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Abstract

With the quick advancement in text generation
ability of Large Language Model(LLM), con-
cerns about the misuse of machine-generated
text(MGT) have grown, raising potential viola-
tions of legal and ethical standards. Some exist-
ing studies concentrate on detecting machine-
generated text in open-source models using
in-model features, but their performance on
closed-source large models is limited. This
limitation occurs because, in the closed-source
model detection, the only reference that can
be obtained is the texts, which may differ sig-
nificantly due to random sampling. In this
paper, we demonstrate that texts generated
by the same model can align both semanti-
cally and statistically under similar prompts,
facilitating effective detection and traceabil-
ity. Specifically, we fine-tune a BERT encoder
through contrastive learning to achieve se-
mantic alignment in randomly generated texts
from the same model. Then, we propose a
method called Machine-Generated Text Detec-
tion with Rewritten Texts, which designed sev-
eral prompt refactoring methods and used them
to request rewritten text from LLMs. Semantic
and statistical relationships between rewritten
and original texts provide a basis for detection
and traceability. Finally, we expanded the text
dataset with multi-parameter random sampling
and verified the performance of MAGRET on
three text-generated datasets. Experimental re-
sults show that previous methods struggle with
closed-source model detection, while our ap-
proach significantly outperforms baseline meth-
ods in this regard. It also shows MAGRET’s sta-
ble performance in detection and tracing tasks
across various randomly sampled texts.

1 Introduction

With the emergence of big language mod-
els(Achiam et al., 2023; Touvron et al., 2023; Du
et al., 2021), a large number of machine texts are
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generated and enter the human community. LLMs
have been demonstrated to possess the ability to
participate in exams(Chang et al., 2023) and mimic
human behavior. The abuse of machine-generated
text may violate legal and ethical standards(Tamkin
et al., 2021), while the cost of manually deter-
mining whether text is machine-generated is pro-
hibitively high. Therefore, an efficient and accurate
machine-generated text detector is an important
tool. Furthermore, tracing the origins of text repre-
sents an innovative and far-reaching field, offering
more precise labeling for textual content.

Existing research primarily focuses on open-
source models(Wang et al., 2023; Li et al.,
2023), predicting outcomes based on extracted log-
probability features. In practice, closed-source
models are typically larger, perform better, and
dominate the market. The rapid update cycle of
closed-source models, exemplified by OpenAI’s re-
lease of two models and multiple features in 2024
(OpenAI, 2023), exacerbates this issue. Conse-
quently, current methods fall short in meeting the
demands for detection and tracing of closed-source
models.

One of the biggest difficulties in detecting
and tracing closed-source models generated texts
is that there is no reference other than re-
requested text that can be used to make predic-
tion, and some of the existing research ideas make
Out-of-Distribution prediction by obtaining the
hidden-layer weights of the open-source LLMs
(Mireshghallah et al., 2024). However, the per-
formance of this method’s degrades as the number
of black-box models increases.

The text generated by a big language model is af-
fected by multiple control variables, such as top-p,
top-k, and temperature of the pre-trained model.
subtle differences in the prompt can also make
huge changes in the generated content of the big
language model. The detection model needs to
distinguish the generated text of different models
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and exclude the interference of different genera-
tion parameters under the same model. Our study
found that although these parameters can drasti-
cally change the content of the generated text, dif-
ferent models can still be distinguished by semantic
and statistical analysis.

We propose the MAGRET model, which pre-
dicts whether a text is machine-generated and iden-
tifies the LLMs responsible by obtaining duplicated
texts from LLMs through rewriting and continua-
tion requests. We demonstrate that even with ran-
dom sampling, the rewritten texts maintain seman-
tic and statistical similarity to the original texts. For
semantic alignment, we utilize BERT, and we iden-
tify several applicable similarity algorithms for sta-
tistical analysis. Our detection model requires only
machine-generated natural language text, whether
it is an open-source or close-source model. We
tested MAGRET on three major language genera-
tion tasks, and MAGRET is quite effective under
different top-p, temperature parameter and Out-of-
Distribution. Compared to previous research, MA-
GRET has better detection and traceability results
for closed-source models, providing a sustainable,
generalized, and robust method for detecting and
tracing content generated by LLMs.

In summary, our contributions are as follows.

• To the best of our knowledge, MAGRET is the
first model to detect machine-generated text
using complete rewritten sentence, without
requiring the model to be open-source.

• MAGRET can detect generated text across
various random sampling parameters, thereby
broadening the detection scope and showing
distinct features to differentiate high-random-
sampling machine-generated text from human-
written content.

• We expanded the dataset under text generation
tasks such as Writing, QA, and Review, incor-
porating binary, multiclass, different random
sampling parameters and out-of-distribution
experiments. MAGRET consistently exhibits
advanced detection performance.

