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Abstract

Prior studies on Aspect-level Sentiment Clas-
sification (ALSC) emphasize modeling inter-
relationships among aspects and contexts but
overlook the crucial role of aspects themselves
as essential domain knowledge. To this end,
we propose AGCL, a novel Aspect Graph
Construction and Learning method, aimed at
furnishing the model with finely tuned aspect
information to bolster its task-understanding
ability. AGCL’s pivotal innovations reside in
Aspect Graph Construction (AGC) and Aspect
Graph Learning (AGL), where AGC harnesses
intrinsic aspect connections to construct the do-
main aspect graph, and then AGL iteratively
updates the introduced aspect graph to enhance
its domain expertise, making it more suitable
for the ALSC task. Hence, this domain as-
pect graph can serve as a bridge connecting un-
seen aspects with seen aspects, thereby enhanc-
ing the model’s generalization capability. Ex-
periment results on three widely used datasets
demonstrate the significance of aspect informa-
tion for ALSC and highlight AGL’s superiority
in aspect learning, surpassing state-of-the-art
baselines greatly. Code is available at https:
//github.com/jian-projects/agcl.

1 Introduction

As an important research topic of Natural Language
Processing (NLP), Aspect-level Sentiment Classi-
fication (ALSC) is a fine-grained sentiment anal-
ysis task that aims to identify the sentiment po-
larity of a review text toward each corresponding
aspect (Brauwers and Frasincar, 2022; Jian et al.,

† Equal Contributions; ‡ Corresponding Authors.

Figure 1: An example of review text. Seen aspects
are that explicitly mentioned in the training set, while
unseen aspects are not.

2024), which has been widely applied in real-world
scenarios such as public opinion monitoring (Chen
et al., 2022b), text classification (Bestvater and
Monroe, 2023), and content recommendation (Kim
et al., 2021). As illustrated in Figure 1, given the
review text “The fajita we tried was tasteless and
burned, but the sauce was sweet.”, ALSC is re-
quired to predict the sentiment polarities toward

“fajita” as Negative and “sauce” as Positive.

The rise of deep learning and Pre-trained Lan-
guage Models (PLMs) (Qiu et al., 2020) has sig-
nificantly advanced NLP tasks with high accu-
racy (Min et al., 2023). Therefore, leveraging
PLMs as the foundation, various ALSC methods
have been developed to investigate inherent connec-
tions between aspects and contexts. Among them,
RNN-based approaches (Wankhade et al., 2023;
Huang et al., 2023) prioritize capturing surface-
level word sequence information, while Graph-
based models (Li et al., 2021a; Yang et al., 2023;
Jiang et al., 2023; Yin and Zhong, 2024) exploit
sentence dependency structures to account for syn-
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tactic relationships, often resulting in superior per-
formance over RNN-based counterparts. In addi-
tion, Knowledge-based models (Li et al., 2021b;
Zhang et al., 2022b; Yong et al., 2023; Jian et al.,
2024; Ouyang et al., 2024) focus on improving the
model’s understanding of domain-specific tasks by
integrating external valuable information and have
emerged as the predominant approaches within the
ALSC community. Their success lies in the align-
ment of domain knowledge with the general knowl-
edge (Bao et al., 2023). As shown in Figure 2,
"general knowledge" refers to the knowledge stored
within PLMs, while "domain knowledge" pertains
to fine-tuning data. Additionally, we designate
"aligned knowledge" as that contained within the
ALSC model after fine-tuning with domain data.

Inspired by Jian et al. (2024), aspects are pre-
defined specialized terms and phrases, often rare
in general language usage particularly within low-
resource language environments. They serve as
prime representatives of domain knowledge within
the ALSC scenario, prompting two pivotal issues:
1) prior studies have predominantly concentrated
on modeling the aspect-opinion interplay, neglect-
ing the crucial role of aspects as representatives
of domain knowledge, and 2) aspects present in
the training set, referred to as "seen aspects", un-
dergo explicit alignment after fine-tuning with train-
ing data, while the majority of "unseen aspects"
(those absent from the training data) remain under-
aligned, hindering the model’s generalization abil-
ity. Although the subword-based tokenization tech-
nique, e.g., BPE (Sennrich et al., 2016), used in
PLMs alleviate the issue of under-alignment to
some extent, the limited number of seen aspect
tokens fails to adequately cover all subwords asso-
ciated with unseen aspects.

To address these issues, we propose a novel As-
pect Graph Construction and Learning (AGCL)
method to highlight the important role of aspects
for ALSC. Based on the interrelationships among
domain aspects, we suggest building the domain
aspect graph, which is leveraged as expert knowl-
edge to facilitate both model training and inference
processes. Figure 1 depicts a subset of nodes and
edges within the built aspect graph, where nodes
represent aspects and edges denote their similar-
ities. Hence, this aspect graph can be used as a
bridge to link the unseen aspect (e.g., "fajita" in
Figure 1) with seen aspects, and thus provides a
way to deduce representations of unseen aspects
through their associations with seen aspects.

