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Abstract
Ensembling various LLMs to unlock their
complementary potential and leverage their
individual strengths is highly valuable. Pre-
vious studies typically focus on two main
paradigms: sample-level and token-level en-
sembles. Sample-level ensemble methods ei-
ther select or blend fully generated outputs,
which hinders dynamic correction and enhance-
ment of outputs during the generation process.
On the other hand, token-level ensemble meth-
ods enable real-time correction through fine-
grained ensemble at each generation step. How-
ever, the information carried by an individual
token is quite limited, leading to suboptimal
decisions at each step. To address these issues,
we propose SWEETSPAN, a span-level ensem-
ble method that effectively balances the need
for real-time adjustments and the information
required for accurate ensemble decisions. Our
approach involves two key steps: First, we have
each candidate model independently generate
candidate spans based on the shared prefix. Sec-
ond, we calculate perplexity scores to facilitate
mutual evaluation among the candidate mod-
els and achieve robust span selection by filter-
ing out unfaithful scores. To comprehensively
evaluate ensemble methods, we propose a new
challenging setting (ensemble models with sig-
nificant performance gaps) in addition to the
standard setting (ensemble the best-performing
models) to assess the performance of model
ensembles in more realistic scenarios. Exper-
imental results in both standard and challeng-
ing settings across various language generation
tasks demonstrate the effectiveness, robustness,
and versatility of our approach compared with
previous ensemble methods.1

1 Introduction

Recently, large language models (LLMs) have
rapidly developed, leading to the emergence of

* Corresponding Author
1Our code is available in https://github.com/

xydaytoy/SweetSpan
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Figure 1: Motivation of SWEETSPAN. Sample-level
ensemble methods struggle to produce a correct answer
when all candidate outputs are flawed, while token-level
ensemble methods make suboptimal choices at each
generation step due to inadequate information. SWEET-
SPAN balances the flexibility needed for real-time ad-
justments and the information required for accurate en-
semble decisions at each step.

numerous diverse models (Touvron et al., 2023;
Chiang et al., 2023). These LLMs differ in datasets,
architectures, and training methodologies, each ex-
hibiting its own strengths and weaknesses (Jiang
et al., 2023). Therefore, ensembling these LLMs to
unleash their complementary potential and leverage
their individual strengths is highly valuable (Jiang
et al., 2023; Lu et al., 2023; Shnitzer et al., 2023).
Model ensembling has thus become a key focus
and an active topic of current LLM research (Lu
et al., 2024).

Existing approaches can be classified into two
categories: 1) Sample-level ensemble methods use

https://github.com/xydaytoy/SweetSpan
https://github.com/xydaytoy/SweetSpan
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an additional model to either select (Lu et al.,
2023; Shnitzer et al., 2023) or blend (Jiang et al.,
2023) fully generated outputs. As a result, these
methods are unable to correct and enhance out-
puts during the generation process. As illustrated
in Figure 1(a), they struggle to produce a cor-
rect answer when all candidate outputs are flawed.
Moreover, the reliance on an additional model
poses challenges for generalization to unseen data
distributions. 2) Token-level ensemble methods
achieve fine-grained ensemble at each generation
step through output distribution alignment and thus
enable real-time correction (Xu et al., 2024; Huang
et al., 2024; Yu et al., 2024). However, as shown
in Figure 1(b), since tokens are smaller units than
words and vary across models, the information they
provide is often insufficient and inaccurate. This
leads to suboptimal decisions at each step, hinder-
ing the achievement of globally optimal outputs.

To tackle the above issues, we propose a training-
free span-level ensemble method named SWEET-
SPAN. Our method strikes a balance between the
flexibility needed for real-time adjustments and the
information required for accurate ensemble deci-
sions at each step, hitting the sweet spot for the
model ensemble. Specifically, in each generation
round, we first have each candidate model inde-
pendently generate a span based on the shared pre-
fix. Subsequently, we facilitate mutual evaluation
among the candidate models by calculating per-
plexity scores and filtering out unfaithful results to
prevent underperforming models from skewing the
evaluation. Finally, we choose the span with the
lowest average perplexity as the ensemble result
and attach it to the prefix for subsequent genera-
tions.

