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Abstract

Temporal perception is crucial for Large Lan-
guage Models(LLMs) to effectively understand
the world. However, current benchmarks pri-
marily focus on temporal reasoning, falling
short in understanding the temporal character-
istics involving temporal perception, particu-
larly in understanding temporal relativity. In
this paper, we introduce TempBench, a com-
prehensive benchmark designed to evaluate the
temporal-relative ability of LLMs. TempBench
encompasses 4 distinct scenarios: Physiology,
Psychology, Cognition and Mixture. We con-
duct an extensive experiments on GPT-4, a se-
ries of Llama and other popular LLMs. The
experiment results demonstrate a significant
performance gap between LLMs and humans
in temporal-relative capability. Furthermore,
the error types of temporal-relative ability in
LLMs are proposed to thoroughly analyze the
impact of multiple aspects and emphasize the
associated challenges. We anticipate that Temp-
Bench will drive further advancements in en-
hancing the temporal-perceiving capabilities of
LLMs.

1 Introduction

“Time is what we want most, but what we use
worst.”

–William Penn
Temporal perception is an indispensable aspect of
how humans perceive and comprehends the world,
shaping our understanding of events and experi-
ences over time. For instance, time seems to speed
when a person is engaged in a pleasurable activity,
whereas it appears to slow down during tedious or
stressful situations (Zhou et al., 2019; Shi et al.,
2024). This subjective sense of time is not only a
reflection of human cognitive processes but also
involves the integration of mathematical principles
and a deep understanding of temporal concepts

Figure 1: A temporal-relative scenario illustrating hu-
man temporal perception. When you sit with a nice girl,
2 hours feel like 2 minutes. When you sit on a hot
stove, 2 minutes feel like 2 hours.

(Xiong et al., 2024; Yuan et al., 2024), as illustrated
in Figure 1.

In recent years, Large Language Models (LLMs)
have achieved remarkable success across various
reasoning tasks, demonstrating their capacity to
process and generate complex information with
impressive accuracy (Zhao et al., 2023; Chang
et al., 2024; Chowdhery et al., 2023; Zhang and
Wan, 2024). However, despite these advancements,
the domain of temporal perception, particularly
in terms of temporal relativity, still remains rela-
tively under-explored. Temporal relativity refers
to the specific and varying perceptions of time ex-
perienced in different scenarios. For example, the
way an individual perceives time during a high-
pressure situation may differ dramatically from a
leisurely activity. Although recent work has fo-
cused on temporal reasoning, addressing basic tem-
poral concepts such as duration, intricate temporal
relationships, and even computational tasks like
arithmetic involving time (Su et al., 2024b; Fatemi
et al., 2024; Su et al., 2024a; Wang and Zhao, 2023;
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Figure 2: Examples of temporal-relative categories in TempBench.

Dhingra et al., 2022), these studies tend to over-
look the more nuanced characteristics of temporal
perception. The complexity of time perception
extends beyond mere calculations and relations,
encompassing subjective, context-dependent ele-
ments that pose unique challenges for LLMs.

To address the aforementioned challenges, we in-
vestigate a pivotal question: Can LLMs effectively
handle a variety of temporal relativity tasks? To
explore this question, we introduce the TEMPoral-
relative BENCHmark (TempBench), a comprehen-
sive evaluation dataset meticulously designed to as-
sess fine-grained temporal perception. TempBench
builds upon prior research into human perception
and temporal understanding (Bardon, 2024; Wei
et al., 2023; Tan et al., 2023; Yang et al., 2023; Son
and Oh, 2023), providing a structured framework
for evaluating LLMs’ performance in temporal rela-
tivity. The benchmark is systematically categorized
into 4 key aspects, reflecting the broad spectrum
of higher-level cognitive processing. Each aspects
within TempBench comprises one or more subtasks
to evaluate the diversity and complexity of tempo-
ral understanding across multiple levels. Different
from previous temporal reasoning tasks (Wang and
Zhao, 2023; Chu et al., 2023), our benchmark, gen-
erated through a synthesized data pipeline, provides
a fine-grained and precise evaluation of LLMs’ tem-
poral perception abilities. An illustration of Temp-
Bench is shown in Figure 2.

Overall, we make the following contribution in
this paper:

• We publish TempBench, a novel temporal-
relative benchmark grounded in a newly pro-
posed taxonomy of temporal perception ques-

tion types.