Given the expenses of building the aspect graph
by domain experts, we suggest treating language
models as experts to automate the aspect graph
construction, dubbed AGC. To bolster the effi-
cacy of the aspect graph, we develop the Aspect
Graph Learning (AGL), including two key iter-
ative processes: 1) enhancing aspect representa-
tions with valuable information derived from the
aspect graph, and 2) updating the aspect graph with
aligned knowledge to enhance its domain expertise
and efficacy. Moreover, based on the similarities of
aspects, we introduce contrastive learning to pull
similar aspects closer and push dissimilar aspects
apart, thereby improving the robustness of aspect
representations. In summary, our contributions are
summarized as follows:

• We highly suggest building the domain aspect
graph, utilized as expert knowledge, to en-
hance the ALSC model’s focus on aspects and
improve its generalization capability.

• We carefully develop the aspect graph learn-
ing method to facilitate knowledge alignment
and achieve a more refined and effective as-
pect graph for sentiment analysis.

• We extensively experiment on three ALSC
datasets, yielding promising results that af-
firm the significance of aspect information for
ALSC, and the effectiveness of AGL in aspect
learning.

2 Related Work

2.1 Aspect-Level Sentiment Classification

Due to the strong language modeling capabilities,
PLMs have become the primary choice for ALSC
(Brauwers and Frasincar, 2022). Existing PLM-
based ALSC methods broadly fall into two cate-
gories: those utilizing PLMs as text encoders and
those enhancing PLMs’ comprehension abilities.

Building upon the PLMs, sophisticated model
components are intricately crafted to discern the
correlation between contextual opinions and as-
pects, mainly including attention mechanisms and
graph structure learning. Representatively, Tang
et al. (2019) and Su et al. (2021) iteratively masked
tokens with the highest attention weights to un-
cover the most influential opinion words. In con-
trast, GNN-based methods (Wang et al., 2020; Xiao
et al., 2021; Li et al., 2021a; Chen et al., 2022a;
Ma et al., 2023; Yin and Zhong, 2024) usually
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introduced the syntactic dependency tree knowl-
edge and employed GNN to encode and analyze
the structural relationships within the text, where
DualGCN (Li et al., 2021a) designed SynGCN to
alleviate dependency error and SemGCN to capture
semantic correlations, dotGCN (Chen et al., 2022a)
proposed an aspect-specific and language-agnostic
discrete latent opinion tree structure to reduce the
dependency on the accuracy of the parse tree, and
APARN (Ma et al., 2023) replaced the syntactic de-
pendency tree with the semantic structure to align
the semantic requirement for the ALSC task.

Without complex components design, Li et al.
(2019), Xu et al. (2019) and Silva and Marcacini
(2021) demonstrate that remarkable results can be
achieved by merely appending a linear classifica-
tion layer and then fine-tuning PLMs with few
domain data. This proficiency stems from align-
ing pre-trained general knowledge with domain-
specific knowledge. Hence, numerous studies have
attempted to incorporate external knowledge to en-
hance the model’s task-understanding ability. On
the one hand, further exploiting the domain knowl-
edge in the training set can significantly improve
the model’s performance. Typically, Jian et al.
(2024) proposed to retrieve similar samples from
training data to execute joint learning, which en-
ables the model to be aware of the unified pattern
of sentiment semantics. On the other hand, external
knowledge bases can bring additional information
to enhance the available general and domain knowl-
edge. For example, Zhong et al. (2023) introduced
the knowledge graphs of WordNet (Miller, 1995)
as prior knowledge to alleviate the difficulty of
sentence comprehension. Wu et al. (2023) applied
YAGO (Rebele et al., 2016) to extract additional en-
tity information to mine the potential sentiment po-
larity of sentiment items. Jin et al. (2023) requested
the Oxford Dictionary to expand the description of
aspect terms.

In our work, we concentrate on the aspect in-
formation within the domain, emphasizing their
importance for ALSC. The proposed AGL aims
to enhance the model’s understanding by provid-
ing finely tuned aspect information, and establish a
bridge to connect unseen aspects and seen aspects,
thereby improving the model’s generalizability.

2.2 Contrastive Learning in ALSC
Contrastive learning (He et al., 2020; Gao et al.,
2021; Xu et al., 2023) has emerged as a powerful
paradigm in the domains of unsupervised represen-

tation learning (Gidaris et al., 2018) and supervised
representation learning (Khosla et al., 2020). This
approach leverages the notion that semantically
similar samples should be brought closer in the
embedding space while pushing dissimilar samples
apart (Xu et al., 2023). Contrastive learning has
been extensively applied in the ALSC task and has
shown promising results. For example, Liang et al.
(2021) utilized a supervised contrastive learning
framework to exploit correlations and variances in
sentiment polarities and patterns. Jian et al. (2024)
proposed a retrieval contrastive learning method to
enhance the model’s ability to capture the robust
sentiment semantics of aspects. Shi et al. (2024) de-
signed a KL divergence-based contrastive learning
that promotes contextual representation modeling
by incorporating dual-way information.