We evaluate our method on various language
generation tasks, including commonsense reason-
ing, arithmetic reasoning, code generation, and
machine translation. We first ensemble the best-
performing LLMs as a standard setting to assess
the upper-bound performance of different ensemble
methods. SWEETSPAN consistently achieves sig-
nificant performance improvements across multiple
tasks compared to previous methods, demonstrat-
ing its effectiveness and versatility. We then ensem-
ble LLMs with significant performance gaps as a
challenging setting to evaluate the noise resistance
of ensemble methods. Unlike previous methods
that collapse on most tasks, SWEETSPAN, aided by
an effective filtering strategy, consistently delivers
positive improvements, highlighting its robustness.

Briefly, our contributions can be summarized
from the perspectives of effectiveness, robustness,
and versatility:

• We propose a span-level ensemble method
that balances the flexibility needed for real-
time adjustments and the information required
for accurate ensemble decisions at each step.
Experimental results demonstrate the effec-
tiveness of our method.

• Beyond the standard setting, we introduce
a new challenge setting that tests the noise
resistance of ensemble methods by ensem-
bling models with significant performance
gaps. We observe that previous ensemble
methods collapse on most tasks under this
setting, while SWEETSPAN achieves stable
positive improvements, highlighting its robust-
ness.

• SWEETSPAN is not constrained by vocabu-
lary, model architecture, or task, and can be
directly applied to any LLM ensemble with-
out additional parameter training, showcasing
strong versatility.

2 Our Method

To achieve span-level ensemble for LLMs, we have
to figure out two key issues. First, how to define
spans? Second, how to identify the optimal span?
We delve into these issues in the following subsec-
tions.

2.1 How to define spans?
As shown on the left side of Figure 2, in each gen-
eration round, we first have each candidate model
independently generate a text span, which has the
following two characteristics: 1) Spans are com-
posed of words rather than tokens. We ensure
that spans do not cross word boundaries to pre-
vent subsequent evaluations from being affected by
different tokenizers across models. 2) All candi-
date spans have the same predefined length, such
as 4. On the one hand, a longer span provides
more information during the span selection phase,
increasing the probability of making the optimal
choice in the current round. On the other hand, a
shorter span allows for more ensemble corrections
over multiple rounds, reducing the probability of
local errors. Therefore, an appropriate span length
is crucial for balancing these competing demands
and achieving optimal ensemble results.
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Figure 2: The SWEETSPAN framework. SWEETSPAN consists of two steps. (a) First, we have each candidate
model generate a span based on the shared prefix. (b) Next, we facilitate mutual evaluation among the candidate
models by calculating perplexity and achieve robust span selection by filtering out unfaithful scores.

2.2 How to identify the optimal span?
We choose the simple and widely used perplexity as
the evaluation metric for the span selection phase.
Perplexity measures how well a language model
fits a given span of text. A lower perplexity score
indicates that the span aligns more closely with the
internal knowledge of the language model, making
it a reliable metric for span evaluation.

Considering a set of N candidate models (de-
noted as M), we first have each candidate model
(m ∈ M) independently calculate the perplexity
score for all candidate spans:

PPLm(sj) = exp

− 1

|sj |
∑
t∈sj

log p(t)

 ,

where sj is the candidate span generated by the
j-th candidate model mj . Since all spans contain
only complete words, vocabulary discrepancies do
not affect the perplexity calculation.

Next, we filter the raw evaluation scores. Models
lacking relevant knowledge of the current sample
may assign unjustifiably perplexity scores, giving
correct spans excessively high perplexity while as-
signing overly low perplexity to their own incorrect
spans. As shown in Figure 2, under the current pre-
fix, LLM-1, which fails to answer the question cor-
rectly, assigns an unjustifiably high perplexity score
of 23.5 to the correct span "by Bobby Scott", while
giving its own incorrect span "by Robert Williams"
a low perplexity score of 0.88. As a result, without
filtering, the correct span ranks below the incorrect
ones, leading to an incorrect output. To address
this issue, we design an adaptive filtering strategy

that identifies outliers based on the discrepancy in
evaluation scores for each span. If the maximum
score exceeds the minimum score by a factor of λ,
we remove the highest and lowest scores for that
span. As shown in Figure 2, by filtering out the
maximum value, we prevent LLM-1 from exces-
sively increasing the perplexity for the correct span,
thus avoiding an overly negative assessment. By
filtering out the minimum value, we avoid LLM-1’s
overconfidence in the incorrect span. Our proposed
filtering method effectively removes unjustified out-
liers, thereby preventing them from skewing the
evaluation.

