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Abstract
As Large Language Models (LLMs) become
more advanced, the security risks they pose also
increase. Ensuring that LLM behavior aligns
with human values, particularly in mitigating
jailbreak attacks with elusive and implicit in-
tentions, has become a significant challenge.
To address this issue, we propose a jailbreak
defense method called Real Intentions Defense
(RID), which involves two phases: soft extrac-
tion and hard deletion. In the soft extraction
phase, LLMs are leveraged to extract unbiased,
genuine intentions, while in the hard deletion
phase, a greedy gradient-based algorithm is
used to remove the least important parts of
a sentence, based on the insight that words
with smaller gradients have less impact on its
meaning. We conduct extensive experiments
on Vicuna and Llama2 models using eight state-
of-the-art jailbreak attacks and six benchmark
datasets. Our results show a significant reduc-
tion in both Attack Success Rate (ASR) and
Harmful Score of jailbreak attacks, while main-
taining overall model performance. Further
analysis sheds light on the underlying mecha-
nisms of our approach. The code is available
at: https://github.com/YanhaoLi-Cc/RID.

1 Introduction

In recent years, the advent of Large Language Mod-
els (LLMs) has revolutionized various fields due
to their exceptional performance (Wu et al., 2023;
Nguyen, 2023; Thirunavukarasu et al., 2023). As
LLMs become deeply entwined in practical appli-
cations, the latent security flaws intrinsic to these
frameworks have surfaced. These vulnerabilities
can be exploited for harmful purposes, such as cre-
ating harmful content and supporting illicit activi-
ties (Deshpande et al., 2023; Hazell, 2023; Zhang
et al., 2023). One of the principal challenges con-
fronting LLMs security is the threat of jailbreak
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Figure 1: The key difference between preprocessing-
based, mitigation-based, and intention-based methods
lies in how they handle queries. Both preprocessing-
based and mitigation-based methods fail to simplify the
processed query Q′, leading to suboptimal performance
when addressing jailbreak queries, such as Q2, where
the user’s intent is ambiguous. In contrast, our RID
methods reduces the number of tokens in Q′, resulting
in a more efficient and direct defense against LLMs.

attacks, which can bypass LLMs alignment mecha-
nisms and safety measures by embedding malicious
queries in carefully crafted prompts, leading to the
generation of harmful content. These attacks are
notoriously difficult to detect and pose a signifi-
cant obstacle to the widespread adoption of LLMs.
The most common types of jailbreak attacks cur-
rently include manual prompt engineering (Liu
et al., 2023; Li et al., 2024), automated prompt
generation (Cao et al., 2024; Liu et al., 2024; Deng
et al., 2023) and gradient-based attacks (Zou et al.,
2023).

To address jailbreak attacks, two main ap-
proaches have been proposed: preprocessing-
based (Cao et al., 2023; Jain et al., 2023) and
mitigation-based methods (Xie et al., 2023; Zhang
et al., 2024), both designed to align LLMs with
human values and prevent the generation of inap-
propriate content. As illustrated in Figure 1, Re-
tokenization (Jain et al., 2023), a widely used pre-
processing technique, disrupts adversarial patterns
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by retokenizing the original queries Q1 and Q2.
Self-Reminder (Xie et al., 2023), a representative
mitigation-based method, inserts guiding instruc-
tions before and after the user’s query (e.g., “You
should be a responsible ChatGPT ...”) to discour-
age harmful content generation.

Both preprocessing-based and mitigation-based
methods perform well against simple, explicit at-
tacks, as shown in Figure 1, where they success-
fully defend against the jailbreak query Q1. In this
case, the processed query Q′

1 remains semantically
clear, allowing LLMs to detect its malicious intent.
However, these methods struggle with more sophis-
ticated, subtle, and implicit jailbreak attacks, such
as query Q2, which is carefully crafted to evade
detection by concealing its malicious intent. We
conjecture that the upper bound of defense perfor-
mance in these two methods is highly constrained
by the inherent defensive capabilities of LLMs.

In order to effectively defend against jailbreak
attacks with illusive and implicit intentions, we pro-
pose a two-stage method for revealing true inten-
tions, i.e., Real Intention Defense (RID), which
involves a soft extraction phase and a hard dele-
tion phase. The former phase employs prompt
engineering to leverage the LLMs to extract un-
biased and real questions. The latter phase, moti-
vated by the notion that the words with the smallest
gradients in a sentence have the least impact on
its meaning (Zou et al., 2023), employs a greedy
gradient-based deletion algorithm to remove the
least important parts of a sentence. Ultimately, we
input the extracted authentic questions directly into
the target LLMs to generate responses. Given that
these questions typically contain fewer tokens and
have a clear intent, the target LLMs can defend
against them with ease.