• A detailed methodology for the synthesized
dataset pipeline is presented encompassing
high-quality data construction and the imple-
mentation of quality check of temporal rela-
tivity.

• We conduct a comprehensive evaluation of
LLMs on TempBench, offering valuable in-
sights in addressing temporal-perceiving ques-
tions, particularly in the nuanced understand-
ing of temporal relativity.

2 Temporal-relative Task

2.1 Definition

Temporal relativity refers to the phenomenon
that the perception of time changes according
to the different states, situations and reference
frame of individuals. Typically, temporal during
of perception ti can be shorter than that tj of fact
when a person experiences a positive or concen-
trating event. Conversely, ti can be longer than tj
when a person undergoes a negative or unfocused
experience. For instance, as shown in Figure 1, the
event(waiting in line for 10min) is a tedious action.
The model requires selecting a time interval that is
longer than 10 minutes and falls within the range
of 10 minutes to one day. This involves not only
identifying the appropriate time frame (e.g., one
hour) but also classifying it correctly within the
specified bounds, requiring careful consideration
of how the event aligns with both subjective and
objective measures of time.



8306

Figure 3: An illustration of TempBench construction. Firstly, we extract simple events with temporal relativity in
Wikidata. Secondly, one-choice and multi-choice questions are constructed with description of temporal relativity
by LLMs. Each question contains 4 suitable options. Thirdly, based on temporal-relativity questions, annotated
answers for 4 different types are created by LLMs. Finally, temporal-relative QA pairs are checked by human
annotation.

Figure 4: The distribution of our temporal-relative
benchmark TempBench. It introduces the sub-tasks
of each categories in TempBench.

2.2 Temporal-Relative Categories

Building on temporal relativity, TempBench en-
compasses 4 aspects from bodily rhythms (physio-
logical) to emotional and mental states (psycholog-
ical, cognitive and mixture) (Graziani et al., 2023;
Buhusi and Meck, 2005; Hodroj et al., 2024; Bigg
et al., 2024). The data distribution is shown in
Figure 4):

• Physiological relativity represents the varying
temporal interpretations of the same event by
individuals with different identities. This set
of tasks is crucial for evaluating the model’s
understanding of temporal relativity concern-
ing core age and biological rhythms. For
example, children typically perceive time
as passing more slowly, while adults, espe-
cially the elderly, often feel time passes more
quickly. This may be related to physiological

changes and life experiences.

• Psychological relativity focuses on the tem-
poral perception influenced by psychologi-
cal states. These tasks primarily assess the
model’s understanding of different temporal
perceptions influenced by emotions and atten-
tion. For instance, time seems to fly when
people are in a positive mood or focused on a
specific task.

• Cognitive relativity relies on the understand-
ing of events from a human cognitive perspec-
tive. This set of tasks focuses on human cog-
nition, where subjective time estimates may
vary due to memory and different scenarios.
For example, new experiences often make
time feel slower because the brain processes
more information and memories. When a per-
son is waiting for a line, he tends to overesti-
mate the time elapsed.

• Mixed relativity is a combination of the above
types, presenting a particularly challenging
scenario due to the complexity of real-world
temporal relativity. A combination of the three
types mentioned above. This category is par-
ticularly challenging due to the complexity
across multiple tasks, requiring comprehen-
sive temporal relativity reasoning. For in-
stance, students perceive time more fast dur-
ing holidays compared to adults, which relates
to psychological relativity.

2.3 Dataset Construction

The overall process of TempBench construction
is depicted in Figure 3. Following the pipeline of
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Figure 5: The illustration of simple templates.

prior work (Tan et al., 2023; Virgo et al., 2022),
data construction is divided into 3 key steps:

• Temporal Event Construction We utilize Wiki-
data (Vrandečić and Krötzsch, 2014) as our
knowledge source to extract simple events re-
lated to temporal relativity, such as children
going to school or traveling. These events are
manually classified into respective categories
of temporal relativity.

• Question Construction Following Zhou et al.
(2019) and Hoffman and Deffenbacher (1992),
we structure time-relative events and compare
its temporal relativity to develop questions.
There are 2 primary approaches: (1) construct
temporal-relative questions with simple tem-
plates and description of temporal relativity
considering the temporal events, shown in Fig-
ure. 5. (2) directly classify questions into one-
choice questions and multi-choice questions
concerning the types of temporal relativity.
For example, Mixture temporal relativity is a
complex temporal perception that demonstrate
the multiple aspects of temporal understand-
ing. Therefore, we set the questions type of
Mixture temporal relativity into multi-choice
questions.