2 Related Works

Binary Detection Traditionally, MGT detection
has been framed as a binary classification prob-
lem, distinguishing between human-written and
machine-generated text (Gehrmann et al., 2019;
Ippolito et al., 2019). Supervised approaches in

this domain rely on annotated datasets to train clas-
sifiers (Wang et al., 2024; Uchendu et al., 2021;
Zhong et al., 2020; Liu et al., 2022). Recent stud-
ies by (Guo et al., 2023; Hu et al., 2023; Xiong
et al., 2024) have further explored and refined these
supervised methods, underscoring the continuing
relevance of this approach.

Multi-Class Detection As the field progresses,
there is growing interest in more fine-grained clas-
sification that not only identifies whether a text
is machine-generated or human-written but also
determines its specific source (i.e., which Large
Language Model generated it). This multi-class
classification problem shares similarities with au-
thorship attribution (Uchendu et al., 2020; Munir
et al., 2021). (Venkatraman et al., 2023) investi-
gated whether the principle of humans’ tendency
to spread information evenly could help capture
unique signatures of LLMs and human authors.
The M4GT-Bench (Wang et al., 2024) focused on
black-box modeling and multilingual text detection.
(Shi et al., 2024) proposed an approach similar to
ours, using resampling from the model to enhance
prediction, but their method differs in not utilizing
the full text, necessitating multiple sampling.

Linguistic Pattern-Based Detection Another
significant line of research explores linguistic
patterns for automatic machine-writing detection.
This approach has evolved through various meth-
ods, including: N-gram frequencies (Badaskar
et al., 2008) Entropy analysis (Lavergne et al.,
2008; Gehrmann et al., 2019) Perplexity measures
(Beresneva, 2016) Analysis of negative curvature
regions in the model’s log probability (Mitchell
et al., 2023; Bao et al., 2023) However, these
statistics-based methods often assume white-box
access to model prediction distributions, limiting
their applicability to models behind APIs, such as
ChatGPT.

Neural Network-Based Detectors An alterna-
tive paradigm involves training neural-based de-
tectors (Bakhtin et al., 2019; Fagni et al., 2020;
Uchendu et al., 2020; Feng et al., 2021; Tolstykh
et al., 2024). These approaches leverage deep
learning to identify subtle patterns distinguishing
machine-generated text from human-written con-
tent. The MAGE project (Li et al., 2024) aggregates
a large corpus of machine-generated text but lacks
comprehensive coverage of closed-source model
outputs.

In conclusion, while the field of MGT detection
encompasses a wide range of approaches, from
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binary and multi-class classification to linguistic
pattern analysis and neural network-based detec-
tion, significant gaps remain. Most studies have
not adequately addressed black-box model detec-
tion methods or considered the impact of gener-
ation parameters on the detectability of machine-
generated text. Our research aims to address these
crucial areas, focusing on developing robust detec-
tion methods for black-box models and examining
how various generation parameters influence the
detectability of MGTs.

3 Random sampling Machine-generated
Text Detection Problem

Given a text T, for an machine-generated text de-
tection model, the task is to predict and deter-
mine whether the text is written by a human or
generated by machine. For a traceable machine-
generated text detection model, a candidate model
list M = {m1,m2, . . . ,mn} is provided, and the
model can predict whether the text was written by a
human or generated by one of the models mi. With
multi-parameter, a given text T may be generated
by machine m under the parameter state Parm if
it is generated by a machine. In the scope of our
discussion, Parm contains Temperature temp and
Top-p sampling topp. At this point T is denoted as
Tmpram . T is denoted as Tmgreedy

if it is generated
from m non-sampled states (greedy).

Big language models are still based on the rule
of predicting the next token. The words with the
highest probability can be directly selected without
sampling, which may lead to overly monotonous
and repetitive generated text. Parameters such as
top-p, top-k, temperature, etc. are often used to
control the randomness of the generated text:

• Top-p sampling At each step, only the small-
est set of words whose cumulative probabil-
ity exceeds a certain threshold p is randomly
sampled, regardless of other low-probability
words.

• Top-k sampling At each step, only the k
words with the highest probability are ran-
domly sampled, regardless of other low-
probability words. Since ChatGPT’s api does
not support sampling with top-k, we do not
discuss this sampling method.

• Temperature sampling At each step, the
model transforms logits through a distribution
to get a new probability distribution, which is

then randomly selected. the larger the temper-
ature, the more uniform the new probability
distribution.

In order to improve the diversity, generalization
and creativity of the large language model, the ac-
tual use of the model will often use one or more
sampling methods, which has caused some trouble
to the machine text detection. In reality, in some
occasions of pursuing text accuracy and rigor, the
sampling will be set more stable and conservative,
Temperature will be set 0 to 0.7, and top-p will be
set 0.3 to 0.7, while in some occasions of pursuing
novelty and creativity, the sampling will be more
random, Temperature will be set 0.7 to 1, and top-p
will be set 0.7 to 0.9.