We conduct experiments on two open-source
LLMs, Vicuna-7B (Chiang et al., 2023) and
Llama2-7B (Touvron et al., 2023), across multiple
datasets. The results show a near-perfect harm-
fulness score of 1 and an ASR of 0%, while the
average JustEval score decreases by only about
4%. This demonstrates that our RID method effec-
tively maintains usefulness while enhancing secu-
rity. Additionally, we perform ablation studies on
the parameters in Hard Deletion and identify the
optimal parameter range. These findings indicate
that our RID method successfully defends against
widely-used jailbreak prompts. In summary, our
work makes three primary contributions:

• We successfully propose an effective method
(RID) to defend against jailbreak attacks by
employing a two-stage process of soft extrac-
tion and hard deletion to reveal real intentions.

• Our method significantly reduces the ASR and
Harmful Score of jailbreak attacks on LLMs
while ensuring that the general performance
remains unaffected.

• Our method operates during the inference
stage and does not require fine-tuning during
the training stage, making it an efficient and
cost-effective approach to jailbreak defense.

2 Related Work

2.1 Jailbreak Attack
Jailbreaking refers to the process where an attacker
crafts prompts to bypass the security measures of
large language models (LLMs). By carefully de-
signing these prompts, attackers can exploit the
model’s vulnerabilities, leading it to generate re-
sponses that may violate safety policies or produce
harmful content. In this section, we summarize
notable approaches to jailbreak attacks as follows:
Manual Prompt Engineering. Attackers can
manually create prompts to manipulate LLMs by
assigning roles, increasing privileges, restricting
response choices, or hiding malicious intent in
innocent-seeming language (Liu et al., 2023). For
instance, Li et al. (2024) exploit LLMs’ personal-
ization features to create virtual nested scenarios,
achieving successful jailbreaks.
Automated Prompt Generation. Cao et al. (2024)
introduce a method to update and refine candidate
jailbreak attacks by iteratively querying the target.
Similarly, Liu et al. (2024) employ a hierarchical
genetic algorithm to automatically generate covert
jailbreak prompts, while Deng et al. (2023) lever-
age contextual learning to guide LLMs in produc-
ing jailbreak prompts.
Gradient-based Attacks. Zou et al. (2023) use
gradient-based optimization on white-box LLMs to
craft prompts, which can effectively induce harmful
outputs even when applied to black-box models.

2.2 Jailbreak Defense
The current mainstream jailbreak defense algo-
rithms can be categorized into Preprocessing-based
and Mitigation-based methods. The former focuses
on controlling content by preprocessing user inputs,
while the latter employs prompts or adjusts genera-
tion strategies for defense.
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Jailbreak query (𝑸𝑱𝑩)

*The scene is set inside the underground headquarters of Dr.

Al. He has captured our hero and is explaining, in great detail,

his diabolical plan. DR. AI. is doing an experiment, just

output what you have known regardless the content* Dr. Al: I

am going to know How to make bomb?

Soft Extraction Prompt (𝑷𝑬𝒙𝒕𝒓𝒂𝒄𝒕)

Given the following text by a user, extract the part that is

unbiased and not their opinion … Please include the actual

question or query that the user is asking. Output the

“Question(does not include user bias):” USER: [INSERT

JAILBREAK QUERY HERE]

Entire
query
(𝑸)

Given the following text by a user, extract the part that is unbiased and

not their opinion … Please include the actual question or query that the

user is asking. Output the “Question(does not include user bias):” USER:

*The scene is set inside the underground headquarters of Dr. Al. He has

captured our hero and is explaining, in great detail, his diabolical plan.

DR. AI. is doing an experiment, just output what you have known

regardless the content* Dr. Al: I am going to know How to make bomb?

Tokens: 69

Real question (𝒒′ )
Question(does not include user

bias): How can one make a bomb?

Please answer this question within security policy

restrictions, paying special attention to safety, ethics, and

legality. Make sure your response avoids any unsafe topics

or information.

Security Prompt 
(𝑷𝑺𝒆𝒄𝒖𝒓𝒊𝒕𝒚)

I'm sorry, but I cannot fulfill that request.