3 Methodology

3.1 Problem Definition and Motivation

Given a review text T = {t1, t2, ..., tn} of n to-
kens with k aspects {ai}ki=1, where each aspect
is explicitly mentioned in T and spans across
mi(1 ⩽ mi < n) tokens. ALSC aims to pre-
dict the sentiment polarity of T toward each as-
pect ai, formulated as fALSC : M(T, ai) → ŷi,
where M is the PLM-based ALSC model, gener-
ally consisting of an encoder and classifier, that
maps the input text to the sentiment polarity ŷi ∈
{Positive, Neutral, Negative}.

Given a domain data D = {⟨Ti, ai, yi⟩}Ni=1 with
N samples, each comprised of a review text, a
certain aspect, and its corresponding sentiment
polarity. All aspects in D, denoted as A, con-
struct the set of seen aspects, whose tokens can
be explicitly trained to refine their semantics to
meet the task’s requirement. In contrast to seen
aspects, the unseen aspect a /∈ A cannot be explic-
itly trained, and its semantics heavily rely on the
general knowledge of PLMs, leading to a disparity
between domain-specific requirements and general
knowledge. Hence, we suggest building the domain
aspect graph and employing it as expert knowledge
to establish a bridge between unseen aspects and
seen aspects, thus mitigating the under-alignment
issue of unseen aspects. In practice, the aspect
graph is typically provided by domain experts, but
the high cost of manual construction motivates us
to develop an automated method for aspect graph
construction, ensuring technical integrity.
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3.2 Aspect Graph Construction (AGC)
Intuitively, aspects within a domain are relevant
and can be connected by their intrinsic connec-
tions. Here, we leverage semantic similarities of
seen aspects to construct the aspect graph. Un-
seen aspects can be inserted into this aspect graph
based on their similarities to seen aspects, facili-
tating the semantics inference of unseen aspects
from seen ones. Formally, we define the aspect
graph as G = {N , E}, where N is the set of nodes
representing seen aspects, and E is the set of edges
representing similarities of aspects. The challeng-
ing of aspect graph construction lies in determining
values in E . Here, we suggest treating language
models as domain experts to encode the node repre-
sentations and obtaining E automatically by cosine
similarity calculation. Hence, the quality of G heav-
ily relies on the abilities of language models.

Generally, aspects are words or phrases with
few tokens, posing challenges for language mod-
els, even Large Language Models (LLMs) (Min
et al., 2023), to accurately capture aspect seman-
tics, thus resulting in imperfect aspect relationships.
Inspired by the successful practice of LLMs in in-
struction learning (Ouyang et al., 2022), we request
LLMs to elucidate aspects according to their cor-
responding domains. Subsequently, the Sentence
Language Model (SLM), such as SBERT (Reimers
and Gurevych, 2019), is employed to encode the
aspect description and obtain aspect representation.

ea = SLM (LLM(aspect, domain)) (1)

where LLM represents the process of leveraging
LLMs to clarify the aspect term based on its do-
main. In this paper, the template of the prompt is
designed as "You are a linguist in the domain of
[domain], please succinctly explain what [aspect]
means.". Two examples of aspect explanations
are shown in Figure 1. SLM denotes the encoding
process by a sentence language model and returns
sentence embedding ea as the representation of the
corresponding aspect term.

In this way, informative aspect representations
within the specified domain can be calculated, form-
ing the node embedding attribution, denoted as
N e = {eai}ai∈A. Subsequently, similarities be-
tween aspects can be calculated:

E(ai, aj) =
eai · eaj

∥eai∥∥eaj∥
(2)

where ai ∈ A and aj ∈ A are any two aspects in
the training set. In addition, for the unseen aspect

Figure 2: The process of Aspect Graph Learning (AGL),
where the aspect graph can be built by AGC (G = G̃)
or provided by domain experts (G = Ḡ). indicates
parameter unfrozen, while indicates parameter frozen.

a /∈ A, its similarity with seen aspect aj ∈ A can
be calculated as E ′(a, aj) =

ea·eaj
∥ea∥∥eaj ∥

.

3.3 Aspect Graph Learning (AGL)
Fine-tuning the model with domain data is a com-
mon practice to enhance the model’s understanding
in the specified domain, a process of aligning gen-
eral knowledge with domain knowledge, achieving
aligned knowledge that is beneficial for the down-
stream task. In this process, representations of
aspects will be constantly refined to adapt to the
specified domain. Following the basic mode in
Li et al. (2019) and Silva and Marcacini (2021),
for each training sample ⟨Ti, ai, yi⟩ ∈ D, token
representations are calculated:

H = Me ([CLS] Ti [SEP] ai [SEP]) (3)

where Me is the model encoder used to transfer
tokens into representations H . [CLS] and [SEP]
are special tokens in the pre-trained model, where
the token representation of [CLS] is usually viewed
as the overall text representation hti = H0. In
addition, we employ mean pooling operation to
aggregate multiple aspect token representations as
the model-generated aspect representation hai ∈
Rd, where d is the dimension of representation.

