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Abstract

Collaboration between multiple Large Lan-
guage Models (LLMs) has attracted significant
attention for its potential to mitigate hallucina-
tions and enhance reasoning capabilities. Previ-
ous approaches, such as multi-agent debate and
decoding-time integration, either rely on highly
capable models with strong self-reflection abil-
ities or are limited to models sharing the same
tokenizer. To address these limitations, we in-
troduce PToco (Prefix-based Token-level Col-
laboration), a novel mechanism that enables ef-
fective collaboration among less capable LLMs,
independent of tokenizer differences. PToco
uses a prefix-grouping method to extract con-
sensus among tokens with varying levels of
granularity, ensuring coherent and robust token
generation across multiple models. Experimen-
tal results on a series of reasoning tasks demon-
strate that PToco significantly improves perfor-
mance over individual models.1 Furthermore,
this approach generalizes well across different
quantities and sizes of participating models,
providing a more flexible and efficient solution
for multi-LLM ensembles.

1 Introduction

The rapid development of large language models
(LLMs) has led to remarkable improvements across
a wide range of tasks (OpenAI, 2023; Huang et al.,
2022; Zhao et al., 2023). Despite LLM’s impres-
sive capabilities, they are prone to hallucinations
(Huang et al., 2023; Rawte et al., 2023), a phe-
nomenon in which models generate statements
that appear plausible but are factually incorrect
or nonsensical. As a result, a noticeable disparity
still remains between the performance of LLMs
and human-level proficiency, especially in tasks
requiring complex reasoning (Cobbe et al., 2021;
Valmeekam et al., 2022).

*Corresponding authors.
1The code for the experiments is publicly available at

https://github.com/BianYuang/PToco

Figure 1: Illustration of different tokenization strategies
for numerical data. Gemma2 tokenizes numbers into
individual digits; Llama3 groups three digits together;
GLM4 employs a hybrid approach.

To address this issue, previous researches have
resorted to model ensemble techniques. One promi-
nent approach involves multi-agent debate (Du
et al., 2023; Liang et al., 2023), where different
LLMs engage in iterative critique and response,
refining their outputs over multiple turns. This
method encourages deeper reasoning by allow-
ing models to self-correct based on peer critiques.
However, meaningful debate is typically limited to
highly capable models like GPT4 (OpenAI, 2023),
while smaller LLMs struggle to effectively critique
or reflect on errors. Moreover, the debate approach
necessitates that each LLM generates a complete
answer as its position before debating, which dis-
regards the token-level uncertainty inherent during
decoding time. Another ensemble method involves
token-level collaboration, where integration is per-
formed at each decoding step. This relies on each
LLM predicting the probability distribution over its
vocabulary for the possible next token, and select-
ing the token with the highest overall probability
across the models. While this method eliminates
the need for natural language communication, it
is limited to LLMs that share the same tokenizer.

https://github.com/BianYuang/PToco
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As shown in Figure 1, different families of LLMs
employ distinct tokenization strategies, especially
when handling numerical data which is particularly
susceptible to hallucinations. This discrepancy in
tokenization can result in models generating tokens
with varying levels of granularity from the same
prompt, making it difficult to directly integrate their
outputs.

Building on these insights, we propose PToco
(Prefix-based Token-level Collaboration), a novel
mechanism for decoding-time collaboration among
LLMs with different tokenization strategies. PToco
specifically addresses the challenge of tokenization
inconsistency, which arises when multiple models
generate tokens of varying granularities, such as
words, subwords, or characters.

In detail, PToco introduces a prefix-based ap-
proach to ensure effective collaboration. At each
decoding step, PToco first classifies the tokens gen-
erated by different LLMs into groups based on
their prefix relationships—whether one token is a
prefix of another. PToco computes the cumulative
probability for each group by aggregating the prob-
abilities of all tokens within the group. The group
with the highest cumulative probability is selected,
and the longest common prefix within that group
is chosen as the final output token for the current
round. This method ensures a coherent and consis-
tent generation process across models, regardless
of the different granularities of predicted tokens in
each round.

Our key contributions are outlined as follows:

• We introduce PToco, a framework that en-
ables token-level collaboration between mul-
tiple LLMs during decoding steps, without
relying on identical tokenizers.