We traversed a total of 16 parameter combination
types for Temperature and Top-p of [0.3, 0.5, 0.7,
0.9] respectively, which basically cover all the uti-
lization scenarios in practical situations. And after
generating these texts, we computed their similar-
ity with the greedily-generated texts from multiple
models. Large language models tend to include
prompts in their outputs. To exclude the influence
of prompts when calculating similarities, we re-
moved prompt-similar content to achieve more ac-
curate measurements.

Temperature
Top-p 0.3 0.5 0.7 0.9
0.3 5.15 5.31 5.01 5.28
0.5 5.35 4.88 4.53 4.29
0.7 4.45 3.89 4.32 3.97
0.9 4.89 3.72 3.24 3.31

Table 1: Relative 1-gram Jaccard Similarity Be-
tween ChatGPT’s Generated Texts and Greedy Baseline
Across Different Temperature and Top-p Settings

Temperature
Top-p 0.3 0.5 0.7 0.9
0.3 0.60 0.60 0.59 0.60
0.5 0.59 0.61 0.61 0.61
0.7 0.62 0.63 0.63 0.63
0.9 0.61 0.59 0.59 0.63

Table 2: Normalized 1-gram Jaccard Similarity Be-
tween Human Text and Model Outputs Across Different
Temperature and Top-p Configurations.

Take the 1-gram Jaccard similarity for example.
Given two texts A and B, the Jaccard similarity is
defined as the size of the intersection divided by
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Figure 1: Rewritten Text Demonstration and the MAGRET Framework. MAGRET obtains greedy rewritten text
from multiple models by request and predicts whether the text originates from a human or from either model after a
semantic encoder and multiple similarity calculations.

the size of the union of the sets representing the
words in each text.

J(A,B) =
|A ∩B|
|A ∪B|

In order to make the word usage preferences of
different models more obvious, the vocabulary in
prompt P can be removed when calculating the
Jaccard similarity. The Jaccard similarity we use is
computed like this J ′(A,B) = J(A− P,B − P ).

Table 1 shows the 1-gram Jaccard similarity be-
tween the ChatGPT’s parameterized generation and
its greedy output to the average similarity with
other models’ greedy output. Table 2 shows the Co-
hen’s d of human-model similarity to the average
cross-model similarity. As can be seen from the Ta-
bles, no matter what the parameters are, the model
and its own greedily-generated text remain more
similar (reflected in table values greater than 1),
while the human text consistently remains less sim-
ilar to the machine text (reflected in table values
less than 1), and under more stochastic parame-
ter settings with greater temperate and top-p, the
generation of the LLMs among the texts are more
similar, but still maintain certain word preferences.
However, the similarity between human and ma-
chine texts varies minimally with the parameters of

machine generation. This predicts that with more
random parameter settings, the difficulty of distin-
guishing between human and machine hardly in-
creases, but the difficulty of tracing which machine
the text came from rises.

4 MAGRET: Machine-generated Text
Detection with Rewritten Texts

As illustrated in Figure 1, MAGRET employs
a multi-stage approach for source prediction of
textual content. The methodology initiates with
prompt reconstruction, followed by input into mul-
tiple generative models to obtain rewritten varia-
tions of the original text. Subsequently, a compre-
hensive analytical framework is applied, involving
semantic analysis and statistical characterization
of both the original and generated texts. These
processed text features are then fed into a fully con-
nected neural network layer, which produces the
final classification outcome.

MAGRET contains both semantic and statistical
analysis. The semantic analysis consists mainly
of a BERT encoder fine-tuned by contrast learning.
While the statistical analysis consists of several text
rewriting models and a similarity calculation tool.
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4.1 Detection with Semantic Analysis
Inspired by the paper (Zheng et al., 2024), the
quality of the generated text of a large language
model can be evaluated with a stable score from
GPT4. From the opposite direction, the semantic
quality of the text can be used to predict whether
the text is generated by a human or a machine.
With multi-parameter, texts generated by the same
model can be semantically aligned, we use a com-
parative learning approach to fine-tune the BERT
model. The encoding of the sampled generated text
TmPara and the greedily generated text Tmgreedy

of the same model are used as positive sample
pairs, while the sampled generated text TmPara

and the greedily generated text of a different model
TMgreedy

,M ̸= m are used as negative sample
pairs. In addition, human-written texts and all
greed-generated texts are also used as negative sam-
ple pairs.

BERT encoder trained and fine-tuned by com-
parative learning already has the ability to predict
the source of the text without the need for other
data in the inference process. This is the baseline
that predict multi-parameter generated text at the
lowest cost. In the following, we will further in-
troduce how MAGRET can use rewritten text to
greatly improve its ability to predict the source of
text, if it is available.

4.2 Detection with Rewritten texts
MAGRET request greedy rewritten texts T ′ =
{T ′

m1greed
, T ′

m2greed
, . . . , T ′

mngreed
} from the mod-

els in M with the rebuild prompt P . By analyzing
the semantic and statistical relationships between
the text T and the rewritten texts, the neural net-
work predicts which model generated the text. It is
worth mentioning that the addition of rewritten text
to the input data also enhances the classification
ability of the binary MGT.