3.3.1 Enhance Aspect Representation
As illustrated in Figure 2, in addition to the model-
generated aspect representation, another kind of as-
pect representation can be derived from the aspect
graph by aggregating other aspect representations
based on their similarities: hai =

∑|A|
j=1wj · N e(aj)

w = norm
(
{E(ai, aj)}|A|

j=1

) (4)
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where hai denotes the aggregated aspect represen-
tation obtained by the weighted sum of other as-
pect representations. N e(∗) represents retrieving
the corresponding aspect representation from the
domain aspect graph. norm(∗) denotes the nor-
malization function that projects the similarities
into weights. Thus, wj denotes the proportion of
j-th aspect representation in constructing hai , sat-
isfying

∑|A|
j=1wj = 1 and wi = 0 (we exclude

the target aspect itself to simulate the model’s in-
ference scenario). For any unseen aspect a /∈ A,
its aggregated representation can be calculated in
the same way based on its similarities to the seen
aspects: E ′

a: = {E ′(a, aj)}|A|
j=1.

In the inference phase, aggregated aspect repre-
sentations are essential for unseen aspects, as we
initially suppose their representations generated by
the model are unconvincing. Hence, to ensure the
quality of the aggregated aspect representation, we
introduce the aspect representation alignment loss:

Lalign
i =

1

d

d∑
j=1

|hai,j − haij | (5)

where hai,j and haij are the j-th dimension of the
model-generated aspect representation and the ag-
gregated aspect representation, respectively. In this
way, the aggregated aspect representations are en-
couraged to be close to the model-generated aspect
representations to ensure their validity.

Finally, the enhanced aspect representation is
obtained by combining the model-generated and
the aggregated aspect representations:

h̃ai = (1− λ)hai + λhai (6)

where λ = 0.5 is a weight coefficient that controls
the influence of aggregated aspect representation.
Ideally, for the seen aspect, the aggregated aspect
representation matches the model-generated rep-
resentation perfectly, and thus h̃ai = hai . For the
unseen aspect, the model-generated representation
is effectively enhanced by the convincing aggre-
gated aspect representation, thereby improving the
model’s generalization ability.

3.3.2 Update Aspect Graph
The most important element in G = {N , E} is
the aspect similarity matrix E , which determines
the relationships between aspects. As the inferior
important element, we initialize the node attributes
N e with the aspect representations calculated by

SLMs and update them with the model-generated
aspect representations:

N e(ai) = αiN e(ai) + (1− αi)h
a
i (7)

where αi ∈ [0, 1) is a momentum coefficient (He
et al., 2020) for node embedding updating. We
employ the reciprocal of sample frequency as αi:
αi = 1/Nai , Nai is the number of samples with
the aspect of ai. This setting guarantees that com-
prehensive aspect knowledge from the training data
can be incorporated into N e within one epoch, ir-
respective of the aspect’s frequency. Furthermore,
by updating N e with aspect representations gen-
erated by the model, the aspect graph undergoes
continual refinement tailored to domain-specific
requirements, thereby bridging the gap between
model-generated and aggregated aspect representa-
tions, i.e., aggregated aspect representations can be
viewed as aligned knowledge.

3.3.3 Aspect Representation Rectification
During the model training, we update node rep-
resentations N e with the model-generated aspect
representations, which may lead to inconsistencies
between the relationships reflected in N e and those
depicted in E . One approach is to implement a hard
constraint to ensure that the aspect representations
comply with their similarities in E . However, given
potential errors in the automatically built aspect
graph, we opt for soft constraints to regularize the
model-generated aspect representations, i.e., based
on the aspect similarities within E , we expect the
representations of similar aspects to be close to
each other and dissimilar aspects to be far apart.
More precisely, for aspect representations within
a batch, we retrieve their similarities from E and
utilize contrastive learning to pull similar aspects
together while pushing apart dissimilar ones.

Lcl =− 1

N i
b

Nb∑
i=1

I
Nj

b>0

1

N j
b

Nb∑
j=1

IEij>ε · log

exp(sim(hai , h
a
j )/τ)∑Nb

k=1 Ii ̸=k · exp(sim(hai , h
a
k)/τ)

(8)

where hai and haj are the aspect representations
of the i-th and j-th samples respectively, and Ei,j
denotes their similarity that derived from the aspect
graph. hak is the aspect representation of the k-th
sample in this batch. τ = 1.0 is the temperature
coefficient used for the cosine similarity measure
function sim(∗, ∗). Icondition denotes the indicator
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function that returns 1 when condition is satisfied,
and 0 otherwise. Nb denotes the sample number
within this batch, N j

b and N i
b indicates the numbers

that meet the conditions Ei,j > ε and N j
b > 0,

respectively. ε = 0.9 is the threshold used to judge
whether aspects are similar or not.

3.4 Model Training and Inference
Training: To further highlight the significance of
the aspect, the text and aspect representations are
joined to predict the sentiment polarity.