• We conduct a comprehensive set of exper-
iments to demonstrate the effectiveness of
PToco when integrating a number of less ca-
pable LLMs with fewer than 10 billion param-
eters.

• We perform extensive ablation studies to as-
sess PToco’s generalizability across LLMs of
varying sizes and quantities.

2 Related Work

2.1 Reasoning Ability in LLMs
Chain-of-Thought (Wei et al., 2022) prompting,
which utilizes a sequence of intermediate reason-
ing steps to progressively reach the final outcome,

has emerged as a pivotal technique for eliciting
reasoning capabilities in LLMs (Luo et al., 2023;
Zhou et al., 2023; Huang and Chang, 2022). This
concept was later expanded by Yao et al. (2024)
and Long (2023) into Tree-of-Thought, which in-
vestigates various intermediate steps to find the
optimal reasoning path, with the option to back-
track if needed. Graph-of-Thought (Besta et al.,
2024) further advances the reasoning capabilities
of LLMs by modeling the reasoning process as a
graph, where thoughts are represented as vertices
and their relationships as edges. Across our ex-
periments with PToco, we integrate both CoT and
few-shot CoT strategies into prompt engineerings
to enhance performance.

2.2 Collaboration between Multiple LLMs

Multi-agent Debate

Multi-agent debate has emerged as a widely
adopted method for collaboration between multiple
LLMs, aiming to leverage collective intelligence
through interaction. This concept was first pro-
posed by Du et al. (2023), where multiple agents
generate initial responses individually and then iter-
atively refine them through rounds of critique and
feedback from their peers. Liang et al. (2023) ex-
tended this framework by introducing a judge to
evaluate the contributions of the debaters and deter-
mine the outcome. Other studies (Chen et al., 2023;
Bakhtin et al., 2022; Wang et al., 2024) emphasize
on the strategies of cooperation to enhance over-
all task-solving capabilities. However, multi-agent
debate has primarily been explored using highly ca-
pable models such as GPT-4, which are known for
their strong self-reflection abilities. In this paper,
we investigate how less capable LLMs could effec-
tively collaborate through a communication-free
method.

Token-level Integration

Due to the auto-regressive nature of language mod-
els, token-level integration has been proposed as a
method to achieve consensus during each decoding
step for multiple LLMs. Hoang et al. (2023) en-
hanced translation accuracy through blending the
probability distributions generated by a neural ma-
chine translation system and an LLM. Similarly,
Li et al. (2024) proposed combining an untrusted
LLM with a smaller, benign model, adjusting the
weight between the two models to address concerns
such as copyright infringement and data poisoning.



8328

Calculate the expression:
38 + 56 = 

(Correct Answer: 94)

‘8’
‘9’
‘7’

60%
20%

10%

‘8’
‘9’
‘1’

50%
30%

15%

‘96’

‘84’

90%
6%

4%

‘9’

‘3’

‘1’

146%

38.7%
6.3%‘7’
3.3%

Decoding step 1:

Decoding step 2:

Calculate the expression:
38 + 56 = 9

‘5’
‘6’

90%
5%

4%

‘6’
‘8’

80%
10%

5%

‘8’

 prefix 
grouping

concatenate

selected

Generated Answer: 

Calculate the expression:
38 + 56 = 94

‘98’

Alice

Bob

Carol

‘8’ 60%
‘8’ 50%

4%‘84’

‘9’ 20%
‘9’ 30%
‘96’ 90%

6%‘98’

‘7’ 10%

‘1’ 15%

aggregate

93.5%
6.25%

‘4’ 90%

‘4’ 80%

‘5’ 5%

‘6’ 10%

‘6’ 93.5%

‘6’ 4%

‘8’ 5%
‘8’ 6.25%

truncate
& 
normalize

Alice

Bob

Carol

 prefix 
grouping ‘4’

‘5’

‘8’

170%
5%

107.5%‘6’
11.25%

selectedaggregate

concatenate

‘4’

‘4’

‘6’

Figure 2: An example of PToco’s collaborative generation process. In the first round, three LLMs (named as Alice,
Bob and Carol) separately predict the possible next tokens. All tokens are further classified into groups according to
prefix relationships (with the common prefix in a group highlighted in red). The longest common prefix(’9’) of the
group with highest cumulative probability(146%) is then selected as the generated token. In the second round, ’9’ is
concatenated into the prompt and the same process repeats. Due to a coarser tokenizer, Carol directly utilizes the
predictions from round 1 without performing forward computation (presented in gray shading). The prefix ’9’ is
truncated from ’96’ and ’98’, and the corresponding probabilities are normalized to sum to 1 to serve as Carol’s
predictions for round 2.