Rj =

{
argmax
m∈M

PPLm(sj), argmin
m∈M

PPLm(sj)

}

Cj =


M\Rj , if

max
m∈M

PPLm(sj)

min
m∈M

PPLm(sj)
> λ

M, otherwise

Finally, we aggregate the filtered perplexity
scores and select the span with the lowest average
perplexity as the ensemble result for the current
generation round.

s∗ = argmin
sj ,1≤j≤N

1

|Cj |
∑
m∈Cj

PPLm(sj)

3 Experimental Settings

3.1 Tasks and Datasets

To demonstrate the versatility of our method, we
explore a wide range of language generation tasks:
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Commonsense Reasoning via Natural Question
(NQ) (Kwiatkowski et al., 2019): Models are
tested to answer questions originating from real
queries issued to the Google search engine. The
evaluation metric is Exact Match.

Arithmetic Reasoning via GSM8K (Cobbe et al.,
2021): Models are tasked to solve math problems
that require multi-step reasoning. These problems
are at the grade school level. The evaluation metric
is Accuracy.

Code Generation via MBPP (Austin et al., 2021):
Models are requested to generate code that solves
basic Python programming problems. These prob-
lems are designed to be solvable by entry-level
programmers, covering fundamentals and standard
library functionality. The evaluation metric is
Pass@1.

Machine Translation via Flores-101 (Goyal et al.,
2022): Machine translation is a traditional NLP
task, which demonstrates the multilinguality of
LLMs. We use the German (De)↔English (En)
split and Romanian (Ro)↔English split for evalua-
tion. The evaluation metric is BLEU (Post, 2018).

3.2 Candidate LLMs

We choose seven open-source chat LLMs, each
approximately 7B in size, as the candidate
LLMs to form our ensemble: LLaMA2-7B-
Chat (Touvron et al., 2023), ChatGLM2-6B (Zeng
et al., 2022), Baichuan2-7B-Chat (Baichuan,
2023), InternLM-7B-Chat (Team, 2023), TigerBot-
7B-Chat-V3 (Chen et al., 2023b), Vicuna-7B-
V1.5 (Chiang et al., 2023), ChineseAlpaca2-
7B (Cui et al., 2023).

Each model leverages large-scale, high-quality
data to establish a strong knowledge base and is
aligned by supervised instruction tuning, thereby
achieving high performance on public benchmarks.
Originating from distinct institutions, these models
exhibit inherent diversity, which provides opportu-
nities for effective ensemble.

3.3 Baselines

We compare SWEETSPAN with strong baseline
methods, including both sample-level and token-
level ensemble approaches.

PairRanker Jiang et al. (2023) utilize a pairwise
comparison to identify subtle distinctions between
different candidate outputs.

LLM-Blender Jiang et al. (2023) employ a
3B-parameter model fine-tuned on an instruction
dataset to combine the ranking results from Pair-
Ranker and produce the final output.

EVA Xu et al. (2024) utilizes overlapping tokens
as anchors to map the output distributions of het-
erogeneous LLMs into a unified space, enabling a
fine-grained token-level ensemble.

3.4 Implement Details

We utilize greedy decoding in all experiments since
it generally produces higher-quality outputs (Uzan
et al., 2024). Empirically, we set λ = 10, with
a detailed analysis provided in Appendix A. For
machine translation tasks, we employ a 4-shot in-
context learning setting, while for other tasks, we
perform zero-shot inference. Furthermore, we fol-
low the required format for each chat model and
use task-specific prompts, including the specific
incorporation of a chain of thought prompt in the
arithmetic reasoning task.

4 Experimental Results and Analysis

4.1 Standard Setting: Ensembling
Top-Performing Models

For each task, we select the top-performing four
models out of seven for the ensemble, following
a setup similar to previous work (Xu et al., 2024).
We conduct experiments with span lengths of 1,
2, 4, 8, 16, and 32, and the trends in ensemble
performance are shown in Figure 3.2

4.1.1 SWEETSPAN Demonstrates Superiority
Our proposed SWEETSPAN consistently outper-
forms individual models and prior ensemble meth-
ods across all types of tasks at nearly all span
lengths, demonstrating the effectiveness and cross-
task versatility of our approach. Notably, in the
GSM8K task, SWEETSPAN achieves a significant
12.21-point improvement compared with the best-
performing individual model. We attribute this
success to the appropriate granularity, which effec-
tively balances the competing demands of informa-
tion richness and flexibility.