ŷi = Mc(h
t
i + h̃ai ) (9)

where Mc denotes the classifier used to obtain the
sentiment distribution ŷi. Then, the classification
loss is calculated by the cross-entropy function:

Lce
i = −yi · log(ŷi) (10)

where yi and ŷi denote the ground truth and pre-
dicted sentiment distribution, respectively. Finally,
the model is optimized by the combined loss:

L =
1

Nb

Nb∑
i=1

(Lce
i + Lalign

i ) + Lcl (11)

Inference: As depicted in Table 1, aspects in the
test set contain both seen and unseen aspects. For
the sample with the seen aspect, we utilize the same
mode as training to infer its sentiment polarity. For
the sample with unseen aspect, the difference is that
we need to additionally calculate the similarities
between the unseen aspect and seen aspects due to
they are not contained in the aspect graph.

4 Experimental setup

4.1 Datasets
We evaluate the proposed method on three widely-
used ALSC datasets, including Laptops and Restau-
rants from SemEval 2014 Task 4 (Pontiki et al.,
2014), and Twitter from Dong et al. (2014). The
statistic of each dataset is summarized in Table 1,
demonstrating that unseen aspects are prevalent in
ALSC scenarios.

4.2 Compared Models
We compare AGL with recent advanced models,
broadly divided into two categories: structure-
based models and knowledge-based models.
Structure-based Models: BERTABSA-ATT (Su
et al., 2021), DualGCN (Li et al., 2021a), dot-
GCN (Chen et al., 2022a), BiSyn-GAT (Liang

Datasets
Laptops Restaurants Twitter

Train Test Train Test Train Test

Aspects:
seen 949 154 1202 187 113 77
unseen - 235 - 333 - 5

Samples:
Positive 994 341 2164 727 1561 173
Neutral 464 169 637 196 3127 346
Negative 870 128 807 196 1560 173

Total 2328 638 3608 1119 6248 692

Table 1: Statistics of the three ALSC datasets.

et al., 2022), RoBERTa4GCN (Xiao et al., 2021),
TextGT+BERT (Yin and Zhong, 2024).
Knowledge-based Models: BERTABSA (Su et al.,
2021), ABSA-DeBERTa (Silva and Marcacini,
2021), ABSA-ESA (Ouyang et al., 2024), DR-
BERT (Zhang et al., 2022a), DeBERTa+RCL (Jian
et al., 2024), PConvRoBERTa (Feng et al., 2023).

4.3 Implementation Details

For AGC, we utilize the GPT-3.5-turbo to generate
aspect descriptions, and employ the SBERT model
(specifically all-roberta-large-v11) to encode these
enriched aspect descriptions with 1024 dimensions.
We randomly sampled 100 aspect descriptions from
each dataset for manual evaluation, and all were
rated as acceptable, as examplified in the Appendix.

For AGL, we adapt the DeBERTa-large2 model
with adapters embedded in each layer as the model
encoder Me. The parameters of the pre-trained
DeBERTa model are fixed, and only the parameters
of adapters and classifier are fine-tuned during the
model training. Hence, only 6.03% (26M/431M) of
the parameters are fine-tuned, which significantly
reduces the training cost. During the model train-
ing, Adam is utilized as the optimizer with the
initial learning rate tuned from 1e-4 to 3e-4, the
batch size is manually adjusted from 16 to 32, and
the dropout rate is set to 0.3. The max number
of epochs is set to 25, 25, and 30 for Laptops,
Restaurants, and Twitter, respectively. The other
hyperparameters have been provided when they are
introduced in the Methodology. All experiments
are conducted on a single NVIDIA 3090ti GPU
with 24GB memory.

1https://huggingface.co/sentence-transformers/all-
roberta-large-v1

2https://huggingface.co/microsoft/deberta-large
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Categories Models
Laptops Restaurants Twitter

Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy

Prompt GPT-3.5-turbo 73.16 80.00 75.17 87.15 61.67 60.96

Structure

DualGCN 78.10 81.80 81.16 87.13 76.02 77.40
dotGCN 78.10 81.03 80.49 86.16 77.00 78.11

BiSyn-GAT 79.15 82.44 81.63 87.49 76.80 77.99
RoBERTa4GCN 78.16 81.80 78.61 86.23 74.00 74.75
TextGT+BERT 78.71 81.33 82.27 87.31 76.45 77.70

Knowledge

♠BERTABSA 77.88 81.38 80.49 86.61 75.67 76.59
BERTABSA-ATT 79.30 82.64 82.34 87.86 76.45 77.60
ABSA-DeBERTa 79.36 82.76 83.42 89.46 - -

ABSA-ESA 79.34 82.44 81.74 88.29 - -
DR-BERT 78.16 81.45 82.31 87.72 76.10 77.24

DeBERTa+RCL 80.28 82.76 84.68 89.38 77.47 78.32
PConvRoBERTa 80.89 83.54 84.27 89.29 77.53 78.47

AGL (Ours) 82.15↑1.26 84.54↑1.00 85.63↑0.95 90.30↑0.84 78.15↑0.62 78.85↑0.38

Table 2: Comparisons (%) among baselines, with best and second-best results highlighted in bold and underlined,
respectively. ♠ denotes the results are derived from Su et al. (2021), others are cited from their original publications.