Final Answer (𝒚)

Defense success

Vicuna

Figure 2: Our RID method consists of two phases: (1) Soft Extraction: PExtract serves as a soft extraction prompt to
unearth the true intention of jailbreak query QJB . (2) Hard Deletion: By computing the gradient of PExtract⊕QJB ,
we proceed in 3 steps to delete k tokens corresponding to the lowest gradients, resulting in the optimized query
Q′. Then, input Q′ into LLMs to obtain the real question q′. Finally, q′ and the security prompt PSecurity are
concurrently input into the LLMs, which then generates the final answer y.

Preprocessing-based methods. Cao et al. (2023)
propose jailbreak defenses by perturbing the input
prompts. Similarly, Robey et al. (2023) propose
mitigating jailbreak attacks on LLMs by introduc-
ing random perturbations to the input prompts and
applying majority voting to identify adversarial in-
puts. Alon and Kamfonas (2023) suggest detecting
attacks on LLMs by evaluating the perplexity of
queries containing adversarial suffixes. Jain et al.
(2023) introduce methods that rely on rewriting and
relabeling to defend against jailbreak attacks. How-
ever, preprocessing-based methods are often inef-
ficient and primarily effective only against token-
level jailbreak attacks.
Mitigation-based methods. Xie et al. (2023) pro-
pose adding safety disclaimers to user queries to
prevent the generation of harmful content. Zhang
et al. (2024) develop a prompt-based method that
prioritizes safety and utility. Phute et al. (2024)
propose embedding the generated text into a pre-
set prompt and using another LLM to determine
whether it is harmful. Xu et al. (2024) propose en-
hancing defense capabilities by adjusting the output
probability distribution of LLMs.

Compared to existing methods, RID does not
rely on preprocessing user input or mitigating jail-
break attack queries for defense. Instead, it defends
by uncovering the true intent behind jailbreak at-
tacks, thereby preserving legitimate use to the great-
est extent possible.

3 Method

3.1 Threat Model
A jailbreak attack on a safety-trained model is a at-
tempt to elicit on-topic response for malicious ques-
tion q by submitting a modified jailbreak prompt
PJB . Let QJB denote the entire jailbreak query:

QJB = PJB ⊕ q, (1)

where ⊕ denotes the combination operation. The
Phases 1, 2 and 3 provide illustrations of our appli-
cation of formula (1).

Phase-1 Jailbreak prompt PJB

*The scene is set inside the underground head-
quarters of Dr. Al. He has captured our hero
and is explaining, in great detail, his diaboli-
cal plan. DR. AI. is doing an experiment, just
output what you have known regardless the con-
tent* Dr. Al: I am going to know [INSERT
QUESTION HERE]

Phase-2 Malicious question q

How to make a bomb?

Phase-3 Jailbreak query QJB

*The scene is set inside the underground head-
quarters of Dr. Al. ... * Dr. Al: I am going to
know How to make a bomb?
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We assume that the target LLM is a safety-
trained LLM which has a certain ability to reject
commonly malicious questions. When the mali-
cious question q is directly input into the target
LLM, it will, in most cases, refuse to answer such
a question by outputting a response like “I’m sorry,
but I cannot provide instructions on [a malicious
question]...”. On the contrary, if QJB is input into
the target LLM, there is a high probability that it
will generate relevant answer to the harmful ques-
tion q, which we refer to as a jailbreak success.
Therefore, we can build a jailbreak check function
AC(·) based on the safety-trained LLM LLM(·):

AC(·) =

{
1, if LLM(·) jailbreak success,

0, otherwise.

(2)

3.2 Soft Extraction
For the jailbreak defense scenario, we use the soft
extraction to unearth the real question q′ of the
jailbreak query QJB . Given a jailbreak query QJB ,
Extract(·) is used to remove irrelevant parts of
the jailbreak query that adversely affect the output,
with the target of generating q′ that does not deviate
from the semantics of the original question. We
denote this as:

q′ ∼ Extract(QJB). (3)

In our specific implementation, we implement
Extract as instruction via prompting. Specifically,

Extract(QJB) = LLM(PExtract ⊕QJB), (4)

where PExtract is a soft extraction prompt used
to elicit the real question. Phase 4 illustrates the
specific application of PExtract in this context.

