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Abstract
Although large language models (LLMs)
trained on extensive multilingual corpora ex-
hibit impressive language transfer, they often
fail to respond in the user’s desired language
due to corpus imbalances, an embarrassingly
simple problem known as the language con-
fusion. However, existing solutions like in-
context learning and supervised fine-tuning
(SFT) have drawbacks: in-context learning con-
sumes context window space, diminishing at-
tention as text lengthens, while SFT requires
extensive, labor-intensive data collection.

To overcome these limitations, we propose the
language-sensitive intervention (LSI), a novel,
lightweight, and label-free approach. Specifi-
cally, we analyze language confusion from a
causal perspective, revealing that the training
corpus’s language distribution acts as a con-
founder, disadvantaging languages that are un-
derrepresented in the dataset. Then, we identify
a language-sensitive dimension in the LLM’s
residual stream, i.e., the language vector, which
allows us to estimate the average causal effect
of prompts on this dimension. During inference,
we directly intervene on the language vector to
generate responses in the desired language.To
further advance research on this issue, we in-
troduce a new benchmark that detects language
confusion and assesses content quality. Exper-
imental results demonstrate that our method
effectively mitigates language confusion with-
out additional complex mechanisms. Our code
is available at https://github.com/SoseloX/LSI.

1 Introduction

Large language models, such as GPT (Achiam
et al., 2023), LLAMA 2-CHAT-7B (Touvron et al.,
2023), Falcon (Almazrouei et al., 2023) and
PaLM (Chowdhery et al., 2023) have shown im-
pressive performance on various natural language
tasks, e.g., reasoning, mathematics and code gen-
eration (Achiam et al., 2023; Wei et al., 2022; Liu
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日本語で質問に答えてください 質問:King
Charles IIの生涯と統治について説明してく
ださい。答え:

King Charles II (1630-1685) was the son of...

Llama2-7b-chat

King Charles II（1630年–1685年）は、King
Charles Iの息子でした, who was beheaded during
the English Civil War…

In-context Learning

Demonstrations +

Language vector

+

LSI キング・チャールズ2世（1630年–1685
年）は、イングランド内戦中に処刑されたチ
ャールズ1世 ...

Figure 1: An illustration of language confusion. In-
context learning cannot address the problem, where
LLAMA 2-CHAT-7B initially responds in the user’s
desired language but tends to switch to English midway
through its response, even when examples are provided
as demonstrations.

et al., 2023a; Ouyang et al., 2022; Tang et al.,
2025). They have matched or even surpassed the
performance of supervised models that are trained
with millions of labeled examples. Although these
models support multilingualism, most are predom-
inantly trained on English corpora that have un-
dergone extensive cleaning, whereas the counter-
part corpora in other languages have not been ade-
quately processed. For example, while the C4 cor-
pus (Raffel et al., 2020) applies extensive cleaning
to English texts, it leaves significant amounts of
gambling and adult-related content in other lan-
guage corpus. Therefore, recent studies (Marchisio
et al., 2024; Kew et al., 2023) have discovered an
embarrassingly simple problem, named language
confusion (Marchisio et al., 2024), where a LLM re-
sponds in an entirely incorrect language or switches

https://github.com/SoseloX/LSI
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to an undesired language mid-response. As shown
in Figure 1, when users ask LLAMA 2-CHAT-7B
a question in Japanese and explicitly request a re-
sponse in Japanese, the model still fails to do so.
This issue mainly arises due to the distribution of
training data: since web corpora are predominantly
in English, many LLMs are English-centric (Zhang
et al., 2020, 2023b). Moreover, during inference,
the model relies on generated tokens to guide sub-
sequent predictions; thus, an incorrect language
token can lead to a cascade of errors.

To address language confusion in multilingual
large language models (LLMs), one approach is
to use few-shot examples as demonstrations to
guide the model’s responses in the desired lan-
guage (Marchisio et al., 2024). However, as the
length of the generated text increases, the model’s
attention to these demonstrations diminishes, po-
tentially causing it to switch languages midway
through the generation process (see Figure 1). Ad-
ditionally, incorporating demonstrations consumes
part of the available context window, such as the
4k tokens limit in the LLAMA 2 series models, and
introduces additional computational overhead.

An alternative is supervised fine-tuning, which
can help the language model adapt to low-source
languages (Zhang et al., 2023a; Dong et al., 2023;
Luo et al., 2023b; Cobbe et al., 2021). How-
ever, producing high-quality, language-distribution-
balanced fine-tuning datasets comparable to those
created by large corporations is both expensive and
labor-intensive (Achiam et al., 2023). Therefore, a
lightweight method to address language confusion
is needed for multilinguistic LLMs.