• Question-Answer Pair Construction We pri-
marily employ GPT-4 with simple instruction
to generate question-answer pairs. The correct
answer strictly adhere to the rule of temporal
comparison, while the incorrect answers are
formed through random temporal during (1
minute, 10 minutes, 1 hour, etc.).

2.4 Quality Check

Following Fatemi et al. (2024), we conduct mul-
tiple rounds of benchmark quality checks to ver-
ify: (1) the accuracy of correct answer, and (2) the
clarity of generated questions. The process is to
confirm the generated questions are sufficient to

produce results comparable to those obtained by
humans through temporal perception.

3 Experiments and Analysis

3.1 Experiments Setting
To evaluate the performance of LLMs on temporal-
relative tasks, we conducted experiments across
multiple models to gain a deeper understanding
of their performance on fine-grained temporal per-
ception tasks. We selected an equal number of
samples from each temporal perception task to en-
sure a balance in question type and complexity. In
the experiment, we aim to address the following
questions:

• How well do LLMs perform in answering
questions related to temporal relativity?

• What types of temporal-relative questions are
more difficult or easier for LLMs to answer?

Evaluated Models: We evaluate LLMs on the
TempBench benchmark, categorized into 2 main
groups: open-source models (Llama 3 8B (Dubey
et al., 2024), Llama 2 7B (Touvron et al., 2023),
Llama 2 13B (Touvron et al., 2023), Mistral 7B
(Jiang et al., 2023) and Qwen 7B (Bai et al., 2023))
and closed-source models (GPT-4 (Achiam et al.,
2023)). Each model is accessed using the appropri-
ate API keys; GPT-4 is accessed via the OpenAI
API, while the Llama models are accessed through
Huggingface. Considering the constraints of API
cost, we randomly selected 200 samples from each
category. For categories with fewer than 200 sam-
ples, all available instances were used.

Metrics: Previous evaluations of temporal rea-
soning used Exact Match (EM) and token-level F1
scores (Rajpurkar et al., 2016; Kwiatkowski et al.,
2019), which tend to overestimate accuracy by con-
sidering the highest score across all possible an-
swers. In this work, we employ a stricter accuracy
metric (Acc) (Zhong et al., 2022), which calcu-
lates correctness only when the predicted answer
exactly matches the golden answer. This metric
is applied to one-choice questions in TempBench.
Additionally, the fixed accuracy are calculated for
multi-choice questions, where one of the corrected
choices can be selected.

3.2 Main Results

LLMs partially grasp temporal relativity Our
analysis in Table 1 reveals that GPT-4 consistently
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Physiological Psychological Cognitive Mix Average
Age Day Atten Emo Ack Obj

Human 0.9817 0.9579 1.0000 0.9241 0.9496 0.9738 0.9824 0.9671
GPT-4 0.8049 0.7662 0.6871 0.7403 0.7887 0.7344 0.6251 0.7352