However, these methods require all participating
models to share the same tokenizer, which lim-
its their flexibility. Other approaches (Shen et al.,
2024; Jin et al., 2024) employ dynamic mecha-
nisms to select the model best suited for generating
the next token based on their strengths, but this can
overlook the potential contributions of other mod-
els in the ensemble. To overcome these limitations,
we propose a framework that allows all participat-
ing LLMs to contribute to token generation at each
decoding step, irrespective of differences in their
tokenization strategies.

3 PToco: Prefix-based Token-level
Collaboration Mechanism

In this section, we introduce PToco - a novel, it-
erative token-level collaboration mechanism that
allows multiple LLMs with different tokenization
strategies to work together seamlessly. The whole
mechanism is illustrated in detail in Figure 2. By
employing a prefix-based grouping method, PToco
effectively identifies consensus among tokens of
varying granularities generated by different models
in each decoding step. Additionally, it incorporates

a refined iterative process to prevent misalignment
in subsequent decoding steps, ensuring robust and
coherent token generation. The PToco approach
operates through the following three key stages:
synchronized token prediction, prefix grouping and
consensus selection. We discuss each stage and the
iterative process in detail in the following part.

3.1 Synchronized Token Prediction

Suppose there are n large language models (LLMs)
participating in collaboration, each denoted as
M1,M2, . . . ,Mn. Let p be the initial prompt of
a query or instruction provided to these models.
In the first round of PToco, each model Mi takes
p as input and performs forward computation to
generate a probability distribution over its own vo-
cabulary Vi for the possible next token t. The prob-
ability of token t is given by the softmax function:

Pi(t) =
exp

(
zi(t)
τ

)
∑

v∈Vi
exp

(
zi(v)
τ

) ,
where zi(t) is the logit score for token t from model
Mi, and τ is the temperature parameter applied to
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control the randomness of the distribution. We
set τ = 1 in our experiments, and its impact is
discussed further in the ablation part.

For each model, we retain the top-k tokens with
the highest probabilities in the distribution (with
k = 5 in our experiments). Tokens with probabili-
ties below a predefined threshold pthres (set to 5% in
our experiments) are further filtered out, leaving a
set of j tokens, where j ≤ k. This process prevents
low-probability tokens from introducing noise in
the subsequent prefix grouping step, ensuring that
only high-probability tokens are kept for further
analysis. The retained tokens for each model are
presented as:

Ti = {(ti,1, pi,1), . . . , (ti,j , pi,j) | pi,j ≥ pthres},

where ti,j is the j-th token predicted by model Mi,
and pi,j is its associated probability.

Finally, the selected tokens from all models are
combined to form the set Tall, which includes all
valid tokens and their corresponding probabilities:

Tall =
⋃
i

Ti.

3.2 Prefix Grouping

A key challenge in integrating multiple LLMs at
the token level arises from differences in their tok-
enization strategies. Tokenizers across LLMs can
vary significantly in granularity; some models gen-
erate tokens at the word level, while others produce
tokens at subword or even character-level granu-
larity. Consequently, the tokens in Tall often do
not align precisely—tokens may represent differ-
ent segments of the text even when referring to
the same underlying content. This misalignment
makes it difficult to directly aggregate the probabil-
ities predicted by the models.

To address this issue, we propose a prefix group-
ing method that leverages the prefix relationships
between tokens in Tall. Specifically, two tokens - ta
and tb, are considered to share a prefix relationship
if ta is a prefix of tb or vice versa. As outlined
in Algorithm 1, prefix grouping iteratively orga-
nizes tokens from Tall into groups based on these
relationships. Once the process is complete, the
shortest token within each group will also serve as
the longest common prefix of all the tokens within
that group, representing the consensus across pre-
dicted tokens of varying granularities.

Algorithm 1 Prefix Grouping

1: Input: A list of tokens Tall = [t1, t2, . . . , tn]
2: Output: Groups G1, G2, . . . , Gm, where each

group contains all tokens linked by prefix rela-
tionships.