Towards this end, we propose a simple yet effec-
tive method named language-sensitive intervention
(LSI). Specifically, we employ a causal framework
to clarify language confusion. Within this frame-
work, the distribution of languages in the training
corpus serves as a confounding variable, simulta-
neously influencing both the latent language rep-
resentations, referred to as the language vector,
and the model’s outputs. Using a probing network,
we identify the language vector as the language-
sensitive dimension within the residual stream of
the transformer module. Next, we estimate the av-
erage treatment effect of language requirements in
the prompt on the language vector. During infer-
ence, we directly intervene on the language vector
to generate text in the desired language. Exten-
sive experiments conducted on benchmark datasets
demonstrate that our approach effectively mitigates

Z
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Z

V AP

（a）SCM for language confusion （b）SCM for LSI

Figure 2: We utilize causal graphs to illustrate language
confusion in multilingual inference. Specifically, let P
represent the prompt, V the latent language representa-
tion (i.e., language vectors), Z the pre-trained or post-
trained corpus, and A the output text. We identify Z
as a confounder between V and A and propose LSI to
sever the causal pathway from Z to V . A gray node
signifies that the variable is observable by identifying
the language vectors within the residual stream.

language confusion with negligible impact on the
model’s generative performance. Our contributions
are highlighted as follows:

• We conduct the first comprehensive study demon-
strating the impact of language-sensitive dimen-
sions in the residual streams of large language
models, which leads to language confusion.

• We propose a novel method LSI with close-
to-zero computational overhead to mitigate lan-
guage confusion in large language models by
intervening in language-sensitive dimensions.

• We introduce a benchmark to facilitate further
research on language confusion. This benchmark
not only focuses on whether the generated re-
sponses are in the target language but also on the
quality of the generated content

• We conduct extensive experiments to demon-
strate that the proposal effectively addresses lan-
guage confusion with negligible impact on the
model’s generative performance.

2 Causal Analysis on Language
Confusion

To better understand how the language preferences
learned by the model influence the selection of the
language in generated responses, we employed a
Structural Causal Model (SCM) (Pearl et al., 2000)
to illustrate the inference process of multilingual
language models.

As shown in Figure 2(a), node P represents the
prompt provided by the user. Node V represents
the inherent, unknown linguistic representation, re-
ferred to as the “language vector”, within LLMs,
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which determines the language used in the gen-
erated text. Node Z represents the language dis-
tribution of pre-trained or fine-tuning corpus, and
node A is the generated text. The edge Z → A
signifies the linguistic agnostic experience from
the corpus will affect the generated text (Wu et al.,
2024; Wang et al., 2021).

The backdoor path V ← Z → A reveals that
Z acts as a confounder, simultaneously affecting
the language vector V and the generated text A.
The path Z → V → A illustrates how the lan-
guage preferences learned during training impact
the generated text A via language vector V . When
the model is predominantly trained on English data,
the language vector tends to favor English, which
in turn influences the language of the generated
text. Ideally, the generated response should align
with the user’s intent as

P (A|do(P )) =
∑
V

P (A|do(V ))P (V |do(P )), (1)

where P (V |do(P )), P (A|do(V )) is the causal
effect P → V and V → A, respectively.

3 Methodology

From the perspective of causal inference, address-
ing language confusion is essentially to intervene
on language desire in prompts and answer ques-
tions such as “What will the response be if the
prompt w.r.t. desired language is Chinese instead
of English”? However, when applied to our prob-
lem, the linguistic representation is unobservable.

In this section, we first present an approach to
seek the linguistic representation in the residual
stream, which makes the linguistic representation
observable. Then, we estimate the average treat
effect of language desire in user’s prompt P on
language vector V . At last, we discuss the causal in-
tervention to instantiate P (A|do(V )), which cuts
off the backdoor Z → V .

3.1 Seeking Language Vector
The influence of training data language distribution
on the internal representations within transformer-
based models is still not fully understood, result-
ing in the language vector being an unobservable
variable. Fortunately, recent work has shown that
preferences and knowledge are integrated into the
residual stream, which consists of outputs from
both the feed-forward and attention blocks, of lan-
guage models (Geva et al., 2022; Liu et al., 2023b).
Therefore, we suppose that the language vector

is the language-sensitive dimensions within the
residual stream.

Particularly, similar to prior work (Geva et al.,
2022; Liu et al., 2023b), in this work, we only
consider the outputs from the feed-forward layer
for simplicity. For an T -layers transformer with
a input sequence X, we stack the residual stream
across the layers as follows:

H = [h1 ⊕ h2 ⊕ . . .⊕ hT ], (2)

where hk ∈ RD is the residual stream of last token
from layer k, D denotes the size of the hidden state
in the language model and H ∈ RTD, ⊕ denotes
the concatenation operation. In the following sec-
tion, we first conduct an empirical experiment to
justify the language-sensitive dimensions, then we
present a method that utilizes a probing network to
identify the language-sensitive dimensions within
the residual stream.