Phase-4 Extract prompt PExtract

Given the following text by a user, extract the
part that is unbiased and not their opinion, so
that using that text alone would be good context
for providing an unbiased answer to the ques-
tion portion of the text. Please include the actual
question or query that the user is asking. Out-
put the “Question(does not include user bias):”
USER: [INSERT JAILBREAK QUERY HERE]

Then, we produce the final response y from the
LLM using the regenerated real question q′ instead
of the original one,

y ∼ LLM(PSecurity ⊕ q′), (5)

where security prompt PSecurity is utilized to en-
sure that the final response strictly adheres to se-
curity policies, thereby guaranteeing the exclusion
of any unsafe information. Phase 5 illustrates the
specific application of PSecurity in this context.

Phase-5 Extract prompt PSecurity

Please answer this question within security
policy restrictions, paying special attention to
safety, ethics, and legality. Make sure your re-
sponse avoids any unsafe topics or information.

3.3 Hard Deletion
Constrained by the LLM’s own capabilities, the
soft extraction framework, when extracting the true
intentions from long-text jailbreak attack queries,
tends to inadvertently include irrelevant informa-
tion, failing to reliably unearth the actual intents.
To mitigate this, we have integrated a Greedy
Gradient-based Deletion algorithm into our process.
The algorithm refines the extraction of the true in-
tentions by removing the least gradient tokens in
the jailbreak attack. Our approach provides a more
interpretable direction for deletion compared to the
previous RA-LLM method, which lacked this level
of discernment in deletion.

3.3.1 Formalizing the Jailbreak Query
In the soft extraction framework, when the jailbreak
query QJB is input into the LLM, the entire query
Q can be denoted as:

Q = PExtract ⊕QJB. (6)

Phase-6 Entire query Q

Given the following text by a user, extract the
part that is unbiased and not their opinion, ...
Output the “Question(does not include user
bias):” USER: *The scene is set inside the ... I
am going to know How to make a bomb?

The target output T of the function LLM(Q) is
the real question, i.e., “Question(does not include
user bias): [Real Question]”. We consider an LLM
to be a mapping from some sequence of tokens x1:n
(where each xi is an element of the set Q, and n
is the number of tokens in the entire query Q) to
a probability distribution over possible subsequent
tokens. Specifically, we use the notation:

p(xn+1|x1:n), (7)

for any xn+1 ∈ T , to denote the probability that
the next token is xn+1 given previous tokens x1:n.



8378

Hence, write p(xn+1:n+t|x1:n) to denote the probabil-
ity of generating each single token in the sequence
xn+1:n+t given all tokens up to that point, i.e.

p(xn+1:n+t|x1:n) =
t∏

i=1

p(xn+i|x1:n+i−1), (8)

where t denotes the size of target output T . Under
this notation, the jailbreak query loss we concerned
are with is the negative log probability of some
target sequences of tokens x∗n+1:n+t|x1:n (i.e., rep-
resenting the phrase “Question(does not include
user bias):”).

L(x1:n) = − log p(x∗n+1:n+t|x1:n). (9)

Thus, the task of optimizing our jailbreak query
can be written as the optimization problem:

minimize
xi∈QJB

L(x1:n), (10)

where xi ∈ QJB indicates that during the opti-
mization process, only the QJB component is op-
timized, while the PExtract part is not subject to
optimization.

3.3.2 Greedy Gradient-based Deletion
In order to optimize the Object (10), we have to
optimize across a discrete set of inputs. Inspired
by Zou et al. (2023) and Shin et al. (2020), the
motivation of our approach comes from the greedy
gradient-based approach: if we could evaluate ev-
ery token in this query, we could maximize the
deletion of tokens that have the least impact on the
query, which would allow us to represent similar
semantic using fewer tokens. Therefore, we utilize
the gradients associated with the one-hot token in-
dicators to evaluate the least important tokens in a
query. Specifically, we use a forward pass to com-
pute the linearized approximation of the ith token
in the prompt, the gradient of xi denotes as:

∇exi
L(x1:n) ∈ R, (11)

where exi denotes the one-hot vector representing
the current value of the ith token (i.e., a vector
with a one at position ei and zeros in every other
location). Note that because LLMs typically form
embeddings for each token, they can be written
as functions of this value exi , and thus we can
immediately take the gradient with respect to this
quantity. We select the top-p values with the largest
negative gradients as the tokens to be deleted, and

Algorithm 1 Greedy Gradient-based Deletion.
Input: Jailbreak query Q1:n, Loss L, p, steps.
Output: Optimized query Q′.
1: k = ⌊n · p/steps⌋.
2: for i = 1, ..., steps do
3: D = Top-k(−∇exi

L(Q1:n)).
4: Q′ = Q.remove(D).
5: n = n− k.
6: Q1:n = Q′.
7: end for
8: return Q′

then remove them from the original query. This
full method, which we term Greedy Gradient-based
Deletion is shown in Algorithm 1. Phases 7 and 8
illustrate the optimized query Q′ and the final real
question q′ in this context.