3: Initialize Groups = []
4: for each ti in Tall do
5: Initialize placed← False
6: for each Gj in Groups do
7: if ti has a prefix relation with any token

in Gj then
8: Add ti to Gj

9: placed← True
10: break
11: end if
12: end for
13: if placed = False then
14: Create new group Gnew = [ti]
15: add to Groups
16: end if
17: end for
18: Return Groups

3.3 Consensus Selection

After the filtered tokens are grouped, the next step
is to determine which token will be selected as the
final output for this round. For each group Gk, the
cumulative probability is calculated by summing up
the probabilities over all tokens within that group.
The group with the highest cumulative probability
is denoted as Gmax:

Gmax = argmax
Gk

∑
ti,j∈Gk

pi,j .

From Gmax, the shortest token is chosen as the gen-
erated token for the current decoding step. This
ensures that the generated token is both highly prob-
able and representative of the group’s consensus,
allowing for more coherent and reliable outputs in
multi-model collaboration.

3.4 Iterative Decoding

Following the typical iterative decoding process
of LLMs, PToco also operates iteratively after the
initial round of token generation. In round i + 1,
the input prompt pi+1 is formed by concatenating
the previous prompt pi with the token generated
in round i. However, forcefully providing the con-
catenated prompt to each model for generating the
next token can lead to problems, particularly when
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a model expects to generate a complete token in
round i but only receives its prefix in round i+ 1.
Figure 3 illustrates this issue, where Llama3 fails
to predict the correct continuation ’4’ after being
given only the prefix ’9’. This inability possibly
arises when LLMs are being trained on large-scale
corpus. The tokenizer assigns different IDs to the
prefix and the full token during preprocessing, caus-
ing the model to interpret them as distinct tokens
rather than related parts of the same sequence.

To address this, before proceeding to round i+1,
PToco will first examine the predictions from round
i for each model, considering the following three
scenarios:

1. If the generated prefix from round i appears as
a standalone token in the filtered top-k tokens
predicted in round i, PToco directly passes the
concatenated input to the model for round i+1.
In this case, the model continues its prediction
smoothly, as it recognizes the prefix as a valid
token.

2. If the standalone prefix is absent from the top-
k list, but longer tokens starting with the prefix
are present, this suggests the model might em-
ploy a coarser tokenization strategy. PToco
extracts these longer tokens with their corre-
sponding probabilities from round i, removes
the prefix, and re-normalizes the probabilities
to sum to 1. These adjusted tokens and prob-
abilities then directly serve as the prediction
of the model in round i+ 1. In this case, the
model essentially "takes a break", relying on
the predictions from the previous round with-
out requiring forward computation.

3. If neither the prefix nor any longer tokens
beginning with the prefix appear in the top-
k list, it indicates a divergence between this
model and others in the ensemble. In this
case, PToco passes the concatenated input to
the model for a fresh token prediction in round
i + 1, aiming to realign the model with the
ensemble in subsequent steps.

This mechanism ensures that PToco accommo-
dates models with different tokenization strategies,
maintaining coherence and flexibility throughout
generation.

Figure 3: Llama3 loses track of the intended sequence
when the input prompt is concatenated with a possible
prefix ’9’

4 Experiments

4.1 Experimental Setup

4.1.1 Tasks and Datasets
To evaluate the effectiveness of the PToco approach,
we conducted experiments across five datasets span-
ning two categories of reasoning tasks: mathemat-
ical reasoning and symbolic reasoning. For each
dataset, we report accuracy using exact match be-
tween the generated answer and the reference.

(1) Mathematical Reasoning
Add&Mul: A randomly generated dataset in-

volving addition and multiplication tasks. It con-
sists of six subsets, with tasks on 8-digit, 12-digit,
16-digit, and 20-digit addition as well as 2-digit
and 3-digit multiplication between two numbers.

AQuA (Ling et al., 2017): A dataset on algebra
requiring models to answer multiple-choice ques-
tions by reasoning through a set of given options.

GSM8K (Cobbe et al., 2021): A dataset of
grade-school level math problems that typically
require 2 to 8 reasoning steps to solve.

(2) Symbolic Reasoning
Last Letter Concat: A dataset where the task

is to take the last letter of each word in a given
four-word phrase and concatenate them into a new
word.