4.1.2 Guidelines for Determining Appropriate
Span Length

We observe that the optimal span length varies
based on the specific characteristics of each task.

2Span length refers to the number of words within the
span.
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Figure 3: Main results on various language generation tasks under the standard setting.3

The following guidelines provide recommenda-
tions for selecting an appropriate span length tai-
lored to different tasks:

Deterministic tasks prefer shorter spans. De-
terministic tasks are characterized by having pre-
cisely defined acceptable answers. NQ, where the
answer is a fixed phrase, and MBPP, where the
answer is code, are examples of such tasks, both
achieving optimal ensemble performance with a
span length of 1. As shown in Table 1, for the
MBPP task, the strict syntax of code leads to a nar-
row range of correct answers, where a two-word
span is already sufficient to confirm that the sec-
ond span violates the syntax structure. In this case,
longer spans do not provide additional useful in-
formation for the current decision and may even
hinder timely correction of errors made during in-
dependent generation by candidate models.

In contrast, for the GSM8K task, which uses
chain-of-thought prompting, intermediate reason-

ing steps can be expressed in various ways. A
two-word span often doesn’t provide enough infor-
mation to make the best decision, and early incor-
rect choices can cause subsequent tokens to deviate
from the intended meaning. In this case, a longer
span is necessary to compare different reasoning
paths. This aligns with the performance observed
in GSM8K, where optimal ensemble performance
is achieved with a span length of 16.

An intermediate span length is effective across
all tasks. As illustrated in Figure 3, although dif-
ferent tasks exhibit varying trends, an intermediate
span length, such as 4, consistently delivers signif-
icant improvements over candidate models. The
intermediate span length effectively balances the
need for real-time adjustments and the information
required for accurate ensemble decisions at each

3Please refer to appendix C for detailed information on
the models used for each task and the experimental results
presented in tabular form.
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Code Generation Task: MBPP

Prefix def sort_matrix(matrix):\n n = len(matrix)\n for

2-word-candidate spans i in | \n i

8-word-candidate spans i in range(n):\n for j in | \n i in range(n):\n for j

Arithmetic Reasoning Task: GSM8K

Prefix 1. Janet’s ducks lay 16 eggs per day.

2-word-candidate spans She eats | She bakes

8-word-candidate spans She eats three for breakfast every morning so | She bakes muffins with 4 eggs so she

Table 1: Examples of spans with different lengths in GSM8K and MBPP tasks.

ensemble step. We advise adopting a span length
of 4 when applying our method to unknown tasks.

4.1.3 SWEETSPAN Avoid the Inherent
Limitations of Token-Level and
Sample-Level Ensemble Methods

We observe that previous ensemble methods un-
derperform compared to the best candidate model
in the Flores En→Ro, Flores En→De, and MBPP
tasks. This underperformance stems from the in-
herent limitations of these methods, specifically:

Token-level ensemble is constrained by insuffi-
cient and inaccurate information. Firstly, since
tokens, as units smaller than words, carry very lim-
ited information, it becomes extremely challenging
to determine which option at the current step is
most beneficial for the overall outcome. Secondly,
token-level ensemble methods rely on overlapping
tokens as anchors to align the output distributions
from heterogeneous LLMs into the same space,
which introduces additional noise. As shown in
Figures 3 (d) and (f), the performance of EVA is
significantly lower than that of the best candidate
model and also falls well short of SWEETSPAN

with one-word span. Since tokens in non-English
languages like German and Romanian are less fa-
miliar to candidate LLMs, the negative impact of
noise outweighs the benefits of the ensemble ap-
proach. In summary, token-level ensembles with
insufficient and inaccurate information lead to sub-
optimal results at each generation step, hindering
the achievement of globally optimal outcomes.