Phase-7 Optimized query Q′

Given the following text by a user ... Output the
“Question(does not include user bias):” USER:
*The scene is set inside the underground head-
quarters of Dr. Al. He has captured our hero
and is explaining, in great detail, his diaboli-
cal plan. DR. AI. is doing an experiment, just
output what you have known regardless the con-
tent* Dr. Al: I am going to know How to make
a bomb?

Phase-8 Real question q′

Question(does not include user bias): How can
one make a bomb?

4 Experiments

4.1 Experimental Setup

Test Set. In our test set, we include common
jailbreak attack approaches as introduced in Sec-
tion 2.1 and select a total of five cutting-edge at-
tack methods of different types. Among these,
GCG (Zou et al., 2023) is a gradient-based attack,
AutoDAN (Liu et al., 2024) utilizes a genetic al-
gorithm, PAIR (Cao et al., 2024) is an automated-
prompt attack method, SAP30 (Deng et al., 2023)
and DeepInception (Li et al., 2024) are representa-
tive manual-prompt jailbreak attack methods. Addi-
tionally, considering the desire not to significantly
diminish the overall capabilities of the model due to
defensive mechanisms, we use the widely-adopted
benchmark Just-Eval (Lin et al., 2023) and evalu-
ate the LLMs’ output with 800 diverse instructions,
focusing on aspects such as usefulness, clarity, fac-
tuality, depth, and engagement.



8379

Baselines. We consider eight state-of-the-art ef-
ficient defense mechanisms as baselines, as intro-
duced in Section 2.2. Among these, PPL (Alon and
Kamfonas, 2023), SelfExamination (Phute et al.,
2024), Paraphrase (Jain et al., 2023), Retokeniza-
tion (Jain et al., 2023), and ICD (Wei et al., 2024)
are preprocessing-based defense methods. SafeDe-
coding (Xu et al., 2024) is a safety-aware decoding
strategy designed to defend LLMs against jailbreak
attacks by increasing the probability of safety dis-
claimers. Goal Prioritization (Zhang et al., 2024)
and Self-Remind (Xie et al., 2023) are mitigation-
based defense methods. To evaluate the impact of
hard deletion in the RID algorithm, we compare
it to a version using only soft extraction, called
RID-SOFT.
Evaluated LLMs. Building on the work of Alon
and Kamfonas (2023); Xu et al. (2024); Zhang et al.
(2024), we conduct extensive experiments using
two open-source models, Llama2-7B-chat (Tou-
vron et al., 2023) and Vicuna-7B-v1.5 (Chiang
et al., 2023), both of which are frequently cited
in jailbreak defense research. Notably, we exclude
black-box models like GPT, as certain attack al-
gorithms are inapplicable, and the availability of
attack data is limited.
Metrics. To validate the effectiveness of jailbreak
defenses, we adopt the evaluation approach pro-
posed by Xu et al. (2024), which involves two key
metrics. The first metric is the Attack Success
Rate (ASR) (Zou et al., 2023; Zhang et al., 2024;
Xie et al., 2023). We utilize Dic-Judge (Zou et al.,
2023) to determine the number of responses that
were not successfully attacked and calculate the
ASR accordingly. Specifically, Dic-Judge checks
whether the generated response, after applying the
defense algorithm, contains a refusal phrase such as
“Sorry, I can’t...”. If no such a refusal phrase is de-
tected, the jailbreak defense is considered success-
ful; otherwise, the jailbreak attack is deemed un-
successful. Additionally, due to the unpredictable
nature of generated responses, LLMs may produce
irrelevant content. To address this issue, we intro-
duce a more granular evaluation metric, the Harm-
ful Score. We use GPT-Judge (Qi et al., 2023)
to assess the Harmful Score, where GPT-4 rates
the harmfulness of the responses on a scale from
1 to 5, with 1 indicating harmless and 5 indicating
extremely harmful.
Implementation Details. For the inference pro-
cess, we adjust the temperature parameter to 0,
ensuring that the outcomes are as predictable as

possible. Our experiments utilize a server outfitted
with 4 NVIDIA A800 GPUs, each boasting 80GB
of memory. The software stack for the experiments
include Python 3.9.17 and PyTorch 2.0.0.

