
Proceedings of the 31st International Conference on Computational Linguistics, pages 8295–8303
January 19–24, 2025. ©2025 Association for Computational Linguistics

8295

Inside-Outside Algorithm for Probabilistic Product-Free Lambek
Categorial Grammar

Jinman Zhao and Gerald Penn
Dept. of Computer Science

University of Toronto
CANADA

{jzhao,gpenn}@cs.toronto.edu

Abstract

The inside-outside algorithm is widely utilized
in statistical models related to context-free
grammars. It plays a key role in the EM esti-
mation of probabilistic context-free grammars.
In this work, we introduce an inside-outside al-
gorithm for Probabilistic Lambek Categorical
Grammar (PLCG).1

1 Introduction

Many studies have discovered hidden syntactic
structures within language models (Shen et al.,
2018; Niu et al., 2022; Millière, 2024). These find-
ings suggest that, even though (large) language
models are primarily trained on sequential text data
without the guidance of explicit rules, they learn
some aspects of an inherent grammar. Evidence
for such latent acquisition reinforces the idea that
grammar plays a critical role in language compre-
hension and generation, even within complex ma-
chine learning models.

Lambek Categorial Grammar (LCG) bridges syn-
tax and semantics through a transparent, composi-
tional system of labeled-term deduction grounded
in the lambda calculus. LCG lexicalizes grammar
to such an extent that it relies on only four fixed
grammar schemata, making it a compact yet power-
ful tool for syntactic and semantic analysis. Recent
advancements in quantum NLP, as discussed in Wu
et al. (2021), have advocated for the adoption of
pregroup grammar (a variant of LCG) for mapping
linguistic structures into quantum systems.

Parsing plays a key role in the study of gram-
mar since it provides deep insights into language
understanding (Shayegh et al., 2024). Parsing
shows promising applications in multilingual and
multimodal environments (Amara et al., 2024;
Kanayama et al., 2024). Parsing and probabilis-
tic inference in computational linguistics often rely

1https://github.com/zhaojinm/
Inside-outside-plcg

on algorithms that efficiently compute probabil-
ities associated with various structures. One of
the most renowned examples of such algorithms
is the Inside-Outside (Lari and Young, 1990) al-
gorithm, originally developed for Probabilistic
Context-Free Grammars (PCFGs) (Huang and Fu,
1971). The inside-outside algorithm is arguably
the standard parameter re-estimation method for
context-free grammars, being the PCFG realization
of expectation-maximization.

Zhao and Penn (2021) formulated the first gen-
erative probabilistic model for LCG. Zhao and
Penn (2024) propose a better generative model for
Probabilistic Lambek Categorial Grammar (PLCG)
which translates the LCG sequent into a labelled
tree structure.

In this paper, we augment that work with a novel
Inside-Outside algorithm specifically designed for
PLCG. Below are our main contributions:

• a modified generative model based upon Zhao
and Penn (2024) that is suitable for the pur-
poses of inside-outside;

• an inside-outside algorithm for PLCG; and

• an empirical evaluation of the algorithm on
LCGbank (Bhargava et al., 2024), showing
that our algorithm can significantly boost the
average probability of this corpus.

2 Preliminaries

2.1 Inside-Outside Algorithm for PCFG
The inside-outside Algorithm is an EM-based algo-
rithm for PCFGs. The inputs are a PCFG G, which
can be randomly generated or learned from an an-
notated corpus, and a new corpus of sentences.

2.1.1 Probabilistic Context-Free Grammar
A context-free grammar in Chomsky Normal Form
(CNF) can be represented in the 4-tuple form. G =
(N,Σ, R, S) where:

https://github.com/zhaojinm/Inside-outside-plcg
https://github.com/zhaojinm/Inside-outside-plcg

8296

• N is a finite set that contains nonterminal vari-
ables,

• Σ is a finite set of terminal variables,

• R ∈ N×(N∪Σ)∗ is a finite set of production
rules, and

• S is the start symbol.