WordSort (Srivastava et al., 2022): A dataset
which requires sorting a list of 8-10 words alpha-
betically by comparing characters one by one.

4.1.2 Models and Baselines
To verify whether the proposed method could work
efficiently when integrating less capable LLMs, we
use four open-source models with parameters less
than 10 billion for collaboration. The selected mod-
els are Qwen2-7B (Yang et al., 2024), Llama3-8B
(Touvron et al., 2023), Gemma2-9B (Team et al.,
2024), and GLM4-9B (Yang et al., 2024) (all chat
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Models Last Letter Concat Word Sort Add & Mul AQuA GSM8k Avg.

Qwen2-7B 56.7 11.7 68.4 60.6 76.3 54.7
Llama3-8B 68.0 72.3 30.7 44.5 74.7 58.0
GLM4-9B 67.3 85.3 10.2 59.5 81.3 60.7
Gemma2-9B 68.0 73.3 64.5 47.2 80.6 66.7

Llama3-8B & GLM4-9B & Gemma2-9B 85.3 (+17.3) 92.7 (+7.4) 58.5 (-6.0) 59.1 (-0.4) 83.1 (+1.8) 75.7 (+9.0)

Qwen2-7B & GLM4-9B & Gemma2-9B 82.0 (+14.0) 89.3 (+4.0) 71.4 (+3.0) 67.3 (+6.7) 86.4 (+5.1) 79.3 (+12.6)

Qwen2-7B & Llama3-8B & Gemma2-9B 84.7 (+16.7) 79.3 (+6.0) 76.1 (+7.7) 59.1 (-1.5) 86.1 (+5.5) 77.1 (+10.4)

Qwen2-7B & Llama3-8B & GLM4-9B 82.0 (+14.0) 87.3 (+1.7) 59.4 (-9.0) 63.0 (+2.4) 83.3 (+2.0) 74.9 (+8.2)

Table 1: Accuracy comparison across various datasets when integrating 3 LLMs using PToco. The ‘Avg.’ column
shows the average performance for all tests. Performance gains over the baseline are indicated in parentheses.

versions that have undergone instruction-tuning
and reinforcement learning from human feedback).
Each of these models demonstrates strong perfor-
mance across various NLP benchmarks, making
them ideal candidate for assessing whether PToco
can yield improvements beyond their already im-
pressive individual results. Additionally, these
models exhibit diverse strengths across the five
selected datasets, providing an excellent opportu-
nity to observe the performance of PToco when
integrating models with varying capabilities.

We conducted 16 experiments for each dataset,
utilizing different combinations of the four models.
This involves evaluating each model individually,
in pairs, in groups of three, and finally, integrating
all four models to explore their collective potential.
We report the settings of three-model collaboration
in our main results, and further discusses other
combinations in section 5.1 as an ablation study on
the quantities of participating LLMs.

For the single-model setups, outputs are gener-
ated using greedy decoding. For the multi-model
collaborative setups, we set the temperature param-
eter to 1 in the softmax function to obtain the raw
probability distribution over the vocabulary. For
each combination, we set the baseline according to
the highest score achieved by any individual par-
ticipants within the ensemble. This allows us to
assess clearly whether PToco’s collaborative frame-
work results in a performance improvement over
the best-performing single model.

4.2 Main Results
Table 1 presents the performance of PToco across
five datasets when integrating three models per trial.
The results show that PToco demonstrates signif-
icant improvements over baselines when two or
more of the three collaborating models have rela-
tively stronger individual capabilities. We further
discuss this conclusion from the following aspects:

(1) PToco shows the highest overall gains when
three models with relatively stronger abilities are
combined. In Last Letter Concat, the collaboration
between the three best-performing models (Llama3,
GLM4 and Gemma2) results in an improvement
of 17.3% over the baseline, which is the largest
increase across all datasets. And the same com-
bination of models achieves the top score of 92.7
among all configurations in Word Sort. Likewise,
the combination of Qwen2, GLM4, and Gemma2
delivers the best performance of 86.4 on GSM8k.
These results affirm that when models with com-
parable capabilities collaborate, PToco maximizes
their collective strengths, leading to superior over-
all outcomes across diverse tasks.