Llama2 7B 0.2582 0.2237 0.0000 0.2979 0.7029 0.6937 0.2754 0.3503
Llama2 7B

(5-shot) 0.2642 0.2061 0.2087 0.3208 0.7216 0.7095 0.2971 0.3897

Llama2 7B
(5-shot+CoT) 0.3026 0.2583 0.2408 0.3727 0.7549 0.7324 0.3936 0.4365

Llama2 13B 0.5715 0.6082 0.0000 0.5495 0.5841 0.7178 0.5168 0.5068
Llama2 13B

(5-shot) 0.5867 0.6492 0.3716 0.5628 0.5659 0.6927 0.5483 0.5682

Llama2 13B
(5-shot+CoT) 0.6506 0.7031 0.4592 0.6037 0.6056 0.7129 0.5528 0.6126

Llama3 8B 0.2333 0.4342 0.2571 0.4681 0.5427 0.5014 0.4049 0.4060
Llama3 8B

(5-shot) 0.2683 0.4427 0.2861 0.4418 0.5706 0.5360 0.4427 0.4269

Llama3 8B
(5-shot+CoT) 0.3005 0.5037 0.3590 0.5036 0.6028 0.5824 0.4691 0.4744

Mistral 7B 0.7218 0.1316 0.5429 0.6157 0.5168 0.4082 0.3524 0.4699
Mistral 7B

(5-shot) 0.7338 0.2084 0.5473 0.6352 0.5260 0.4718 0.3925 0.5021

Mistral 7B
(5-shot+CoT) 0.7652 0.2764 0.5809 0.6728 0.5721 0.5384 0.4291 0.5478

Qwen2 7B 0.2667 0.5000 0.6857 0.7021 0.5879 0.2161 0.4708 0.4899
Qwen2 7B

(5-shot) 0.2821 0.5375 0.6618 0.6943 0.6027 0.2561 0.4854 0.5028

Qwen2 7B
(5-shot+CoT) 0.3168 0.5531 0.6992 0.7416 0.6481 0.2755 0.5028 0.5330

Table 1: Performance comparison of different LLMs on TempBench though accuracy metric. Bold scores indicate
superior performance compared to others LLMs. The background colors of pink , yellow and blue represent
the best score of each task in temporal relativity, respectively. The underlined values with various color are the
sub-optimal results of temporal relativity tasks. Overall, human performance serves as an upper bound, while GPT-4
consistently outperforms other LLMs under both zero-shot and few-shot setting across temporal-relative tasks. The
experimental results illustrate that there exists significant room for improvement on temporal perception.

surpasses other LLMs across 7 temporal-relative
categories, maintaining a performance lead of over
10%. However, despite being the best-performing
model among all LLMs, GPT-4 still lags behind hu-
man performance by 18%. The result indicates
there has a significant room for improving the
temporal-relative capabilities of LLMs. In the
zero-shot setting, LLMs face the challenge of solv-
ing attention-relative task without any prior exam-
ples or context. Llama2 7B struggles significantly
with an average score of 0.3503, underperforming
in temporal-relative tasks like attention relativity
(0.0000) and day relativity (0.2582). While secur-
ing the second-highest average score of 0.5068 in
temporal relativity task, Llama2 13B falters no-

tably in psychological relativity task. Specifically,
Llama2 13B struggles to accurately understand hu-
man concepts of time perception related to atten-
tion. The results indicates Llama 2 7B and 13B
exist a misalignment in understanding temporal
relativity.

In mixed relativity scenarios, Llama2 7B and
Mistral 7B still encounter difficulties in compre-
hending temporal perception across multiple con-
texts compared to single-scenario tasks, obtaining
the scores of 0.2754 and 0.3524. Furthermore,
Qwen with 7B parameters, having the same pa-
rameter size as Llama2 7B, performs significantly
better, particularly in psychological relativity tasks.
These experimental results demonstrate that vari-
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ations in training data may enhance a model’s ca-
pability to comprehend and process temporal per-
ception. Interestingly, despite Llama2 7B has the
smaller size, it outperforms the larger Llama 2 13B
in cognitive awareness tasks. The observation high-
lights that a larger model size does not inherently
equate to superior performance, indicating several
factors could contribute to the outcome.

3.3 Simple Investigations for Improvement
In order to improve the performance of temporal
relativity in LLMs, we utilize the prompting engi-
neering incorporating both standard prompting and
chain-of-thought prompting. These evaluations are
performed in zero-shot and few-shot setting, en-
abling a comprehensive analysis of performance
across varying levels of task exposure.

Standard Prompting Following Brown (2020)
and Kojima et al. (2022), questions are presented
directly without the need for additional steps in
the prompt. Considering the following example
from the exemplar answers (4 choices) are pro-
vided alongside the question from physiological
relativity. For few-shot standard prompting, the 5
exemplar answers (one of 4 choices) are provided
within the given question. The overall standard pro-
cedure across all tasks can be categorized into: (1)
Direct Question-answering: Pose the question di-
rectly to the model without any intermediary steps
or additional guidance. (2) Answer Solicitation:
Request the model to choose and provide the most
appropriate answer based on the information given.

Chain-of-Thought Prompting In contrast, zero-
shot CoT learning takes inspiration from Wei et al.
(2022) through the instruction "Choose the correct
answer by thinking step by step". For few-shot
CoT, we manually craft the step-by-step process
for 5-shot exemplars in the development set. The
process is as follows: (1) Understand the temporal
information. (2) Identify key events from the ques-
tion. (3) Compare the temporal during in choices
with temporal information. (4) Conclusion. Given
the temporal information and questions, the chosen
answer is more plausible and contextually appro-
priate.