A PCFG G = (N,Σ, R, S, P) requires an extra
element P which is a set of probabilities on each
production rule. P is a function that maps each
rule to a numerical probability such that the proba-
bilities of rules with the same left-hand sides add
up to 1.

2.1.2 Inside
Given a sentence x1, ...xn, the inside probability
α(A, i, j) represents the total probability of gener-
ating words xi:j given the root nonterminal A. For
all 1 ≤ i ≤ j ≤ n, the inside probability α(A, i, j)
is computed as:

• Initialize: if A → xi ∈ R, then α(A, i, i) =
p(A→ xi), otherwise 0.

• From bottom to top:

α (A, i, j) =
∑

A→BC

j−1∑
k=i

p(A→ BC)

· α(B, i, k) · α(C, k + 1, j)

2.1.3 Outside
Given a sentence x1, ...xn and inside probability,
the outside probability β(A, i, j) is the total prob-
ability of generating the context x1:i−1Axj+1:n

around an A over xi:j . For all 1 ≤ i ≤ j ≤ n,
the outside probability β(A, i, j), is computed as:

• Initialize: if A = S, then β(A, 1, n) = 1,
otherwise 0.

• From top to bottom:

β(A, i, j) =
∑

B→AC

n∑
k=j+1

p(B → AC)

· β(B, i, k) · α(C, j + 1, k)

+
∑

B→CA

i−1∑
k=1

p(B → CA)

· β(B, k, j) · α(C, k, i− 1)

2.1.4 EM algorithm
For a corpus, C, that consist of sentence x1, ...xn,
we can then define the following:

Total probability of all trees:

Z =
∑
x∈C

α(S, 1, len(x))

Total probability of contain (A→ BC, i, j, k):

µ(A→ BC, i, j, k)

=
∑
x∈C

∑
i≤k<j

p(A→ BC)

β(A, i, j)α(B, i, k)α(C, k + 1, j)

Total probability of containing A from xi:j :

µ(A, i, j) =
∑
x∈C

α(A, i, j)β(A, i, j)

Total probability of A is the preterminal of xi:

µ(A, i) = µ(A, i, i)

The detailed EM estimation of the parameters of
a PCFG is demonstrated in Algorithm 1.

Algorithm 1 EM for PCFG
Require: a time step limit T , a list of sen-

tences in the new corpus, and a PCFG G =
(N,Σ, R, S, P).

1: for t ∈ range(T) do
2: f(r) = 0 for each rule r
3: for each sent in sentences do
4: compute α(), β(), µ()
5: f(A→ x)+ = Σxi=x

µ(A,i)
Z

6: f(A→ BC)+ = Σi,j,k
µ(A→BC,i,j,k)

Z
7: end for
8: for each rule A→ γ do
9: P (A→ γ) = f(A→γ)

ΣA→γ′f(A→γ′)

10: end for
11: end for
12: return P

2.2 Probabilistic Lambek Categorial
Grammar

2.2.1 Proof Net
The product-free LCG (Lambek, 1958) builds cat-
egories over a set of primitives {p1, p2, ...} with
two binary connectives / and \. One can regard
a category like S/NP as a function that takes an
NP on the right to yield an S.

8297

Given an LCG sequent, each derivation has a
bijective, corresponding proof net. Proof nets can
be used to determine whether a sequent is derivable.
Roorda (1991) demonstrated that a proof net can
be constructed from a sequent with the following
steps.

Labeling Category Label each LHS category
with a negative-polarity variable and label the RHS
category as a positive-polarity variable. Each vari-
able can only be used to label one LHS or RHS
category.

Unfolding Categories Apply four substitution
rules to categories recursively until all categories
are unfolded into strings of signed primitives.

(A\B)−:t→ A+:u B−:tu (1)

(A\B)+:v → B+:v′ A−:u[v := λu.v′] (2)

(A/B)−:t→ A−:tu B+:u (3)

(A/B)+:v → B−:u A+:v′[v := λu.v′] (4)

In the case of either rule (2) or (4), we will refer
to v as a lambda node. It is the label on a positively
signed complex category.