Reconstructing the prompt and requesting it
from the model is an important detection pre-step
for this model. We assume several scenarios here
and use them to design several methods for obtain-
ing the rewritten text.

• In a Q&A-like environment, subjects may use
a question or a question variant as a prompt to
obtain a machine-generated answer, in which
case the detector can use the question as a
prompt to obtain the rewritten text directly.

• In a scenario similar to academic paper writ-
ing, the detector can acquire large pieces of
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Figure 2: Cohen’s d Scores including Jaccard (1-gram
and 2-gram), Rouge-L, BLEU, Cosine, and Levenshtein,
with averages.

text to be detected. If the author uses machine-
generated text, the detector can not restore the
prompt used by the author at all, at this time,
intercept part of the text, and use continuation
as the prompt instruction, which can obtain
the rewritten text compared with the original
text.

• In the scenario where the topic is clear but the
length of the text is short, the detector only
has a short text to be detected and is not sure
about the form of prompt used by the author,
the detector can first input the text to be de-
tected into the large language model to let it
summarize and then submit the summarized
content to the model to generate the topic text,
which can be regarded as a rewritten text.

• Another completely general approach is to
directly input the text to be detected into the
model and give instructions for it to embellish
and rewrite it, treating the returned text as
rewritten text.

To mitigate the influence of randomness, the de-
tection model requests greedily generated text from
each large language model (LLM) during its rea-
soning process. By focusing on greedily generated
text, we can avoid the complications associated
with encoding alignment and similarity matching
of randomly generated text. Consequently, all sub-
sequent references to ’rewritten text’ in this paper
refer specifically to greedily generated text unless
otherwise indicated.

We counted the 1-gram, 2-gram, cosine, etc. sim-
ilarities between the greedy rewrite text and the
randomly generated text for a variety of parame-
ters, and calculated the Cohen’s d effect, which
is plotted in a table as Figure 2. The larger the
Cohen’s d is, the more the similarity is used to
differentiate between the randomly generated text
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Dataset Model Human ChatGPT Claude LLaMA Wizard Qwen GLM Macro Avg

SQuAD
SeqXGPT 0.346 0.829 0.786 0.990 0.998 0.857 0.730 0.791
MAGRET 0.822 0.956 0.980 0.941 0.970 0.885 0.888 0.920

w/o Sem 0.796 0.944 0.976 0.921 0.954 0.864 0.876 0.905
w/o ReT 0.787 0.886 0.710 0.829 0.941 0.578 0.550 0.754

ELI5
SeqXGPT 0.597 0.865 0.933 0.999 0.998 0.993 0.988 0.911
MAGRET 0.949 0.987 0.993 0.971 0.945 0.915 0.921 0.954

w/o Sem 0.933 0.982 0.993 0.952 0.937 0.892 0.900 0.941
w/o ReT 0.872 0.902 0.904 0.905 0.568 0.611 0.567 0.761

Yelp
SeqXGPT 0.678 0.949 0.935 0.997 0.994 0.974 0.981 0.930
MAGRET 0.952 0.992 0.978 0.978 0.969 0.954 0.948 0.967

w/o Sem 0.940 0.989 0.971 0.964 0.920 0.896 0.872 0.936
w/o ReT 0.933 0.974 0.916 0.954 0.914 0.871 0.928 0.927

Table 3: Performance of Multiclass Machine-generated Texts Detection. Performance is evaluated with the F1 score.
The best results are bolded. Sem: Semantic Encoder. ReT: Rewritten Texts.

attributes. As can be seen from the table, Cohen’s
d is particularly prominent for 1-Gram, Rouge-L,
and Levenshtein. After we obtain the rewritten text,
calculate the similarity value between the text to
be judged and the rewritten text, and connect the
full connectivity layer, the model can predict the
human text by statistical scores at the same time.

Alternatively, in addition to statistical methods,
the BERT encoder after contrast learning can also
be used for rewritten text similarity calculation.
Calculating the cosine similarity between the en-
coded texts can further widen the gap between the
texts of different models and narrow the gap be-
tween the texts with different parameters.

5 Experiments

Dataset Construction To ensure a fair experimen-
tal comparison, we adopted the same sampling and
prompt design as in the article (Lu et al., 2023),
encompassing three tasks: academic essay writing
(Writing), open-ended question answering (QA),
and fake review generation (Review). We directly
utilized their published dataset, which comprised
20 training samples, 30 validation samples, and 200
test samples across these tasks. These tasks corre-
spond to the SQuAD (Rajpurkar et al., 2016), Eli5
(Fan et al., 2019), and Yelp (Zhang et al., 2015)
datasets, respectively, utilizing a data partition-
ing approach where training data is significantly
smaller than test data. This prevents F1 scores of 1
in training results, which complicate comparative
analysis. In practice, as an AI-generated content
detection model, the amount of text to be detected
far exceeds the training text, making these results
more relevant.