3.4 Further Analysis on TempBench
The further analysis based on 5-shot and 5-
shot+CoT is shown in Table 1. In 5-shot settings,
all LLMs benefit from receiving temporal-relative
examples, indicating considerable importance com-
pared to LLM without prompting. Llama2 13B

emerges as the top performer and significantly out-
perform other LLMs by a large margin. The exper-
imental results demonstrate that prompt engineer-
ing further improve the LLMs with more parame-
ter size in temporal-relative tasks. It is noteworthy
that open-source LLMs exhibit a large performance
decline compared to proprietary LLMs when tran-
sitioning from few-shot, few-shot+CoT and zero-
shot scenarios. Llama2 7B, Mistral 7B and Qwen2
7B show gains of 10%, 6.4%, 2.6%, respectively.
We contribute the performance increasing to the
quality of examples. Compared to the restriction
of instruction-following capability in LLMs, open-
source LLMs with few-shot prompting are better
approach for stimulating their temporal-relative
ability.

Previous research has found that chain-of-
thought prompting can enhance the temporal rea-
soning of LLMs (Wei et al., 2023; Kojima et al.,
2022). We aim to explore the following question:
How does CoT Prompting bring consistent improve-
ment in temporal-relative tasks? Considering the
diversity of temporal relativity, the above question
has not yet been definitively answered.

CoT reasoning is consistently effective As il-
lustrated in Table 1, introducing few-shot CoT
prompting results in consistent raising, with an
overall increase of 7.2%. There is a 13.25%
improvement in physiological temporal relativity,
while a significant rising of 3.6% in cognitive tem-
poral relativity. In psychological relativity, there is
a slight improvement of 3.625%. In few-shot CoT
setting, almost all models exhibit significant im-
provement in overall temporal-relative tasks. For
physiological relativity, We contributes this to the
temporal knowledge understanding in temporal rel-
ativity in LLMs. In psychological temporal rel-
ativity, improvements mainly stem from datasets
involving step-by-step temporal reasoning, indicat-
ing that CoT is more effective for implicit relativity
understanding. In summary, CoT has a positive
impact on cognitive and complex temporal-relative
tasks.

Impact of CoT prompting across temporal-
relative tasks In order to thoroughly explore the
impact of CoT on various temporal-relative tasks
within each categories, we undertake a manual
analysis of the models’ erroneous or inappropri-
ate responses. The errors in temporal relativity are
classified into 4 types:

• Refusal to Answer. This issue predominantly
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Physiology Psychology

Cognition Mixness

Figure 6: The error analysis of temporal-relative ability in LLMs. Overall, errors are concentrated in 2 categories:
Converse Understanding and Same as the Original Time. The experimental results demonstrate that complex
temporal-relative task integrates multiple aspects of temporal understanding are challenging for LLMs.

occurs in models with over 13B parameters,
where responses are often laden with exces-
sive explanations and fail to directly address
the posed question.

• Converse Understanding Models incorrectly
interpret temporal perception, confusing a
shorter time duration with longer ones, and
vice versa.

• Same as the Original Time Models demon-
strate a lack of comprehension of temporal
relativity by selecting the time mentioned in
the question as the answer without adjustment.

• Implicit Oversights Models are unable to accu-
rately understand temporal relativity in com-
plex scenarios involving multiple temporal
relativity.

Error Analysis Figure 6 demonstrates the com-
mon error types and their proportions at each task.
Overall, errors are concentrated in 2 categories:
Opposite Understanding and Same as the Original
Time. Notably, GPT-4 and Llama3 8B frequently
exhibit errors related to refusal to answer the ques-
tion. LLMs with 7B parameters predominantly
display Converse Understanding errors, which ac-

count for 30% of all errors in physiological rela-
tivity. Similar results are observed within psycho-
logical relativity. Additionally, in cognitive rela-
tivity, GPT-4 often opts to refuse answering these
questions, whereas other models typically provide
incorrect answers. In mixed relativity, all errors are
concentrated in implicit oversights, representing
65.26% of total errors. For instance, when a young
person goes on vacation, their perception of time
differs from that of older adults. Two distinct pat-
terns emerge: younger individuals tend to perceive
time more slowly compared to older adults, while
vacations generally cause time to feel as though it
passes more quickly. When these factors are com-
bined, the accelerated perception of vacation time
overrides the slower perception associated with
youth, resulting in an overall perception of time
speeding up. However, most LLMs fail to recog-
nize this nuanced interaction. The experimental
results demonstrate that there remains considerable
room to understand and process complex temporal
relativity scenarios for LLMs.