Add Linkages Link pairs of identical axiom
primitives with opposite polarities. These linkages
cannot be crossed with each other (i.e. they form a
half-planar graph).

Variable Substitution Substitute variables ac-
cording to the linked pairs until no further variables
can be substituted.

2.3 LC-Graph
LC-graph (Penn, 2004) is a directed graph ⟨V,E⟩
where V is a finite set of variables that are used to
label categories. E contains two kinds of edges:

• For all v, u, v′ in rules (2) and (4), add (v, u)
and (v, v′) into E.

• For every axiom link that matches p+ : u and
p− : t, where t is a string of variables, for all
v ∈ t, add (u, v) into E.

LC-graphs provide a graph-theoretical way of de-
termining the derivability of a sequent. A sequent
is derivable if there exists an LC-graph such that:

• I(0) there exists a unique node that is path-
accessible to all other nodes.

• I(1) G is acyclic.

• I(2) For all v, u, v′ in rules (2) and (4), v′ is
path accessible to u.

• I(CT) For every lambda node v, there is a non-
lambda node y and a terminal node x labelling
a LHS category such that v ; y → x.

2.3.1 LC-Tree

Zhao and Penn (2024) showed that, for generation
proposes, every proof net can be represented as
a tree structure called an LC-tree. There is a me-
chanical process that can transform any proof net
with its LC-graph into an LC-tree. Labels of nodes
and edges called augments are added during this
process.

For each edge (v, v′):

1. If v is a positive non-lambda node and v′ is
v’s positive daughter, add as the edge’s aug-
ment the connective that was unfolded by the
substitution rule that created v′.

2. Otherwise, add nothing.

For each node u, define its augment, ψ(u) such
that:

1. If u is a lambda node, ψ(u) = λ.

2. If u is a positive non-lambda node, then there
must be exactly one axiomatic formula p+ : u.
Let ψ(u) = p.

3. If u is a negative non-lambda node, then there
must be exactly one axiomatic formula p− : t,
where t is a string and u ∈ t. Let ψ(u) = p

They also proved that this transformation is bi-
jective.

Consider the sequent of “We are surprised”.
with sequent:

NP (NP\S)/(NP\S) NP\S |= S

Figure 1 is its corresponding proof net. Figure 2 is
its LC-graph. Figure 3 is its LC-tree, where node
augments are shown in place of the nodes, and edge
augments are shown as labels on their edges. This
tree structure can be used to generate a sequent
from an empty start using PCFG-style production
rules.

8298

we are surprised

Figure 1: Proof net example.

i+

b−e+

a−

d+

f+

c−h+

g−

Figure 2: LC-graph example.

3 Method

3.1 Adding Lexical Entries

Zhao and Penn (2024) demonstrated the LC-tree
correspondence only for LCG-sequent generation,
which means that the input LC-tree does not have
words. In Figure 3, the (negative) variables la-
belling the LHS categories of the proof net are
missing. Each of these can be assigned a lexical
item during generation. For each negative variable
that is a daughter of a lambda node (for example,
node g in Figure 2), we assign it the special empty
symbol, "λ." Figure 4 shows the tree after the words
have been added.

3.2 Proof of Contiguity

Both inside and outside rely upon the label of a sub-
tree to represent a contiguous span xi, ..., xj . We
will now prove that such an assumption also holds
in an LC-tree. Thus we can compute probabilities
by splitting strings into substrings.

Lemma 3.1. The transformation from proof net to
LC-tree is bijective.

Proof. Theorem 3.1 in Zhao and Penn (2024).

S

NPλ

S

NP

\

\

/ \

Figure 3: LC-tree example.

S

NP

we

λ

S

NP

∅

surprised

\

\

are
/

\

Figure 4: Generating lexical items.

Theorem 3.2. The lexical items that are terminals
of any subtree in an LC-tree must be contiguous in
the original sequent.