(2) When two stronger models are paired with a
weaker one, PToco still achieves notable improve-
ment, though the gains are less substantial com-
pared to combinations of three strong ones. For
instance, the combination of Qwen2, GLM4, and
Gemma2 showed a 3% increase in Add&Mul and a
4% boost in Word Sort, despite GLM4’s poor abil-
ity in Add&Mul and Qwen2’s weak performance
in Word Sort. While these results remain below
the top-scoring combinations of three strong mod-
els, they demonstrate that as long as the stronger
models dominate in the ensemble, PToco delivers
robust improvements. However, the weaker model
still limits the system’s full potential, indicating
PToco’s effectiveness is maximized when models
of similar strength collaborate.

(3) The performance of the overall system is con-
strained when two weaker models are paired with
a stronger one, as seen in both the Add&Mul and
AQuA datasets. In Add&Mul, when weaker mod-
els like Llama3 and GLM4 are combined with a
stronger model, such as Qwen2 or Gemma2, the
results fail to surpass the baseline set by the only
stronger model. Similarly, in the AQuA dataset, the
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inclusion of Llama3 and Gemma2 in the collabora-
tion struggles to enhance overall performance. This
indicates that the only stronger model is unable to
compensate fully for the weaknesses of the other
two, and the overall effectiveness diminishes when
weaker models outnumber the stronger ones.

5 Ablations and Analysis

5.1 Impact of Model Quantity in
Collaboration

In this section, we further evaluate the generaliz-
ability of the proposed PToco method when inte-
grating different numbers of LLMs (specifically 2
and 4). The results, as shown in Table 2, along
with the results of the 3-model integration (Table
1), demonstrate that PToco consistently provides
performance gains under a reasonable selection of
participating models. We discuss the cases of 2-
model and 4-model integration in detail as below:

(1) The collaboration between two models
achieves strong gains when the two models show
similar initial strengths. Across the two datasets
of Last Letter Concat and GSM8K, the four mod-
els—Qwen2, Llama3, GLM4, and Gemma2—all
exhibit relatively close scores when evaluated in-
dividually. Given these similarities, any combina-
tion of two models within this set results in perfor-
mance improvements on both datasets. In contrast,
the overall performance tends to be compromised
when two models with notably different abilities
collaborate. In Word Sort, Qwen2 performs signif-
icantly worse than the other three models. When
Qwen2 is combined with another stronger model,
the overall score remains lower than the stronger
model’s individual performance. This shows that
PToco’s overall performance tends to be dragged
down by the weaker model when there are only 2
participants.

(2) When combining all four models together,
PToco consistently delivers strong performance
across all tasks, achieving the highest average score
of 79.7. Given that the individual average scores of
the four models are relatively close (ranging from
54.7 to 66.7), this further demonstrates the robust-
ness and effectiveness of PToco when integrating
LLMs with similar capabilities.

5.2 Impact of Decoding Temperature

In the proposed PToco method, the temperature
applied at every decoding step will affect the proba-
bility distribution over the vocabulary predicted by

Figure 4: Performance across datasets under different
decoding temperature

each LLM. To estimate the influence, we select the
optimal combination of LLMs (integrating either 2,
3, or 4 models) for each dataset, and apply a range
of temperatures between 0.5 and 1.5 during collab-
oration. As Figure 4 shows, PToco performs best
when the temperature is set to 1.0. One possible
explanation is that the logits predicted by LLMs
remain unscaled under this setting, thus preserving
their raw confidence levels for each token without
over-amplifying or diminishing.

5.3 Collaboration across Scales

In this part, we aim to demonstrate the effec-
tiveness of the PToco method when combining
LLMs of varying scales. Experiments are carried
out across six distinct tasks within the Add&Mul
dataset. We select the best-performing individual
model (Qwen2-7B) and ensemble (Qwen2-7B &
Llama3-8B & Gemma2-9B), pairing them both
with Llama3-70B for further evaluation.

Table 3 presents the results of these experiments.
Notably, Llama3-70B achieves the highest average
score when tested individually. When it is further
paired with Qwen2-7B, the average score increases
by an additional 9.7 points. Moreover, the collabo-
ration between Llama3-70B and the previous best-
performing combination yields the highest score
of 80.7, marking the best score across all setups.
These results confirm that the PToco method is ef-
fective when integrating LLMs of differing scales,
demonstrating its capacity to enhance outcomes
without relying on models of similar size.