4 Discussion

Scaling effect of model size In order to investi-
gate how the parameter scale of models affects
temporal-relative capabilities, we compare the per-
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formance of a series of Llama2. As the scale of
model increases, there is a notable improvement in
performance. When the parameter size from 7B to
13B, Llama2 show improvements of 30%. Further-
more, when Llama2 scales up to 70B, the trend of
performance follows a log-linear relationship with
scale.

Challenges in Temporal-Relative Tasks The
performance of all LLMs in temporal-relative tasks
is unsatisfactory. A noticeable decrease is observed
in mix relative task compared to other temporal
tasks. This is because the mix relative task ne-
cessitates a multi-step temporal reasoning process.
It first unifies multiple time units and event, and
subsequently engages in time comparison, while
other temporal-relative tasks can be completed with
a single reasoning step. The complexity of these
multi-step processes contributes to the observed
performance drop in this category.

5 Relative Work

Temporal perception, as an integral component of
temporal reasoning, has its foundations in the evolv-
ing techniques of temporal domain datasets. While
existing work has significantly advanced the under-
standing of temporal reasoning in Large Language
Models (LLMs), a notable gap remains in the explo-
ration of how these models handle the intricacies of
human temporal perception. Temporal perception
goes beyond basic reasoning, requiring a model to
understand subjective experiences of time across
varying contexts. Current invaluable benchmarks
do not fully capture this complex cognitive pro-
cess, thus highlighting the need for a more refined
evaluation of temporal perception capabilities in
LLMs. Existing temporal reasoning datasets have
also laid the groundwork for a detailed evaluation
of temporal perception capabilities within the cur-
rent paradigm of LLMs.

Temporal Reasoning Benchmarks In the field
of temporal reasoning, previous datasets have
emerged to address various challenges. As early as
2003, TimeBank (Pustejovsky et al., 2003) has fo-
cused primarily on temporal relationships. Relying
on the TimeBank, TempEval-3 (UzZaman et al.,
2012) has expanded this scope by introducing mul-
tiple tasks, including temporal entity extraction and
relation extraction. TimeQA has established the
first dataset aimed at studying the comprehension
of time-sensitive facts. Recently, there has been
a surge in the development of temporal reasoning

QA datasets, such as MCTACO (Zhou et al., 2019),
TEMPLAMA (Dhingra et al., 2022), TEMPREA-
SON (Tan et al., 2023), and MenatQA (Wei et al.,
2023). Each of these datasets addresses specific
challenges in temporal reasoning, ranging from
commonsense understanding to complex temporal
logic.

Limitations of Existing Benchmarks However,
these datasets are limited in their coverage of real-
world temporal complexity. They do not suffi-
ciently evaluate LLMs on tasks involving temporal
relativity, where the perception of time can change
depending on contextual factors, such as attention,
stress, or cognitive load. This represents a critical
gap, as human temporal perception is not merely
a matter of understanding events in sequence, but
also involves interpreting how those events feel
over time. In contrast, our benchmark focuses on
human temporal perception, addressing different
dimensions of temporal understanding, and provide
a more fine-grained and comprehensive evaluation
of temporal reasoning than previous benchmarks.

Conclusion

In this paper, we introduce TempBench, a compre-
hensive dataset specifically designed to facilitate
the exploration of temporal relativity in LLMs. It
is the first dataset containing fine-grained temporal
factors that can be used as an evaluation benchmark
for assessing the time relativity. Extensive experi-
ments have revealed a substantial gap between the
performance of LLMs and that of humans. More-
over, the parameter size of LLMs substantially in-
fluences their capacity for temporal relativity. We
also discover the types of Converse Understanding
and Same as the Original Time are the crucial chal-
lenges in LLMs. We hope that TempBench will
serve as a foundation for further advancements in
enhancing temporal relativity in LLMs.

Limitation

Although TempBench provides a comprehensive
standard for evaluating temporal perception, it has
certain limitations. One of the primary issues is
that the dataset construction mainly relies on seed
events from Wikidata, which restricts the scope
of coverage. In future iterations, we plan to ex-
pand the dataset and explore the post training of
models. Additionally, effectively enhancing the
temporal perception of LLMs is unfocused. There-
fore, we intend to develop sophisticated prompts,
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with the goal of improving the temporal perception
of LLMs.
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