Proof. We first introduce a way to construct an
LCG sequent from an LC-tree from bottom to top.
Base: For an LC-tree containing a single node p,
construct the LCG sequent p |= p.
Otherwise:
case 1: If the root of the LC-tree is λ, there is
a sequent A1, ...Ak |= Ak+1 that can be con-
structed from the subtree that is rooted at λ’s only
child. A new sequent A2, ..., Ak |= A1\Ak+1 or
A1, ...Ak−1 |= Ak+1/Ak can be constructed based
on the edge augment.
case 2: If the root of the LC-tree is p where p
is a primitive, then for each subtree Ti, there ex-
ists a corresponding LCG sequent. We start from
an initial sequent p |= p and then iteratively con-
struct new sequents from the left-most child to
the right-most child. Assume that Ti can gen-
erate sequent B1, ...Bn |= Bn+1. A1, ...Am |=
Am+1 is the already generated sequent from T1 to
Ti−1. The next step is to combine two sequents
into one sequent. Assume Ak is the category

8299

that contains the initial primitive p. Then either
A1, ..., Ak/Bn+1, B1, ...Bn, ...Am |= Am+1 or
A1, ..., B1, ...Bn, Bn+1\Ak, ...Am |= Am+1 can
be constructed based on the augment that is stored
in the edge from p to Ti.

By Lemma 3.1, this final sequent is the only se-
quent that corresponds to this LC-tree. Neither case
will insert a new category in the middle of the sub-
sequent. The new sequent is obviously contiguous
since the entire LHS must be contiguous.

3.3 Unify Internal Lambda Nodes

Both inside and outside probability assume that in
a parse tree T , certain xi, ...xj can be derived from
some unique symbolA. Unary internal rules would
break this uniqueness. For example, in Figure 4,
both λ and S can be the internal representation of
span (3, 3). To address this, we reconstruct the tree
by unifying every unary node with its only child.
This step will increase the number of non-terminal
symbols. Algorithm 2 shows how to unify lambda
nodes recursively from bottom to top. Figure 5
shows the result of unifying λ and its only child S
from Figure 4 into a single node λ\S.

Algorithm 2 Unify Nodes

Require: A LC-tree T .
1: for each child in T .children do
2: child = unify_node(child)
3: end for
4: if T .symbol = λ then
5: c = T .child[0]
6: c = T .symbol + (T , c).connective +
7: c.symbol
8: end if
9: return T

S

NP

we

λ\S

NP

∅

surprised

\
are

/

\

Figure 5: Unify internal lambda nodes.

3.4 Inside-Outside Algorithm
3.4.1 Initial Model
The inside-outside algorithm requires an initial
model to improve. For the sake of concreteness, we
will assume that this model follows the form out-
lined by Zhao and Penn (2024), in which there
are two kinds of rules: A → x, where A is
a non-terminal and x is a terminal, and A →
B1 . . . Bm, where A is a primitive, and the Bi are
non-terminals.

In unified LC-trees, every local tree is of the
form A→ xB1 . . . Bm, where A is guaranteed to
contain a unique primitive category. We obtain
the rules of the PLCG by splitting each of these
local trees into π(A) → x and π(A) → B1 . . . Bm

(when m = 0, we denote this rule as π(A) → ϵ),
where π(A) is the unique primitive contained in A.
For instance, π(/λ\S) = S.

In Figure 5, for example, the internal node /λ\S
splits into S → surprised and S → \NP .

Zhao and Penn (2024) prescribes the following
maximum likelihood estimates for these rules:

p(A→ B1...Bm) = count(A→B1...Bm)
count(A)

p(A→ w) = count(A→w)
count(A in lexicon)

As a toy example, for the corpus with only the one
sequent in Figure 1, which has the one LC-tree in
Figure 5, this initial model would be:

Primitive rules :

S → /λ\S, \NP 0.5

S → \NP 0.5

NP → ϵ 1.0

Lexicon rules :

NP → we 1.0

S → are 0.5|surprised 0.5

3.4.2 Inside
The inside probability α(A, i, j) represents the
probability that A is the root of a subtree from
word i to word j. Inside probabilities are once
again computed from bottom to top:

Initialize: α(A, i, i) = p(A→ ϵ)
Otherwise:

α(A, i, j) =
∑

A→wB1..Bm
s1,...,sm
e1,...,em

p(A→ w)