For the Writing task, we truncated the first 30
characters and filled in the rest using an AI model.
In the QA task, we input question Q into the large

model to obtain AI-generated samples. For the
Review task, human text is first summarized by the
large model, and then the summary is rewritten.

We selected ChatGPT-3.5, Claude, LLaMA (7B),
ChatGLM (9B), Wizard (7B), and Qwen (7B) as
the LLMs for text generation. ChatGPT-3.5 and
Claude were accessed via API, while LLaMA (7B),
ChatGLM (9B), Wizard (7B), and Qwen (7B) were
run locally. We generated text under various ran-
dom sampling parameters, with greedy text genera-
tion settings of do_sample=False, temperature=1e-
10, and top_p=1. The parameters for random sam-
pling included temperatures and top-p values rang-
ing from 0.3 to 0.9. We refer to the collected
datasets as MAGRET-Bench.

Implementation Details In MAGRET-Bench,
ChatGPT-3.5 and Claude are closed-source models,
while LLaMA (7B), ChatGLM (9B), Wizard (7B),
and Qwen (7B) are open-source models, allowing
for weight retrieval in the white-box setting. MA-
GRET can access all rewritten texts. Each open-
source model operates on a separate GPU, with
the main program creating a Flask service for local
API calls, setting the maximum token generation
limit to 1000. During training, MAGRET-Bench
includes semantic prediction and statistical predic-
tion modules, each trained for 100 epochs, select-
ing the best weights from the evaluation dataset,
followed by an additional 50 epochs to integrate
the prediction results. For the MAGRET model,
we combined the machine outputs from the multi-
classification task into binary classification results.

We selected SeqXGPT (Wang et al., 2023)
as our baseline, as it represents the state-of-the-
art in AI-generated text detection. While Se-
qXGPT demonstrates strong detection capabilities
for white-box models, it has also achieved remark-
able performance on closed-source models using
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out-of-distribution techniques. SeqXGPT also con-
verged after 100 epochs of training.

We designed two ablation experiments: one as-
sessing MAGRET’s prediction capability without
accessing rewritten texts, termed w/o ReT, and the
other evaluating MAGRET’s performance without
the semantic encoder, referred to as w/o Sem.

In the evaluation process, we used the Macro-F1
Score as our metric, effectively combining Preci-
sion and Recall, allowing us to consider the overall
performance.

5.1 Results in Multiclass Machine-generated
Texts Detection

We evaluated the text traceability performance of
multiple models in a multi-random sampling and
multi-model environment. This evaluation assessed
not only the models’ ability to detect machine-
generated text but also to identify the specific large
model from which the text originated. Results are
presented in Table 3. MAGRET demonstrated the
best performance in detecting closed-source mod-
els. In contrast, SeqXGPT achieved high scores in
open-source model detection but exhibited instabil-
ity when predicting the performance of the closed-
source models ChatGPT and Claude through out-
of-distribution assessments. SeqXGPT also strug-
gled with distinguishing human text from closed-
source model text, particularly in the more open-
ended Writing (SQuAD) task. Additionally, while
the result without Semantic Encoder generally pro-
duced good predictions, its performance was highly
unstable. This instability in performance appears
to be largely independent of the model used but
significantly influenced by specific datasets. The
performance without rewritten texts on the Yelp
dataset was notably better than on the other two
datasets, likely due to the clear themes and rich
semantic information present in the Review task.
In contrast, methods based on rewritten text consis-
tently maintained strong performance.

5.2 Results in Binary Machine-generated
Texts Detection

In some tasks, there is a greater focus on whether
the text is machine-generated or human-written.
We conducted tests under multi-model and multi-
random sampling conditions, with results pre-
sented in Table 4. SeqXGPT showed improved bi-
nary classification performance compared to multi-
class classification, likely due to the integration
of texts from the closed-source models ChatGPT

and Claude. MAGRET’s performance remained
largely consistent with that in multi-class classifi-
cation. Notably, text detection in the Writing task
posed challenges for all models, likely because
many continuation models default to copying or
refining previous text in continuation tasks. This
results in machine-generated text exhibiting some
human-like features, thereby impacting detection
performance.

5.3 Results in Random Sampling Generated
Texts Detection

We conducted a statistical analysis of F1 scores
for texts generated using various random sampling
parameters in a multi-class classification scenario.
This experiment aimed to investigate the impact
of different random parameters on the model’s de-
tection capabilities. As illustrated in Figure 3, the
results without semantic Semantic Encoder (w/o
Sem) indicate that texts generated through increas-
ingly random sampling methods become statisti-
cally more challenging to differentiate. This phe-
nomenon may be attributed to the uniform distribu-
tion of word usage probabilities, leading to dimin-
ished statistical differences in the generated texts.
Conversely, the results without rewritten texts (w/o
Ret) reveal that random sampling has minimal ef-
fect on the semantic alignment approach. The Se-
qXGPT method, which leverages information from
open-source models, shows a slight decline in per-
formance with increased randomness, although it
remains relatively unaffected overall.