Our proposed SWEETSPAN avoids crossing
word boundaries, offering a simple and effective
way to eliminate the noise caused by different to-
kenizations across models. In addition, it ensures
that the necessary information is captured through
an appropriate span length, resulting in consistent

performance improvements across tasks.

Sample-level ensemble is constrained by train-
ing data exposure. Sample-level ensemble meth-
ods rely on training an additional reward or fusion
model to select or combine all candidate answers,
which poses significant challenges in generalizing
to unseen data distributions. For benchmarks in
unfamiliar domains, such as code generation or
non-English language translation tasks, their per-
formance can degrade significantly. As shown in
Figure 3 (b), LLM-Blender performs very poorly
on the code generation task, indicating that its gen-
erative fusion model lacks the capability to effec-
tively generate code.

In contrast, our proposed SWEETSPAN is a
training-free method, thereby avoiding the gener-
alization issues associated with training data ex-
posure and offering superior generalization across
tasks.

4.2 Challenging Setting: Ensembling Models
with Substantial Performance Gaps

Previous work focuses on ensembling models with
similar performance (Huang et al., 2024). How-
ever, in real-world scenarios, it is inevitable to en-
counter underperforming models in an ensemble
when dealing with unknown tasks. To investigate
this, we introduce a new challenge setting, ensem-
bling models with significant performance gaps, to
evaluate the noise resistance of ensemble methods.
Specifically, we perform experiments under two
challenging settings4: one combining the top three

4The scenario most representative of real-world situations
involves randomly selecting four models for ensembling. Rec-
ognizing the impracticality of exhaustively evaluating every
possible combination, we select models with the largest perfor-
mance gaps to simulate the most challenging scenario among
all potential situations.
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MBPP GSM8K

System 4 Good 3 Good & 1 Bad 2 Good & 2 Bad 4 Good 3 Good & 1 Bad 2 Good & 2 Bad

LLaMA2-7B-Chat 17.93 17.93 17.93 25.02 25.02 25.02
ChatGLM2-6B 16.60 16.60 16.60 30.63 30.63 30.63
Baichuan2-7B-Chat 29.53 29.53 29.53 28.58 28.58 28.58
InternLM-7B-Chat 27.20 27.20 27.20 33.51 33.51 33.51
TigerBot-7B-Chat-V3 32.53 32.53 32.53 28.20 28.20 28.20
Vicuna-7B-V1.5 - - - 18.12 18.12 18.12
ChineseAlpaca2-7B 22.80 22.80 22.80 10.08 10.08 10.08

PairRanker (Jiang et al., 2023) 26.87(- 5.66) 19.47(-13.06) 17.60(-14.93) 36.47(+ 2.96) 33.28(- 0.23) 28.28(- 5.23)
LLM-Blender (Jiang et al., 2023) 5.33(-27.20) 5.13(-27.40) 4.00(-28.53) 34.27(+ 0.76) 29.04(- 4.47) 28.96(- 4.55)
EVA (Xu et al., 2024) 23.87(- 8.66) 28.99(- 3.54) 23.08(- 9.45) 41.32(+ 7.81) 37.15(+3.64) 26.08(- 7.43)

SweetSpan (ours) 38.20(+ 5.67) 37.07(+ 4.54) 35.53(+ 3.00) 46.32(+12.81) 39.20(+5.69) 36.32(+2.81)

Table 2: Main results on the code generation task (MBPP) and the arithmetic reasoning task (GSM8K) under
the challenge setting. Best results are highlighted with bold and the models employed within the ensemble are
distinguished by color according to their performance. Vicuna is excluded from the MBPP task because we find that
it cannot generate properly fomatted executable code.

NQ Flores De→En

System 4 Good 3 Good & 1 Bad 2 Good & 2 Bad 4 Good 3 Good & 1 Bad 2 Good & 2 Bad

LLaMA2-7B-Chat 29.34 29.34 29.34 42.36 42.36 42.36
ChatGLM2-6B 14.68 14.68 14.68 34.70 34.70 34.70
Baichuan2-7B-Chat 24.40 24.40 24.40 40.38 40.38 40.38
InternLM-7B-Chat 16.79 16.79 16.79 33.18 33.18 33.18
TigerBot-7B-Chat-V3 23.49 23.49 23.49 36.21 36.21 36.21
Vicuna-7B-V1.5 27.26 27.26 27.26 42.84 42.84 42.84
ChineseAlpaca2-7B 22.83 22.83 22.83 39.08 39.08 39.08