· p(A→ B1..Bm)

k=m∏
k=1

α(Bs, sk, ek),

8300

we are surprised

NP S

S

NP

(-1, -1):

(3, 3):(1, 1): (2, 2):

(1, 3):

(1, 2): (2, 3):

(a) Chart parser that stores the symbol representation of xi, ..., xj

we are surprised

NP:0.15 S:0.03

S:0.00018

NP:0.75

(-1, -1):

(1, 1): (2, 2): (3, 3):

(1, 2): (2, 3):

(1, 3):

(b) Inside probability α(A, i, j)

we are surprised

NP:0.0012 S:0.06

S:1.0

NP:0.00024

(-1, -1):

(1, 3):

(2, 3):(1, 2):

(3, 3):(2, 2):(1, 1):

(c) Outside probability β(A, i, j)

(d) EM estimation for PLCG.

Figure 6: Numerical example for inside-outside PLCG.

where sk and ek refer to the start(min) and
end(max) lexical positions of the words rooted at
Bk.

Some special terminal nodes in the LC-tree do

not yield any lexical items. These are the negative
daughters of lambda nodes. For example, one of the
NP s in Figure 5 yields ∅. We will use the special
additional base case α(A,−1,−1) = p(A → ϵ)

8301

len≤ 10 len≤ 20 len≤ 30

before 7.2e-13 1.8e-13 1.1e-13
after 1.8e-12 2.8e-13 1.8e-13

Table 1: Average sentence probability in the test set before and after inside-outside PLCG.

len≤ 10 len≤ 20 len≤ 30

before 0.000547 0.00014 8.4e-05
after 0.001522 0.00034 2.0e-04

Table 2: Average LCG sequent probability in the test set before and after inside-outside PLCG.

and terminal case β(A,−1,−1) to store inside and
outside probabilities for these categories.

3.4.3 Outside

Given a sentence x1, ...xn and inside probabilities,
the outside probability β(A, i, j) is the total
probability of generating words x1:i−1Axj+1:n. In-
side probabilities are computed from top to bottom:

Initialize: β(S, 1, n) = 1
Otherwise:

β(A, i, j) =∑
B→wC1..A..Cm

s1,...,sm
e1,...,em

{
p(B → w) · p(B → C1..A..Cm)

· β(B, sB, eB)
k=m∏
k=1

α(Cs, sk, ek)

}
,

where sk and ek refer to the start(min) and
end(max) lexical positions of the words rooted at
Ck. Also, sB and eB are the start and end of B.

3.4.4 EM algorithm

Similarly to PCFG, the below values have special
meanings:

Total probability of all trees:

Z =
∑
x∈C

α(S, 1, len(x))

Total probability of trees that contain

(A→ B1...Bm, s1, ..., sm, e1, ..., em):

µ(A→ B1...Bm, s1, ..., sm, e1, ..., em)

=
∑
x∈C

s1,...,sm
e1,...,em

p(A→ B1...Bm)β(A, sA, eB)

·
k=m∏
k=1

α(Bs, sk, ek)

Algorithm 3 shows the EM algorithm for re-
estimating a PLCG. In line 1, we do parsing at
the beginning and store derivations in the form of a
chart parser. The initialization of the outside proba-
bility β(S, 1, n) = 1 ensures that only subtrees of
the successful parses contribute to the parameter
updates. So there is no need to store internal failed
subtrees.

Algorithm 3 EM for PLCG
Require: The time-step limit T , and the training

data that consist of the list of sentences with
supertags.

1: Parse all the sentences with the given cate-
gories.

2: for t ∈ range(T) do
3: f(r) = 0 for each rule r
4: for each sent in sentences do
5: compute α(), β(), µ()
6: f(A→ B1...Bm)+ =

7: Σ (A→B1...Bm,s1,...,sm,e1,...,em)
Z

8: end for
9: for each rule A→ γ do

10: P (A→ γ) = f(A→γ)
ΣA→γ′f(A→γ′)

11: end for
12: end for
13: return P

8302

3.5 Example

Assume we start from a PLCG with the following
rules:

S → /S 0.2

S → \λ/λ\S, /NP, \NP 0.2

S → /NP, \NP 0.2

S → /L\S, \NP 0.2

S → \NP 0.2

NP → /NP 0.25

NP → ϵ 0.75

NP → we 0.2

S → are 0.2

S → surprised 0.2

...

and want to update the parameters on the corpus
that contains one sentence: “we are surprised.”

