result, given the same dense retrieval at each it-
eration, the cost of IRCoT outweighs MoPo signif-
icantly. To reduce computation cost, IRCoT (and
other models) often exploit a light-weight BM25
retrieval. This case, however, the QA performance
is limited by the weak retrieval capability of BM25.

	Introduction
	Related Works
	Methodology
	Problem Definition
	Iterative Multi-hop Dense Retriever
	Posterior Summary Utilization
	Momentum Posterior Regularization

	Data Preparation with Backward Summary Generation
	Retrieval Experiments
	Experimental Setup
	Baselines
	Retrieval Results
	Analysis of Training Loss Curve
	Analysis on Hyper-parameter Sensitivity

	Downstream Tasks
	Reranking
	Question Answering

	Conclusion
	Methods and Analyses of Data Synthesis
	Detailed pipeline of data synthesis
	Data synthesis example
	Quality analysis of LLM-filtering data

	Training Details
	Implementation Details
	Details of Evaluation Metrics

	Additional Experiments and Details
	Ablation Study
	Experiment with Different Base Model
	Loss Trend Comparison with MDR

	Selected Baseline Details