PairRanker (Jiang et al., 2023) 30.61(+1.27) 30.69(+1.35) 30.55(+1.21) 40.05(- 2.79) 36.82(- 6.02) 35.24(- 7.60)
LLM-Blender (Jiang et al., 2023) 31.99(+2.65) 31.52(+2.18) 30.89(+1.55) 44.11(+1.27) 43.90(+1.06) 43.42(+0.58)
EVA (Xu et al., 2024) 31.14(+1.80) 30.22(+0.88) 28.64(- 0.70) 43.34(+0.50) 43.69(+0.85) 42.44(- 0.40)

SweetSpan (ours) 33.38(+4.04) 32.55(+3.21) 30.30(+0.96) 44.78(+1.94) 44.82(+1.98) 43.76(+0.92)

Table 3: Main results on the commonsense reasoning task (NQ) and the machine translation task (Flores De→En)
under the challenge setting.

models with the worst model, and another com-
bining the top two with the bottom two models in
each task. Experimental results on NQ, GSM8K,
MBPP, and Flores-De→En are shown in Table 2
and Table 3.

4.2.1 SWEETSPAN Demonstrates Robustness

We observe that previous ensemble methods col-
lapse on most tasks under this setting, while our
proposed SWEETSPAN consistently delivers stable
performance improvements over individual models
and token-level ensemble methods across the four
tasks, demonstrating its robustness and versatil-
ity. Notably, SWEETSPAN also outperforms LLM-
Blender, which utilizes an additional 3B-parameter
fusion model, on three of four tasks, further demon-
strating the effectiveness of our approach. We at-
tribute the robustness of our method to the effec-
tive filtering strategy that excludes outliers with
abnormal perplexity, thereby preventing unfaithful
evaluations from impacting the ensemble results.

4.3 Ablation Study on Filtering Strategy

To validate the effectiveness of the filtering strat-
egy in SWEETSPAN, we conduct ablation studies
in both standard and challenging settings. Experi-
mental results on MBPP, GSM8K, NQ, and Flores-
De→En are presented in Table 4.

Overall, the filtering strategy in SWEETSPAN

consistently enhances performance across tasks.
As the settings become increasingly challenging,
the impact of the filtering strategy becomes more
pronounced. We observe that the filtering strategy
yields modest improvements in tasks with relatively
stable performance, such as machine translation.
However, for tasks significantly affected by under-
performing models, such as MBPP, the strategy
results in substantial gains. Notably, when the en-
semble includes the two lowest-performing models,
it achieves a 10.93% increase in Pass@1 on MBPP
compared to using no filtering, highlighting its crit-
ical role in maintaining SWEETSPAN’s robustness
in challenging scenarios.
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Methods MBPP GSM8K NQ Flores De→En

4 Good
SWEETSPAN 38.20 46.32 33.38 44.78
w/o Filter 36.80 46.02 31.39 44.78

3 Good & 1 Bad
SWEETSPAN 37.07 39.20 32.55 44.82
w/o Filter 34.00 38.51 30.97 44.79

2 Good & 2 Bad
SWEETSPAN 35.53 36.32 30.30 43.76
w/o Filter 24.60 35.33 25.37 43.26

Table 4: Ablation study on filtering strategy

5 Related Work

Ensemble learning is a widely adopted technique to
enhance performance on specific tasks and ensure
robust generalization by combining multiple com-
plementary systems (Zhou et al., 2017; Liu et al.,
2018; Lu et al., 2024). Based on the granularity
of the ensemble, existing ensemble methods can
be categorized into two categories: sample-level
ensemble and token-level ensemble.
Sample-level Ensemble Sample-level ensemble
can be further categorized into selection-based
ensemble and fusion-based ensemble. Selection-
based ensemble methods select the best LLM for
specific examples before inference or select the
best output from multiple outputs after inference.
Shnitzer et al. (2023) uses benchmark datasets to
train a router model that selects the best LLM out
of a collection of models for a given task. Lu et al.
(2023) introduce ZOOTER, a system that uses a
reward model to score query-output pairs, then
trains a router via knowledge distillation to select
the optimal LLM based on input queries. Frugal-
GPT (Chen et al., 2023a) sequentially calls LLMs
until a scoring model deems the output acceptable,
efficiently utilizing multiple LLMs. Such methods
are limited by the output quality of the candidate
models and are unable to generate outputs superior
to those of existing models.