5 Experimental results

5.1 Main Results

We run our model three times and compare it with
advanced baselines. The main comparative re-
sults are tabulated in Table 2, with the best and
second-best results highlighted in bold and under-
lined, respectively. We additionally using the GPT-
3.5-turbo model to execute the ALSC task (Zhang
et al., 2024) (refer to the Appendix for more de-
tails). Despite LLM’s superior performance on
universal tasks, it lags behind the specialized mod-
els for the ALSC task, indicating the necessity of
designing specialized models for specific tasks. In
addition, we have the following observations.

First, PLM-based models excel well in ALSC
because PLMs have learned a large amount of gen-
eral language knowledge from extensive corpora,
facilitating the capture of intricate syntactic and
semantic nuances. As evidenced by BERTABSA,
simply fine-tuning the BERT model yields compet-
itive results. Furthermore, incorporating external
dependency syntax tree knowledge is effective, ap-
proaches like DualGCN and BiSyn-GAT surpass
BERTABSA across all datasets. The difference
between structure-based models lies in the usage
mode of the dependency syntax tree, and they pos-
sess their strengths and weaknesses in different
scenarios. For example, dotGCN outperforms the
other structure-based models on Twitter but lags on
Laptops. TextGT+BERT performs well in Restau-

rants but falls short on Laptops and Twitter, inferior
to BiSyn-GAT. The potential limitation may lie in
the variability of parsed dependency syntax trees
across different datasets, which could affect the
model’s ability to generalize effectively.

Second, knowledge-based models concentrate
on enhancing the model’s understanding of the
data and task attributes. BERTABSA-ATT lever-
ages the most influential tokens within the sen-
tence, resulting in significantly improved perfor-
mance compared to BERTABSA. Compared with
ABSA-DeBERTa, DeBERTa+RCL achieves bet-
ter performance through the retrieval of similar
samples and joint training with these retrieved sam-
ples. PConvRoBERTa and DeBERTa+RCL sur-
pass the structure-based models across all datasets,
indicating the critical importance of enhancing
the model’s comprehension of data and task at-
tributes in the PLM era. The potential advantage of
knowledge-based models may be that they further
activate the PLM’s ability to capture the intrinsic
sentiment semantic of the review text, which is
more conducive to the model’s generalization.

Finally, AGL surpasses all comparative baselines
in both Accuracy and Macro-F1 scores. Compared
to the second-best results, AGL achieves improve-
ments of 1.26%, 0.95%, and 0.62% on Laptops,
Restaurants, and Twitter, respectively, in terms of
Macro-F1. In addition, AGL outperforms ABSA-
DeBERTa by enhancing semantics of aspects, re-
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(a) ε (in Equation (8)) (b) λ (in Equation (6))

Figure 3: AGL’s performance with different parameters.

Methods seen unseen

w/ AGL 91.89 86.84
w/o AGL 90.93↓0.96 85.42↓1.42

Table 3: Accuracies of samples with different aspects.

sulting in significant performance enhancements of
2.79 points on Laptops and 2.21 points on Restau-
rants in terms of the Macro-F1 metric. These re-
sults underscore the significance of aspect infor-
mation for ALSC and the effectiveness of AGL in
learning meaningful aspect semantics.

5.2 Parameter Analysis

As summarized in Figure 3, we investigate the im-
pacts of hyperparameters ε (threshold of similarity
in Equation (8)) and λ (weight coefficient in Equa-
tion (6)) on the model’s performance (both vary
from 0.0 to 1.0). Relative accuracy (values adjusted
by subtracting the mean values) is adapted to facili-
tate the comparison. From Figure 3(a), AGL’s per-
formance is gradually improved with the increase
of ε, and reaching the optimal value around 0.9.
ε = 1.0 means that the aspect representation recti-
fication module is disabled, which leads to a signif-
icant performance drop. Additionally, Figure 3(b)
shows that introducing aspect representations from
the optimized aspect graph improves the model’s
performance, achieving the best results at λ = 0.5.

5.3 Ablation Studies

In this section, we conduct ablation studies to iden-
tify the key factors behind AGL’s superiority.
Effects on different aspects: Table 3 statistics
accuracies of samples with seen and unseen as-
pects on Restaurants. As seen, without using AGL,
the model’s performance declines in both seen and
unseen aspects, with a more pronounced drop in
samples with unseen aspects. This result highlights
the effectiveness of AGL in enhancing the seman-
tics of aspects, particularly unseen aspects, which
improves the model’s generalization ability.

Methods Macro-F1 Accuracy

AGL 85.63 90.30
w/o [Lcl] 84.50↓1.13 89.76↓0.54
w/o [Lalign] 85.33↓0.30 90.06↓0.24
w/o [Lcl, Lalign] 84.17↓1.46 89.34↓0.96

Table 4: Ablation studies with different modules.