5.4 Results in Out-of-distribution Detection

Accessing rewritten texts requires requesting APIs
from closed-source models, which may impose
financial burdens on users. Consequently, we
evaluated our model’s ability to predict out-of-
distribution instances when limited to rewritten
texts from open-source models. This experiment
establishes a baseline performance for MAGRET
and offers users a cost-effective prediction method.
As shown in Table 5, even without direct access
to rewritten texts from closed-source models, the
statistical relationship between rewritten texts from
open-source models and those from closed-source
models (w/o Sem) still provides stable predictive
capabilities. Our experiments demonstrate that
when predicting out-of-distribution instances for
closed-source models, using rewritten texts from
open-source models outperforms generating prob-
abilities. This improved performance may result
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Dataset Model Human Machine Macro Avg

SQuAD
SeqXGPT 0.489 0.976 0.732
MAGRET 0.822 0.937 0.880

w/o Sem 0.796 0.922 0.859
w/o ReT 0.787 0.749 0.768

ELI5
SeqXGPT 0.694 0.996 0.845
MAGRET 0.949 0.955 0.952

w/o Sem 0.933 0.943 0.938
w/o ReT 0.872 0.743 0.808

Yelp
SeqXGPT 0.678 0.989 0.833
MAGRET 0.952 0.970 0.961

w/o Sem 0.940 0.935 0.938
w/o ReT 0.933 0.926 0.930

Table 4: Results of Binary Machine-generated Texts Detection. Performance is evaluated with the F1 score.
Sem:Semantic Encoder. ReT:Rewritten Texts.
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Figure 3: Results of different random sampling texts detection in Squad, Eli5 and Yelp Datasets with F1 scores. The
horizontal coordinate is the value of the random sampling parameter (Temperature, Top-p)

Dataset Model Human ChatGPT Claude Macro Avg

SQuAD
SeqXGPT 0.346 0.829 0.786 0.654
MAGRET 0.862 0.893 0.803 0.853

ELI5
SeqXGPT 0.597 0.865 0.933 0.798
MAGRET 0.887 0.895 0.945 0.909

Yelp
SeqXGPT 0.678 0.949 0.935 0.854
MAGRET 0.895 0.966 0.957 0.939

Table 5: Results in Out-of-distribution Detection. The best results are bolded. Sem:Semantic Encoder.
ReT:Rewritten Texts.



8344

from the coherent nature of rewritten texts, which
contain more semantic and statistical information
than generated probabilities.

6 Conclusion

In this paper, we demonstrate that text can be clas-
sified as machine-generated based solely on multi-
ple features of similar natural languages, allowing
for the identification of the generating model. We
introduce MAGRET, a novel method for detect-
ing machine-generated text using complete greedy
rewritten texts. Variations in generated texts under
different random generation parameters can impact
detection performance. We discuss in detail the
effects of two parameters, Temperature and Top-p,
on generated texts, and our experiments confirm
that predictions based on rewritten texts maintain
substantial detection performance even for highly
randomized outputs. Experiments conducted on
texts from humans and seven LLMs showcase the
superiority of MAGRET in binary, multiclass, and
out-of-distribution (OOD) scenarios.

Limitations

Despite MAGRET exhibits excellent performance
in close-source machine-generated text detection,
it still present certain limitations:

• Our method relies on the availability of greedy
rewritten texts from models. Accessing APIs
from closed-source models requires a constant
internet connection and ongoing payments,
which limits the versatility of MAGRET. How-
ever, we demonstrate that MAGRET retains
a certain level of detection performance even
with greedy rewritten texts obtained solely
from open-source models.

• The prerequisite for acquiring rewritten texts
is the ability to reconstruct prompts, which
restricts the application of our model to texts
of sufficient length. A minimum text length is
necessary for effective segmentation, rewrit-
ing, and semantic analysis; our tests indicate
that texts exceeding 500 words can fully lever-
age MAGRET’s capabilities.

• We focused only on parameter configurations
for commonly used machine-generated texts,
without exploring additional random sampling
methods and parameter settings. We plan to
conduct more comprehensive experiments in

future work to examine the impact of random
sampling on machine-generated text detec-
tion.

Acknowledgement

This work is supported by National Natural Science
Foundation of China under Grants No.62472092,
No.62172089. Natural Science Foundation of
Jiangsu province under Grants No.BK20241751.
Jiangsu Provincial Key Laboratory of Computer
Networking Technology. Jiangsu Provincial Key
Laboratory of Network and Information Security
under Grants No.BM2003201, and Key Laboratory
of Computer Network and Information Integration
of Ministry of Education of China under Grants
No.93K-9, Nanjing Purple Mountain Laboratories.
Startup Research Fund of Southeast University un-
der Grants No.RF1028623097. We thank the Big
Data Computing Center of Southeast University
for providing the facility support on the numerical
calculations.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Sameer Badaskar, Sachin Agarwal, and Shilpa Arora.
2008. Identifying real or fake articles: Towards better
language modeling. In International Joint Confer-
ence on Natural Language Processing.

Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng,
Marc’Aurelio Ranzato, and Arthur Szlam. 2019.
Real or fake? learning to discriminate machine from
human generated text. ArXiv, abs/1906.03351.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi
Yang, and Yue Zhang. 2023. Fast-detectgpt: Ef-
ficient zero-shot detection of machine-generated
text via conditional probability curvature. ArXiv,
abs/2310.05130.

Daria Beresneva. 2016. Computer-generated text detec-
tion using machine learning: A systematic review. In
International Conference on Applications of Natural
Language to Data Bases.

Yu-Chu Chang, Xu Wang, Jindong Wang, Yuanyi Wu,
Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Weirong Ye, Yue
Zhang, Yi Chang, Philip S. Yu, Qian Yang, and
Xingxu Xie. 2023. A survey on evaluation of large
language models. ACM Transactions on Intelligent
Systems and Technology, 15:1 – 45.

https://api.semanticscholar.org/CorpusID:4324753
https://api.semanticscholar.org/CorpusID:4324753
https://api.semanticscholar.org/CorpusID:182952342
https://api.semanticscholar.org/CorpusID:182952342
https://api.semanticscholar.org/CorpusID:263831345
https://api.semanticscholar.org/CorpusID:263831345
https://api.semanticscholar.org/CorpusID:263831345
https://api.semanticscholar.org/CorpusID:1175726
https://api.semanticscholar.org/CorpusID:1175726
https://api.semanticscholar.org/CorpusID:259360395
https://api.semanticscholar.org/CorpusID:259360395


8345

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding,
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2021.
Glm: General language model pretraining with
autoregressive blank infilling. arXiv preprint
arXiv:2103.10360.

Tiziano Fagni, F. Falchi, Margherita Gambini, Antonio
Martella, and Maurizio Tesconi. 2020. Tweepfake:
About detecting deepfake tweets. PLoS ONE, 16.

Angela Fan, Yacine Jernite, Ethan Perez, David
Grangier, Jason Weston, and Michael Auli. 2019.
Eli5: Long form question answering. ArXiv,
abs/1907.09190.

Chen Feng, Georgios Tzimiropoulos, and Ioannis Patras.
2021. Ssr: An efficient and robust framework for
learning with unknown label noise. arXiv preprint
arXiv:2111.11288.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection
and visualization of generated text. arXiv preprint
arXiv:1906.04043.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. ArXiv,
abs/2301.07597.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023.
Radar: Robust ai-text detection via adversarial learn-
ing. ArXiv, abs/2307.03838.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2019. Automatic detection
of generated text is easiest when humans are fooled.
arXiv preprint arXiv:1911.00650.

Thomas Lavergne, Tanguy Urvoy, and François Yvon.
2008. Detecting fake content with relative entropy
scoring. In Pan.

Linyang Li, Pengyu Wang, Ke Ren, Tianxiang Sun, and
Xipeng Qiu. 2023. Origin tracing and detecting of
llms. arXiv preprint arXiv:2304.14072.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Zhilin Wang,
Longyue Wang, Linyi Yang, Shuming Shi, and Yue
Zhang. 2024. MAGE: Machine-generated text de-
tection in the wild. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 36–53,
Bangkok, Thailand. Association for Computational
Linguistics.

Xiaoming Liu, Zhaohan Zhang, Yichen Wang, Yu Lan,
and Chao Shen. 2022. Coco: Coherence-
enhanced machine-generated text detection under
data limitation with contrastive learning. ArXiv,
abs/2212.10341.

Ning Lu, Shengcai Liu, Rui He, Qi Wang, Yew-Soon
Ong, and Ke Tang. 2023. Large language models can
be guided to evade ai-generated text detection. arXiv
preprint arXiv:2305.10847.

Niloofar Mireshghallah, Justus Mattern, Sicun Gao,
Reza Shokri, and Taylor Berg-Kirkpatrick. 2024.
Smaller language models are better zero-shot
machine-generated text detectors. In Conference of
the European Chapter of the Association for Compu-
tational Linguistics.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D. Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. In International
Conference on Machine Learning.

Shaoor Munir, Brishna Batool, Zubair Shafiq, Padmini
Srinivasan, and Fareed Zaffar. 2021. Through the
looking glass: Learning to attribute synthetic text
generated by language models. In Conference of the
European Chapter of the Association for Computa-
tional Linguistics.

OpenAI. 2023. Chatgpt release notes. Accessed: 2024-
09-10.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Conference on
Empirical Methods in Natural Language Processing.