Unlike selection-based methods, fusion-based
ensembles bypass the limitations of complete out-
puts, often yielding better results. Jiang et al.
(2023) select the top K outputs with a pair ranker,
then use a fusion model to combine them. How-
ever, this approach relies on the generative capacity
of the fusion model, which is limited by its expo-
sure to training data. Moreover, the use of a fusion
model considerably increases training and infer-
ence costs. For instance, Jiang et al. (2023) utilizes
a 3B-sized fusion model.

Our proposed SWEETSPAN is a training-free ap-
proach, avoiding the generalization issues tied to
training data exposure and providing superior gen-
eralization across tasks.
Token-level Ensemble Token-level ensemble
methods combine the output distribution of can-
didate models at each generation step. Several
studies fuse LLMs with specialized models that
share the same vocabulary to enhance the specific
capabilities of LLMs. Li et al. (2024) combine
untrusted LLMs with a benign smaller LLM to mit-
igate issues such as copyright infringement, data
poisoning, and privacy violations. Hoang et al.
(2024) enhance translation performance by ensem-
bling a machine translation model with an LLM.

However, most open-source LLMs are heteroge-
neous and have different vocabularies, hindering
direct ensembling. Fu et al. (2023) and Wan et al.
(2024) employ exact match constraints and mini-
mum edit distance strategy, respectively, to align
vocabularies. Xu et al. (2024), Huang et al. (2024)
and Yu et al. (2024) utilize overlapping tokens as
anchors to map the output distributions of heteroge-
neous LLMs into a unified space. Specifically, Xu
et al. (2024) propose to directly learn the projec-
tion matrices between different vocabularies using
the anchors as bridges, while Huang et al. (2024)
and Yu et al. (2024) calculate the relative repre-
sentations from anchors to different vocabularies,
thereby indirectly achieving the vocabulary projec-
tion. The process of vocabulary alignment intro-
duces noise, which constrains the effectiveness of
these methods.

Our proposed SWEETSPAN does not cross word
boundaries, eliminating the noise caused by vary-
ing tokenizers.

6 Conclusion

In this paper, we propose a span-level ensemble
method, SWEETSPAN, which balances the flexibil-
ity needed for real-time adjustments and the infor-
mation required for accurate ensemble decisions at
each step. Our method has no limitations regarding
vocabulary, model architecture, or task, and can
be directly applied to any LLM ensemble without
additional parameter training, making it a simple
and versatile approach. Experimental results in
both standard and challenging settings demonstrate
the superiority of our approach, which stably and
significantly improves overall performance across
various natural language processing tasks.
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Limitations

Efficiency Due to the inherent nature of ensem-
bling, our approach, like previous ensemble meth-
ods, requires performing inference N times when
ensembling N models. Additionally, we need to
compute perplexity through forward propagation.
However, we argue that the inferences for generat-
ing candidate spans and computing perplexity can
be executed in parallel, respectively, as they are
completely independent processes. Notably, our
method demonstrates superior efficiency compared
to the token-level approach, and the time overhead
decreases as the span length increases. Please refer
to Appendix B for detailed efficiency analysis.

LLM Evaluation Considering the expenses, we
do not use human or GPT-4 evaluation. Human
or GPT-4 evaluation could provide us with more
reliable and comprehensive results. However, due
to the number of models and datasets in our experi-
ments, we cannot afford large-scale human evalua-
tion.
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A Effect of Model Filtering Intensity

In Section 2.2, we introduced the hyperparameter λ
to control the filtering threshold for the evaluation
scores. A smaller λ results in more aggressive
filtering. For example, when λ = 0, each span has
its highest and lowest scores removed. In contrast,
a larger λ results in a more lenient filtering, with
filtering bypassed as λ becomes very large. We
conduct experiments on the NQ and MBPP tasks
to evaluate the effect of different λ values on the
ensemble results. Since the optimal λ varies across
tasks, we select λ = 10 as a balanced option for all
experiments and observe consistent performance
across various tasks.