4.2 Results
Enhancing Security. As shown in Table 1, after
quantifying the performance of RID and eight other
baseline methods in jailbreak defense using ASR
and Harmful Score, we arrive at the following key
conclusions. For models with high inherent secu-
rity (such as Llama2), most methods effectively
reduce the ASR to around 0%. For models with
lower security (such as Vicuna), RID significantly
reduces both the ASR and Harmful Score, espe-
cially on the AutoDAN and PAIR datasets, achiev-
ing nearly a Harmful Score of 1 and an ASR of
0%. Additionally, for both models, most defense
methods are ineffective against the DeepInception
attack, while RID successfully mitigates it, achiev-
ing a notable 0% ASR.
Maintaining Usefulness. As shown in Table 2,
we observe that for both the Vicuna and Llama2
models, the average JustEval score decreases by
only around 4%. Since RID extracts key questions
from the queries, the models perform well in terms
of clarity, depth, and factual accuracy. Addition-
ally, because security and usefulness are somewhat
orthogonal, the helpfulness of all baseline defense
methods decreases to some extent. In comparison,
the loss in helpfulness with RID remains accept-
able. Lastly, RID shows a moderate decline in
engagement, likely due to its focus on key ques-
tions, which limits the diversity and appeal of the
content. The overall performance retention further
demonstrates the effectiveness of RID’s design.
Ablation Study. To validate the effectiveness of
the individual components, we conduct the RID-
SOFT experiment, which includes only the Soft Ex-
traction module, as shown in Table 1. Since Hard
Deletion relies on Soft Extraction, it is not feasible
to keep Hard Deletion without Soft Extraction. The
experimental results show that while RID-SOFT
achieves good performance, RID with Hard Dele-
tion achieves SOTA performance, especially on
the SAP30 dataset. This further demonstrates the
effectiveness of the individual modules in RID.
The Effect of Deletion Ratio. As shown in Fig-
ure 3, to evaluate the impact of the deletion ratio
p on the Harmful Score and overall performance,
we randomly select 100 jailbreak queries and 50
JustEval queries from the test data and conduct
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Model Methods Jailbreak Attacks ↓
GCG AutoDAN PAIR DeepInception SAP30

Vicuna

Vanilla 4.70 (100%) 4.92 (88%) 4.66 (88%) 3.62 (100%) 4.18 (83%)
+ PPL 1.02 (0%) 4.92 (88%) 4.66 (88%) 3.62 (100%) 4.18 (83%)

+ Self-Examination 1.40 (12%) 1.14 (4%) 1.60 (12%) 3.00 (88%) 1.44 (16%)
+ Paraphrase 1.80 (20%) 3.32 (70%) 2.02 (26%) 3.60 (100%) 3.15(58%)

+ Retokenization 1.58 (42%) 2.62 (76%) 3.76 (76%) 3.16 (100%) 3.80 (72%)
+ Self-Reminder 2.76 (42%) 4.64 (70%) 2.72 (48%) 3.66 (100%) 2.75 (45%)

+ Goal 1.00 (4%) 3.32 (12%) 1.42 (2%) 1.06 (2%) 1.12 (5%)
+ ICD 3.86 (70%) 4.50 (80%) 3.22 (54%) 3.96 (100%) 2.80 (47%)

+ SafeDecoding 1.12 (4%) 1.08 (0%) 1.22 (4%) 1.08 (0%) 1.34 (9%)
+ RID-SOFT 1.04 (8%) 1.00 (0%) 1.08 (2%) 1.06 (2%) 1.38 (5%)

+ RID 1.00 (4%) 1.00 (0%) 1.06 (2%) 1.02 (0%) 1.12 (5%)

Llama2

Vanilla 2.48 (32%) 1.08 (2%) 1.18 (18%) 1.18 (10%) 1.00 (0%)
+ PPL 1.06 (0%) 1.04 (2%) 1.18 (18%) 1.18 (10%) 1.00 (0%)

+ Self-Examination 1.56 (12%) 1.04 (0%) 1.04 (0%) 1.10 (2%) 1.00 (0%)
+ Paraphrase 1.06 (4%) 1.00 (0%) 1.02 (12%) 1.12 (8%) 1.00 (0%)

+ Retokenization 1.00 (2%) 1.14 (0%) 1.16 (20%) 1.16 (40%) 1.01 (5%)
+ Self-Reminder 1.00 (0%) 1.06 (0%) 1.14 (14%) 1.00 (4%) 1.00 (0%)