Yuhui Shi, Qiang Sheng, Juan Cao, Hao Mi, Beizhe
Hu, and Danding Wang. 2024. Ten words only still
help: Improving black-box ai-generated text detec-
tion via proxy-guided efficient re-sampling. ArXiv,
abs/2402.09199.

Alex Tamkin, Miles Brundage, Jack Clark, and Deep
Ganguli. 2021. Understanding the capabilities, limi-
tations, and societal impact of large language models.
arXiv preprint arXiv:2102.02503.

Irina Tolstykh, Aleksandra Tsybina, Sergey Yakubson,
Aleksandr Gordeev, Vladimir Dokholyan, and Mak-
sim Kuprashevich. 2024. Gigacheck: Detecting llm-
generated content. arXiv preprint arXiv:2410.23728.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Adaku Uchendu, Thai Le, Kai Shu, and Dongwon Lee.
2020. Authorship attribution for neural text genera-
tion. In Conference on Empirical Methods in Natural
Language Processing.

Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and
Dongwon Lee. 2021. Turingbench: A benchmark
environment for turing test in the age of neural text
generation. arXiv preprint arXiv:2109.13296.

Saranya Venkatraman, Adaku Uchendu, and Dong-
won Lee. 2023. Gpt-who: An information density-
based machine-generated text detector. ArXiv,
abs/2310.06202.

https://api.semanticscholar.org/CorpusID:220936111
https://api.semanticscholar.org/CorpusID:220936111
https://api.semanticscholar.org/CorpusID:196170479
https://api.semanticscholar.org/CorpusID:255998637
https://api.semanticscholar.org/CorpusID:255998637
https://api.semanticscholar.org/CorpusID:259501842
https://api.semanticscholar.org/CorpusID:259501842
https://api.semanticscholar.org/CorpusID:12098535
https://api.semanticscholar.org/CorpusID:12098535
https://aclanthology.org/2024.acl-long.3
https://aclanthology.org/2024.acl-long.3
https://api.semanticscholar.org/CorpusID:254877728
https://api.semanticscholar.org/CorpusID:254877728
https://api.semanticscholar.org/CorpusID:254877728
https://api.semanticscholar.org/CorpusID:268417138
https://api.semanticscholar.org/CorpusID:268417138
https://api.semanticscholar.org/CorpusID:256274849
https://api.semanticscholar.org/CorpusID:256274849
https://api.semanticscholar.org/CorpusID:233189559
https://api.semanticscholar.org/CorpusID:233189559
https://api.semanticscholar.org/CorpusID:233189559
https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://api.semanticscholar.org/CorpusID:11816014
https://api.semanticscholar.org/CorpusID:11816014
https://api.semanticscholar.org/CorpusID:267657993
https://api.semanticscholar.org/CorpusID:267657993
https://api.semanticscholar.org/CorpusID:267657993
https://api.semanticscholar.org/CorpusID:221835708
https://api.semanticscholar.org/CorpusID:221835708
https://api.semanticscholar.org/CorpusID:263830440
https://api.semanticscholar.org/CorpusID:263830440


8346

Pengyu Wang, Linyang Li, Ke Ren, Botian Jiang, Dong
Zhang, and Xipeng Qiu. 2023. Seqxgpt: Sentence-
level ai-generated text detection. arXiv preprint
arXiv:2310.08903.

Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan
Su, Artem Shelmanov, Akim Tsvigun, Osama Mo-
hanned Afzal, Tarek Mahmoud, Giovanni Puccetti,
Thomas Arnold, et al. 2024. M4gt-bench: Evalu-
ation benchmark for black-box machine-generated
text detection. arXiv preprint arXiv:2402.11175.

Feng Xiong, Thanet Markchom, Ziwei Zheng, Subin
Jung, Varun Ojha, and Huizhi Liang. 2024. Fine-
tuning large language models for multigenerator, mul-
tidomain, and multilingual machine-generated text
detection. ArXiv, abs/2401.12326.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Neural Information Processing Systems.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Wanjun Zhong, Duyu Tang, Zenan Xu, Ruize Wang,
Nan Duan, Ming Zhou, Jiahai Wang, and Jian Yin.
2020. Neural deepfake detection with factual struc-
ture of text. arXiv preprint arXiv:2010.07475.

https://api.semanticscholar.org/CorpusID:267094724
https://api.semanticscholar.org/CorpusID:267094724
https://api.semanticscholar.org/CorpusID:267094724
https://api.semanticscholar.org/CorpusID:267094724
https://api.semanticscholar.org/CorpusID:368182
https://api.semanticscholar.org/CorpusID:368182

	Introduction
	Related Works
	Random sampling Machine-generated Text Detection Problem
	MAGRET: Machine-generated Text Detection with Rewritten Texts
	Detection with Semantic Analysis
	Detection with Rewritten texts

	Experiments
	Results in Multiclass Machine-generated Texts Detection
	Results in Binary Machine-generated Texts Detection
	Results in Random Sampling Generated Texts Detection
	Results in Out-of-distribution Detection

	Conclusion