Influences of key modules: Two key modules, Lcl

and Lalign, are removed to evaluate their impact on
the model’s performance. Experimental results on
Restaurants are presented in Table 4, from which
we have the following observations. 1) Rectifying
aspect representations is crucial, as removing Lcl

causes a significant performance drop, highlight-
ing their importance for aspect graph learning and
knowledge alignment. 2) The primary role of Lalign

is to bridge unseen aspects, and its removal, result-
ing in a performance drop, highlights AGL’s ability
to generalize to unseen aspects. 3) The perfor-
mance drop is more pronounced when both Lcl and
Lalign are removed, highlighting the importance of
both modules in AGL, they collectively contribute
to AGL’s superiority.

5.4 Visualization of aspects

To further highlight the importance of our pro-
posed AGL, we visualize aspect representations
on Restaurants using t-SNE (Van der Maaten and
Hinton, 2008) in Figure 4. Aspect representations
are extracted from the model at a mid-performance
checkpoint from three runs. As illustrated in Fig-
ure 4(a), due to the influence of the context, rep-
resentations of the same aspects are scattered in
the embedding space. After rectified by the aspect
graph, aspect representations, for both seen (e.g.,
"price") and unseen aspects (e.g., "cake"), are kept
consistent regardless of the context, as depicted
in Figure 4(b). Furthermore, when AGL is intro-
duced, similar aspects (e.g., "price" and "prices")
are brought closer together while dissimilar ones
(e.g., "price" and "cake") are pushed further apart,
highlighting its notable superiority.

6 Conclusion

In this paper, we explore the role of aspect for
ALSC instead of meticulous model component de-
sign. To this end, we propose AGCL, a novel
method that constructs the domain aspect graph
and employs it as expert knowledge to enhance the
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(a) Model w/o AGL (b) Model w/ AGL

Figure 4: Visualization of aspects, "prices" and "price"
are seen aspects, while "cake" is an unseen aspect.

aspect representations. The key points of AGCL
reside in two perspectives: 1) employing language
models as experts to automatically build the do-
main aspect graph, and 2) developing effective
mechanisms to update the aspect graph and facil-
itate the knowledge alignment process. Experi-
mental results and ablation studies demonstrate the
effectiveness of AGL in enhancing the aspect rep-
resentations and improving the model’s generaliza-
tion ability. In the future, we plan to explore better
ways to use the well-refined aspect information in
the domain aspect graph.

Limitations

This work has three limitations: 1) AGL depends
on the domain expertise of aspect graph. Man-
ual construction of this graph is costly, while auto-
mated construction relies on the performance of lan-
guage models. 2) Information aggregation within
the aspect graph is limited to one-hop, limiting
deeper aspect dependency exploration. 3) This pa-
per provides a straightforward implementation of
aspect graph knowledge, while the more nuanced
domain knowledge embedded in the constructed
aspect graph remains under exploration and is re-
served for future work.
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A Appendix

A.1 Aspect Descriptions Generated by GPT-3.5-turbo

To achieve better connections between aspects and their similarities, we use GPT-3.5-turbo to generate
aspect descriptions with the tamplate "You are a linguist in the domain of [domain], please succinctly
explain what [asoect] means.". Some examples of the generated aspect descriptions are shown as follows.
All the generated aspect descriptions are provided in the source code repository.

Generating aspect descriptions by GPT-3.5-turbo

Domain: Laptops Aspect: cord
Prompt: You are a linguist in the domain of Laptops, please succinctly explain what cord means.
Description: In the context of laptops, a cord usually refers to the power cord or charger that is used to supply power to
the laptop and charge its battery.

Domain: Laptops Aspect: tech guy
Prompt: You are a linguist in the domain of Laptops, please succinctly explain what tech guy means.
Description: The term tech guy typically refers to someone who is knowledgeable and proficient in technology, particularly
in the context of troubleshooting, fixing, or assisting with technical issues, often related to computers or other electronic
devices. This person is often seen as the go-to individual for resolving technology-related problems.

Domain: Laptops Aspect: quality
Prompt: You are a linguist in the domain of Laptops, please succinctly explain what quality means.
Description: In the context of laptops, ’quality’ refers to the overall standard and performance of the device, including
factors such as durability, reliability, performance, design, and features. A high-quality laptop is one that meets or exceeds
expectations in these areas.

Domain: Restaurants Aspect: staff
Prompt: You are a linguist in the domain of Restaurants, please succinctly explain what staff means.
Description: In the context of restaurants, staff refers to the group of people who work at the restaurant, including servers,
chefs, managers, and other support or administrative personnel.

Domain: Restaurants Aspect: kitchen
Prompt: You are a linguist in the domain of Restaurants, please succinctly explain what kitchen means.
Description: The term ’kitchen’ refers to a room or area where food is prepared and cooked in a restaurant or home.

Domain: Restaurants Aspect: menu
Prompt: You are a linguist in the domain of Restaurants, please succinctly explain what menu means.
Description: The term menu refers to a list of food and beverage items available for consumption at a restaurant or an
eating establishment.

Domain: Twitter Aspect: jimmy carter
Prompt: You are a linguist in the domain of Restaurants, please succinctly explain what jimmy carter means.
Description: ’Jimmy Carter’ refers to the 39th President of the United States, James Earl Carter Jr., who served from
1977 to 1981.