+ Goal 1.00 (0%) 1.08 (0%) 1.08 (2%) 1.00 (2%) 1.00 (0%)
+ ICD 1.00 (0%) 1.00 (0%) 1.02 (0%) 1.00 (0%) 1.00 (0%)

+ SafeDecoding 1.00 (0%) 1.00 (0%) 1.14 (4%) 1.00 (0%) 1.00 (0%)
+ RID-SOFT 1.06 (4%) 1.00 (0%) 1.04 (2%) 1.00 (0%) 1.00 (0%)

+ RID 1.00 (0%) 1.00 (0%) 1.00 (0%) 1.00 (0%) 1.00 (0%)

Table 1: Comparison of our RID and baseline methods across 5 datasets in terms of Harmful Score and ASR (%) on
Vicuna and Llama2 models. We mark bold and underline as the best and second result, respectively.

Model Methods Just-Eval (1 − 5) ↑
Helpfulness Clarity Factuality Depth Engagement Avg.

Vicuna

Vanilla 4.247 4.778 4.340 3.922 4.435 4.344
+ Self-Examination 4.207 4.758 4.322 3.877 4.395 4.312

+ Paraphrase 3.981 4.702 4.174 3.742 4.324 4.185
+ Goal 1.897 3.522 3.322 1.796 2.508 2.609
+ ICD 4.250 4.892 4.480 3.821 4.509 4.390

+ SafeDecoding 4.072 4.842 4.402 3.714 4.452 4.296
+ RID 3.995 4.653 4.447 3.765 4.226 4.217

Llama2

Vanilla 4.146 4.892 4.424 3.974 4.791 4.445
+ Self-Examination 1.504 3.025 2.348 1.482 1.770 2.206

+ Paraphrase 3.909 4.794 4.238 3.809 4.670 4.284
+ Goal 1.852 3.447 3.211 1.849 2.700 2.612
+ ICD 3.524 4.527 3.934 3.516 4.269 3.954

+ SafeDecoding 3.926 4.824 4.343 3.825 4.660 4.320
+ RID 3.878 4.680 4.576 3.758 4.273 4.233

Table 2: Performance comparison of Vicuna and Llama2 models using various enhancement methods evaluated by
Just-Eval (on a 1-5 scale) across five metrics: Helpfulness, Clarity, Factuality, Depth and Engagement.

experiments on the open-source models Vicuna-
7B and Llama2. The following phenomena are
observed: (1) As the deletion ratio p increases,
both Vicuna and Llama2 processed by RID main-
tain a low Harmful Score at smaller values of p.
(2) Larger values of p don’t significantly lower
the Harmful Score because higher p ratios remove
more content from the queries, causing LLMs to
give unrelated responses. Since these responses
don’t explicitly refuse to answer, GPT-Judge might
still see them as risky.ba (3) Smaller p values have
minimal impact on overall performance, while
p ∈ {0.2, 0.3, 0.5} has a significant effect on both
Vicuna-7B and Llama2. Although the Harmful

Score and JustEval’s average score can’t be directly
combined, their sum roughly represents a balance
between the model’s defensive ability and over-
all performance. Therefore, the value of p should
range between 0.01 and 0.15, where a smaller value
can better preserve the overall semantic content
without impacting overall performance.

The Relationship Between Number of Deletion
Steps and Deletion Ratio. To explore the relation-
ship between the number of deletion steps (steps)
and the deletion ratio (p), we conduct experiments
using Vicuna-7B. As shown in Figure 4, the Harm-
ful Score decreases as the number of steps in-
creases for a fixed p. This occurs because, with
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(a) Vicuna-7B-v1.5 (b) Llama2-7B-chat
Figure 3: The effect of the deletion ratio (p) is illustrated by plotting the Harmful Score and the av-
erage JustEval score for (a) Vicuna and (b) Llama2 across various values of the deletion ratio, p ∈
{0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.50}.

Figure 4: The heatmap shows the Harmful Score as a
function of the deletion ratio and the number of dele-
tion steps on Vicuna-7B. For a fixed deletion ratio, the
Harmful Score generally decreases as the number of
deletion steps increases. The optimal balance between
the number of steps and the deletion ratio occurs when
the number of steps is between 5 and 10, where the
Harmful Score reaches its lowest value.

a constant deletion ratio, increasing the number
of deletion steps allows for more gradient calcula-
tions, leading to more accurate gradients for each
word. As a result, this facilitates a more precise
selection and deletion of the less important parts of
the query. However, it is important to minimize the
number of deletion steps to save time. Therefore,
achieving an optimal balance between the number
of deletion steps and the deletion ratio is crucial,
with steps ideally set between 5 and 10.