6 Conclusion

In this paper, we present PToco, a novel token-level
collaboration framework that enables multiple less
capable large language models to collaborate effec-
tively. PToco enhances token generation accuracy
by leveraging prefix-based grouping and consensus
selection mechanisms, allowing models to work to-
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Models Last Letter Concat Word Sort Add & Mul AQuA GSM8k Avg.

Qwen2-7B 56.7 11.7 68.4 60.6 76.3 54.7
Llama3-8B 68.0 72.3 30.7 44.5 74.7 58.0
GLM4-9B 67.3 85.3 10.2 59.5 81.3 60.7
Gemma2-9B 68.0 73.3 64.5 47.2 80.6 66.7

Qwen2-7B & Llama3-8B 79.3 (+11.3) 56.7 (-15.6) 65.2 (-3.2) 55.1 (-5.5) 80.0 (+3.7) 67.3 (+0.6)
Qwen2-7B & GLM4-9B 77.3 (+10.0) 80.3 (-5.0) 43.3 (-25.1) 63.8 (+3.2) 84.6 (+3.3) 69.9 (+9.2)
Qwen2-7B & Gemma2-9B 83.3 (+15.3) 62.3 (-11.0) 72.5 (+4.1) 60.2 (-0.4) 84.5 (+3.9) 72.6 (+5.9)
Llama3-8B & GLM4-9B 76.7 (+8.7) 89.0 (+3.7) 32.1 (+1.4) 55.1 (-4.4) 82.4 (+1.1) 67.1 (+6.4)
Llama3-8B & Gemma2-9B 80.7 (+12.7) 84.3 (+11.0) 64.2 (-0.3) 50.0 (+2.8) 80.8 (+0.2) 71.2 (+4.5)
GLM4-9B & Gemma2-9B 80.0 (+12) 91.0 (+5.7) 43.9 (-20.6) 62.2 (+2.7) 84.9 (+3.6) 72.4 (+5.7)

All 4 Models 86.7 (+18.7) 90.0 (+4.7) 74.9 (+6.5) 61.8 (+1.2) 85.1 (+3.8) 79.7 (+13)

Table 2: Accuracy comparison across various datasets when integrating 2 and 4 LLMs using PToco

Models Add-8 Add-12 Add-16 Add-20 Mul-2 Mul-3 Avg.

Qwen2-7B 92.0 89.1 73.7 68.0 72.9 14.5 68.4
Llama3-8B 81.8 47.4 16.8 3.7 24.7 10.0 30.7
Gemma2-9B 90.9 74.3 64.2 45.7 96.6 15.5 64.5
Llama3-70B 92.5 86.2 79.4 49.5 82.4 22.2 68.7

Qwen2-7B & Llama3-70B 96.2 94.1 88.7 80.0 87.5 24.1 78.4

Qwen2-7B & Llama3-8B & Gemma2-9B & Llama3-70B 97.5 94.5 87.5 81.5 96.7 26.4 80.7

Table 3: Accuracy comparison when integrating models of different scales on the Add&Mul dataset. Add-8
represents addition of two 8-digit numbers. Mul-2 represents multiplication of two 2-digit numbers.

gether without requiring identical tokenizers. Our
comprehensive experiments across multiple reason-
ing tasks show that PToco consistently improves
performance under a reasonable selection of partic-
ipating LLMs. Additionally, PToco demonstrates
flexibility across different model scales and quanti-
ties. Overall, PToco offers a powerful solution to
enhance reasoning in multi-LLM ensembles, driv-
ing substantial improvements in task-solving capa-
bilities.

7 Limitations

While collaborating through PToco significantly
improves performance, there are several limita-
tions.

Firstly, PToco’s performance is influenced by the
initial strengths of the participating models. When
weaker models dominate the ensemble, the overall
performance tends to decline. This necessitates
preliminary testing to assess the individual perfor-
mance of each model.

In addition, PToco requires real-time access to
token-level probabilities at each decoding step.
This restriction limits PToco’s applicability to only
open-source LLMs.

Lastly, collaborative reasoning increases both
memory and time overhead. The need to pro-

cess multiple models simultaneously, aggregate
token-level predictions, and manage prefix-based
grouping adds computational complexity, leading
to higher GPU memory usage and longer inference
times compared to using a single model.
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