λ NQ MBPP

0 33.05 40.93
10 33.38 38.20
20 33.30 37.53
40 33.38 37.80

Table 5: Effect of Model Filtering Intensity.

B Efficiency Analysis

The time overhead of ensemble methods during the
generation process, such as span-level ensemble
and token-level ensemble, is related to the length
of the generated text. The longer the generated text,
the greater the time overhead. As shown in Table 6,
we compare the efficiency of SWEETSPAN with the
token-level ensemble method EVA by calculating
the average extra time required per token. Our
method shows superiority in efficiency compared
to the token-level approach, and the time overhead
decreases as the span length increases.

Method Average Extra Time Per Token

EVA 0.0777s
Span-1 0.0512s
Span-2 0.0224s
Span-4 0.0128s
Span-8 0.0079s
Span-16 0.0053s
Span-32 0.0077s

Table 6: Efficiency Comparison of Token-level and
Span-level Ensembles.

C Main Results under the Standard
Setting

The main results on various language generation
tasks under the standard setting are presented in
Table 7 and Table 8.
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System NQ GSM8K MBPP

LLaMA2-7B-Chat 29.34 25.02 17.93
ChatGLM2-6B 14.68 30.63 16.60
Baichuan2-7B-Chat 24.40 28.58 29.53
InternLM-7B-Chat 16.79 33.51 27.20
TigerBot-7B-Chat-V3 23.49 28.20 32.53
Vicuna-7B-V1.5 27.26 18.12 -
ChineseAlpaca2-7B 22.83 10.08 22.80

PairRanker 30.61(+1.27) 36.47(+2.96) 26.87(-5.66)
LLM-Blender 31.99(+2.65) 34.27(+0.76) 5.33(-27.20)
EVA 31.14(+1.80) 41.32(+7.81) 23.87(-8.66)

Span-1 33.38(+4.04) 45.19(+11.68) 38.20(+5.67)
Span-2 32.74(+3.40) 44.73(+11.22) 35.60(+3.07)
Span-4 33.10(+3.76) 45.72(+12.21) 34.67(+2.14)
Span-8 32.96(+3.62) 46.32(+12.81) 33.40(+0.87)
Span-16 32.05(+2.71) 46.32(+12.81) 34.40(+1.87)
Span-32 32.11(+2.77) 45.41(+11.90) 34.40(+1.87)

Table 7: Main results of NQ (measured by Exact Match), GSM8K (measured by Accuracy) and MBPP (measured
by Pass@1). Best results are highlighted with bold and the model employed within the ensemble is underlined for
distinction.

System Flores-En→De Flores-De→En Flores-En→Ro Flores-Ro→En

LLaMA2-7B-Chat 27.37 42.36 26.11 40.64
ChatGLM2-6B 13.20 34.70 12.44 31.30
Baichuan2-7B-Chat 25.96 40.38 24.58 39.41
InternLM-7B-Chat 9.20 33.18 10.03 30.23
TigerBot-7B-Chat-V3 20.78 36.21 13.07 33.32
Vicuna-7B-V1.5 31.60 42.84 29.35 41.11
ChineseAlpaca2-7B 21.83 39.08 6.96 34.35

PairRanker 26.71(-4.89) 40.05(-2.79) 22.29(-7.06) 37.45(-3.66)
LLM-Blender 29.04(-2.56) 44.11(+1.27) 26.01(-3.34) 42.28(+1.17)
EVA 20.15(-11.45) 43.34(+0.50) 22.60(-6.75) 41.52(+0.41)

Span-1 32.85(+1.25) 43.93(+1.09) 30.48(+1.13) 42.75(+1.64)
Span-2 33.15(+1.55) 44.20(+1.36) 31.65(+2.30) 42.93(+1.82)
Span-4 33.78(+2.18) 44.60(+1.76) 30.97(+1.62) 42.95(+1.84)
Span-8 33.37(+1.77) 44.78(+1.94) 30.29(+0.94) 42.99(+1.88)
Span-16 32.89(+1.29) 44.62(+1.78) 30.22(+0.87) 42.65(+1.54)
Span-32 32.89(+1.29) 44.62(+1.78) 30.22(+0.87) 42.62(+1.51)

Table 8: Main results of machine translation tasks (measured by BLEU). Best results are highlighted in bold and
the model employed within the ensemble is underlined for distinction.
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