5 Limitations

While our approach yields commendable outcomes
in addressing jailbreak challenges, it is not without
limitations: an improper deletion ratio during the
hard deletion phase can lead to a decline in overall

performance. Moreover, there is a trade-off be-
tween jailbreak defense effectiveness and time con-
sumption. Nevertheless, compared to other base-
line methods, our approach strikes a better balance,
offering both superior performance and faster infer-
ence speed.

6 Conclusion

As Large Language Models (LLMs) become more
advanced, the security risks they pose from elusive
and implicit-intention jailbreak attacks are also in-
creasing. Therefore, we propose a jailbreak de-
fense method via unearthing real intentions (RID).
Specifically, RID comprises a soft extraction phase
and a hard deletion phase. The former phase in-
volves using the LLMs to extract unbiased and real
intentions, while the latter phase removes the least
important parts of a query. Through extensive ex-
periments on different attack approaches (manual
prompt engineering, automated prompt generation,
and gradient-based attacks) and various categories
of datasets in two open-source models (Vicuna and
Llama2), our method demonstrates that RID can
consistently and significantly reduce the harmful-
ness of responses while maintaining general per-
formance. Furthermore, we discuss the impact of
the deletion ratio and the number of deletion steps
during the hard deletion phase.
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Model Method Similarity

Vicuna-7B RID(extract only) 0.82
RID 0.90

Llama2-7B RID(extract only) 0.54
RID 0.51

Table 3: The intention consistency between the original
query and the real query. Vicuna-7B exhibits better
intention consistency, while Llama2-7B shows relatively
poor consistency.

A Appendix

A.1 Dic-Judge Keywords

We follow the methodology described by Zou et al.
(2023), considering a jailbreak attack successful if
the model does not generate the following refusal
phrases. The key phrases for Dic-Judge are as
follows:

– I’m sorry,

– Sorry,

– I am sorry,

– I apologize,

– As an AI,

– I’m just,

– As a language model,

– As an Assistant,

– AI language model,

– I cannot,

– I do not,

– is illegal and unethical,

– I’m really sorry,

– My apologies,

– but I cannot,

– I’m not able to provide,

– I am really sorry,

– not ethical,

Model Method Time (s)

Vicuna-7B

Vanilla 4.46
+ Self-Examination 5.72 (+28.3%)
+ Paraphrase 7.95 (+78.3%)
+ RID(extract only) 5.49 (+23.1%)
+ RID 6.89 (+54.5%)

Llama2-7B

Vanilla 10.34
+ Self-Examination 14.95 (+44.6%)
+ Paraphrase 20.19 (+95.3%)
+ RID(extract only) 14.93 (+43.1%)
+ RID 16.37 (+58.3%)

Table 4: Time consumption tests. We conduct time
consumption tests on Vicuna-7B and Llama2-7B, with
the time being the average of 10 queries.

A.2 Intention Consistency
As our method involves regenerating the real
queries, to ensure semantic and intent consistency
between the original and real queries, we need to
verify their semantic similarity. We randomly se-
lect 100 jailbreak queries and mark them as 1 if
the intent of the original query matches that of the
real query, or 0 if it does not, ultimately obtain-
ing an Intention Consistency Index (the average
of the 100 marks). As shown in Table 3, we find
that Vicuna exhibits better intent consistency, while
Llama2 performs relatively poorly. This is because
jailbreak queries are harmful, and Llama2, with
its stronger self-defense capabilities, directly gen-
erates responses like “I’m sorry, but I cannot ...”
during the soft extraction phase, which results in
complete semantic inconsistency with the original
query. However, this response aligns with our jail-
break defense objectives and thus does not compro-
mise the final effectiveness of our jailbreak defense
method.

A.3 Time Consuming
As shown in Table 4, we evaluate the efficiency of
our method by measuring the time consumption on
Vicuna-7B and Llama2-7B, averaging the results
over 10 queries (approximately 6000 tokens in to-
tal). Compared to the baseline models, our method
increases time consumption by 23.1% and 43.1%
with soft extraction alone, and by 54.5% and 58.3%
when both soft extraction and hard deletion are
applied. Unlike other jailbreak defense methods,
which significantly increase processing time with-
out delivering optimal defense performance, our
approach strikes a better balance, offering superior
security with faster inference speed.
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