Figure 6a shows the CKY-style table which con-
tains the symbol that forms the span (xi, ..., xj).
i and j are shown as tuples in these figures. Fig-
ure 6b and Figure 6c demonstrate how the inside
and outside probabilities are computed. The final
updated probabilities of the production rules are
listed in Figure 6d. Recall that in PLCG, the nega-
tive daughters of lambda nodes do not generate any
span. We use (−1,−1) to represent these.

4 Results

4.1 Dataset

The Penn TreeBank (Marcus et al., 1993) is a
human annotated tree bank. CCGbank (Hocken-
maier and Steedman, 2007) is a conversion of the
Penn TreeBank to combinatory categorial gram-
mar. LCGbank (Bhargava et al., 2024), however, is
a conversion and partial reannotation of CCGbank
to LCG. We use the LCGbank training set (Sec-
tions 1-22 and 24) to initialize a PLCG and then
run the inside-outside algorithm on the test set (Sec-
tion 23). Note that we also include gold-standard
lexical categories as a part of the input.

4.2 Sentence Generation

The average probabilities of sentences of the test
set are listed in Table 1. The probability of each
sentence is computed by summing over the proba-
bilities of its parse trees.

The result shows that the average probabil-
ity of the test sentences has significantly (p <

10−192, x = 0.0293) increased after the applica-
tion of our algorithm. This notable improvement
demonstrates the effectiveness of our approach, val-
idating its ability to enhance sentence probability
estimates.

4.3 Sequent Generation
One special case is using this to generate LCG se-
quents by eliminating all lexical entries. In other
words, we can assume a universal lexicon in which
p(A → w) or p(B → w) is alsways 1 in comput-
ing both the inside and outside probabilities.

Table 2 shows the average sequent probability
before and after the inside-outside algorithm. We
can see that the average probability increases after
applying the inside-outside algorithm across all
lengths of sequents, with a significant difference
(p < 10−70, x = 0.194). This further confirms the
robustness of our method in improving probability
estimation even in specialized scenarios like LCG
sequent generation.

5 Conclusion and Future Work

In this paper, we presented a novel inside-outside
algorithm for PLCG. Our evaluation, however, still
relies on gold-standard supertags from a human-
annotated corpus. Removing this reliance and rec-
onciling this inside-outside algorithm with Fowler
(2007)’s polynomial time LCG-parsing algorithm,
which uses a special, residual parsing chart repre-
sentation, remain as future work.

Limitation

Our limitation is that the complexity of our algo-
rithm is very dependent on the complexity of pars-
ing. The LCG derivability problem has been proven
to be NP-complete in the worst case.

References
Kenza Amara, Rita Sevastjanova, and Mennatallah El-

Assady. 2024. SyntaxShap: Syntax-aware explain-
ability method for text generation. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 4551–4566, Bangkok, Thailand and virtual
meeting. Association for Computational Linguistics.

Aditya Bhargava, Timothy A. D. Fowler, and Gerald
Penn. 2024. LCGbank: A corpus of syntactic anal-
yses based on proof nets. In Proceedings of the
2024 Joint International Conference on Computa-
tional Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 10225–10236,
Torino, Italia. ELRA and ICCL.

https://aclanthology.org/2024.findings-acl.270
https://aclanthology.org/2024.findings-acl.270
https://aclanthology.org/2024.lrec-main.893
https://aclanthology.org/2024.lrec-main.893

8303

Timothy AD Fowler. 2007. A polynomial time algo-
rithm for parsing with the bounded order lambek cal-
culus. In Conference on Mathematics of Language,
pages 36–43. Springer.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

T. Huang and K.S. Fu. 1971. On stochastic context-free
languages. Information Sciences, 3(3):201–224.

Hiroshi Kanayama, Yang Zhao, Ran Iwamoto, and
Takuya Ohko. 2024. Incorporating syntax and lexical
knowledge to multilingual sentiment classification on
large language models. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
4810–4817, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Joachim Lambek. 1958. The mathematics of sentence
structure. The American Mathematical Monthly,
65(3):154–170.