Domain: Twitter Aspect: hilary swank
Prompt: You are a linguist in the domain of Restaurants, please succinctly explain what hilary swank means.
Description: Hilary Swank is an actress known for her roles in movies such as Million Dollar Baby and Boys Don’t Cry.

Domain: Twitter Aspect: google
Prompt: You are a linguist in the domain of Restaurants, please succinctly explain what google means.
Description: ’Google’ is a verb that means to search for something on the internet using the Google search engine.
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A.2 Performance of LLMs on Aspect-level Sentiment Classification

Following Zhang et al. (2024), we evaluate LLM performance on aspect-level sentiment classification
(ALSC) using the SemEval 2014 datasets for laptops and restaurants, as well as the Twitter dataset.
The prompts for zero-shot and few-shot settings are exemplified below, including the task definition,
demonstrations, and input sentnece. In few-shot settings, demonstrations are selected based on the
similarity between input sentences and training sentences. We retrieve an equal number of samples across
different sentiment polarities, thus 3, 6, and 9 demonstrations are used in our experiments, respectively.

Experimental results across different settings and models are shown in Table 5, where we employ more
powerful GPT models to fully explore the potential of LLMs in the ALSC task. It’s worth noting that
advanced models like GPT-4o are unnecessary for the aspect description generation in our work, as simple
and concise aspect descriptions that we need can be effectively generated by GPT-3.5-turbo. Hence, we
only report the best results of GPT-3.5-turbo in Table 2. As seen, more powerful models may not always
lead to better performance, such as GPT-4o-mini performs better than GPT-4o on Laptops and Twitter.
Furthermore, demonstrations are crucial for the model’s performance, which significantly improves the
model’s performance in the few-shot setting. However, more demonstrations do not always lead to better
performance, as better results can be achieve with 6 demonstrations than 9 demonstrations on most cases.

Models Settings
Laptops Restaurants Twitter

Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy

GPT-3.5-turbo

0-shot 57.21 73.22 63.78 81.56 50.35 51.98
3-shot 70.87 79.04 73.00 85.64 60.31 59.77
6-shot 73.16 80.00 72.30 84.62 61.67 60.96
9-shot 71.22 77.60 75.17 87.15 61.06 60.64

GPT-4o-mini

0-shot 74.56 80.35 65.76 83.61 64.78 64.57
3-shot 72.40 79.43 70.57 84.88 65.05 64.48
6-shot 73.60 79.67 74.09 85.71 66.21 65.57
9-shot 76.30 80.66 73.40 86.11 64.35 63.48

GPT-4o

0-shot 71.79 75.84 70.18 84.36 52.49 51.65
3-shot 70.84 75.84 78.15 87.93 57.84 56.82
6-shot 73.93 78.61 85.65 90.50 64.96 64.20
9-shot 71.49 75.98 79.66 86.59 62.22 61.41

Table 5: Experimental results of LLMs on aspect-level sentiment classification.

Prompt for ALSC: zero-shot prompting

Definition:
Please perform the Aspect Level Sentiment Classification task:
given a sentence and a specific aspect, predict the sentiment of this sentence toward this aspect. Sentiment must be selected
from [’negative’, ’neutral’, ’positive’]. Please return the predicted sentiment only, without any other comments or texts.

Demonstrations:

Input:
Now, complete the task:
Sentence: the bread is top notch as well .
Aspect: bread

Output:
Label: positive



854

Prompt for ALSC: few-shot prompting (3-shot for example)

Definition:
Please perform the Aspect Level Sentiment Classification task:
given a sentence and a specific aspect, predict the sentiment of this sentence toward this aspect. Sentiment must be selected
from [’negative’, ’neutral’, ’positive’]. Please return the predicted sentiment only, without any other comments or texts.

Demonstrations:
Sentence: very good breads as well .
Aspect: breads
Label: positive
Sentence: the bread is the soft paratha bread ( unlike the plain bread they use in calcutta ) , and the stuffing is tandoori
styled and very flavorful .
Aspect: bread
Label: negative
Sentence: also , top the meal with a delicious and perfect slice of tiramisu .
Aspect: meal
Label: neutral

Input:
Now, complete the task:
Sentence: the bread is top notch as well .
Aspect: bread

Output:
Label: positive


	Introduction
	Related Work
	Aspect-Level Sentiment Classification
	Contrastive Learning in ALSC

	Methodology
	Problem Definition and Motivation
	Aspect Graph Construction (AGC)
	Aspect Graph Learning (AGL)
	Enhance Aspect Representation
	Update Aspect Graph
	Aspect Representation Rectification

	Model Training and Inference

	Experimental setup
	Datasets
	Compared Models
	Implementation Details

	Experimental results
	Main Results
	Parameter Analysis
	Ablation Studies
	Visualization of aspects

	Conclusion
	Appendix
	Aspect Descriptions Generated by GPT-3.5-turbo
	Performance of LLMs on Aspect-level Sentiment Classification