Karim Lari and Steve J Young. 1990. The estimation
of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language,
4(1):35–56.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Raphaël Millière. 2024. Language models as models of
language. Preprint, arXiv:2408.07144.

Jingcheng Niu, Wenjie Lu, and Gerald Penn. 2022.
Does BERT rediscover a classical NLP pipeline? In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 3143–3153,
Gyeongju, Republic of Korea. International Com-
mittee on Computational Linguistics.

Gerald Penn. 2004. A graph-theoretic approach to se-
quent derivability in the lambek calculus. Electronic
Notes in Theoretical Computer Science, 53:274–295.
Proceedings of the joint meeting of the 6th Confer-
ence on Formal Grammar and the 7th Conference on
Mathematics of Language.

Dirk Roorda. 1991. Resource Logics: Proof-Theoretical
Investigations. Ph.D. thesis.

Behzad Shayegh, Yuqiao Wen, and Lili Mou. 2024.
Tree-averaging algorithms for ensemble-based un-
supervised discontinuous constituency parsing. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 15135–15156, Bangkok, Thai-
land. Association for Computational Linguistics.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018. Neural language modeling
by jointly learning syntax and lexicon. Preprint,
arXiv:1711.02013.

Sixuan Wu, Jian Li, Peng Zhang, and Yue Zhang. 2021.
Natural language processing meets quantum physics:
A survey and categorization. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 3172–3182, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jinman Zhao and Gerald Penn. 2021. A generative
process for Lambek categorial proof nets. In Pro-
ceedings of the 17th Meeting on the Mathematics of
Language, pages 1–13, Umeå, Sweden. Association
for Computational Linguistics.

Jinman Zhao and Gerald Penn. 2024. A generative
model for Lambek categorial sequents. In Proceed-
ings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pages 584–593,
Torino, Italia. ELRA and ICCL.

https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1162/coli.2007.33.3.355
https://doi.org/10.1016/S0020-0255(71)80007-5
https://doi.org/10.1016/S0020-0255(71)80007-5
https://aclanthology.org/2024.findings-acl.286
https://aclanthology.org/2024.findings-acl.286
https://aclanthology.org/2024.findings-acl.286
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1080/00029890.1958.11989160
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://arxiv.org/abs/2408.07144
https://arxiv.org/abs/2408.07144
https://aclanthology.org/2022.coling-1.278
https://doi.org/10.1016/S1571-0661(05)82589-7
https://doi.org/10.1016/S1571-0661(05)82589-7
https://aclanthology.org/2024.acl-long.808
https://aclanthology.org/2024.acl-long.808
https://arxiv.org/abs/1711.02013
https://arxiv.org/abs/1711.02013
https://doi.org/10.18653/v1/2021.emnlp-main.254
https://doi.org/10.18653/v1/2021.emnlp-main.254
https://aclanthology.org/2021.mol-1.1
https://aclanthology.org/2021.mol-1.1
https://aclanthology.org/2024.lrec-main.50
https://aclanthology.org/2024.lrec-main.50

	Introduction
	Preliminaries
	Inside-Outside Algorithm for PCFG
	Probabilistic Context-Free Grammar
	Inside
	Outside
	EM algorithm

	Probabilistic Lambek Categorial Grammar
	Proof Net

	LC-Graph
	LC-Tree

	Method
	Adding Lexical Entries
	Proof of Contiguity
	Unify Internal Lambda Nodes
	Inside-Outside Algorithm
	Initial Model
	Inside
	Outside
	EM algorithm

	Example

	Results
	Dataset
	Sentence Generation
	Sequent Generation

	Conclusion and Future Work