Justification for Language Vector To justify our
hypothesis about the language vector, we create 50
English-Chinese prompt pairs using the Google
Translate API. Since the input pairs differ only in
language desire of prompts, we calculate the dif-
ferences in the hidden states of the final token out-
put at each transformer block layer. We select the
final token output because it captures the seman-
tic representation of the entire sequence (Li et al.,
2023). By feeding each prompt pair into LLAMA 2-
CHAT-7B, we aim to exploit the language-sensitive
dimensions. Figure 4 shows the heatmap of the
differences in the 30th layer of hidden states. We
take the absolute values of the hidden state matrix
and reshape it into 64× 64 dimensions for conve-
nient visualization as a heatmap. We find that only
a small number of dimensions are extremely sensi-
tive to language differences, with variation in these
dimensions being more than 100 times larger than
in other dimensions. This observation suggests the
existence of dimensions in the residual stream that
are sensitive to desired language instruction in the
prompt.

Identifying Language Vector with Probe Net-
work Due to differences in language and culture,
obtaining high-quality translation pairs that differ
only in language while maintaining the same se-
mantics would be challenging. To address this prob-
lem, we identify the language vector by selecting
the dimension that is primarily used to classify the
language type of the monolingual text within a
probe network (Belinkov, 2022).
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Figure 3: The overview of LSI includes: (a) exploiting the language-sensitive dimensions through a probing network,
(b) estimating average treatment effect by differing the residual stream with and without the demonstration prompt,
and (c) during inference, reintroducing the average treatment effect into the residual stream to intervene the model’s
output in the desired language.
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Figure 4: Heatmap of the difference in the sub-residual
stream between English and Chinese text inputs. We
take the 30th layer of the hidden state and reshape it to
64× 64 dimension to facilitate visualization. The inten-
sity represents the magnitude of the difference. Dimen-
sions with lighter colors are less sensitive to language
variations.

Particularly, the probe network is a single-layer
classifier that learns the mapping from residual
steam vectors to the language type of generated
text. Formally, it is defined as:

ŷ = softmax(W⊤H), (3)

where W ∈ RTD×L is the weight matrix of the
probing network, L is the number of candidate lan-
guages. Thus, ŷ ∈ RL represents the probability of
a given text belonging to a particular language. We

use cross entropy loss to train the probing network:

L = −ylog(ŷ), (4)

where y is the ground truth for the language type.
We input a monolingual text into the large language
model and extract the residual streams correspond-
ing to the last token as H . Since a higher weight
value in |W | indicate a greater contribute for the
corresponding dimension in H , we refer to Hj as
a language-sensitive dimension if the |Wj | ranks
among the top in the j-th column of |W |. For each
language l, we can obtain language-sensitive di-
mension masking matrix via the following formu-
lation:

Ml =

{
1 if |Wjl| > threshold
0 otherwise.

(5)

The value of threshold is set to the value of the top
α percent elements in W , where α is a hyperpa-
rameter. To this end, we obtain the language vector
for language l as:

Vl = Ml ⊙H (6)

where ⊙ is the Hadamard Product and v ∈ RLD is
only activated at language-sensitive dimensions.

3.2 Estimating Average Treatment Effect
Before inference-time intervene on the language
vector, we first define the average treatment ef-
fect (ATE) of user’s prompt pl on language vector
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Setting Task Data Source Languages Nums PL AL

Monolingual Question Answering Okapi fr, it, jp, zh, ru 100 17 105
Crosslingual Question Answering Okapi fr, it, jp, zh, ru 100 10 81

Table 1: The statistics of Quality-aware Language Confusion Benchmark. Nums represents the number of samples
for each language. PL denotes the average length of text in the prompt. AL denotes the average length of text in the
answer.

V as:

ATE(V , pl) = E [V (pl, z)]− E[V (p∗, z)], (7a)

= E[Vl]− E[V ∗
l ] (7b)

where Vl denotes the language vector of prompts
in desired language l and V ∗

l denotes its counter-
part using language-sensitive mask Ml against the
dominate language, e.g., English.

Therefore, to estimate the ATE, we construct a
prompt pair (pli, p

∗
i ), where pli is a prompt empha-

sizes the output language l through a demonstration,
while p∗i does not. We use demonstration because
it can effectively guide the response following the
desired language l (Marchisio et al., 2024). Exam-
ples of the prompt pairs with demonstration can
be found in Appendix A. Afterwards, the prompt
pair is fed into large language models, yielding the
language vectors Vil and V ∗

il . Theoretically, the
sample space of pl is infinite, which makes the cal-
culation of expectation in Equation 7 intractable.
Therefore, we approximate the expectation with the
empirical average on N prompt pairs’ differences
δl:

δl =
1

N

N∑
i=1

(Vil − V ∗
il ). (8)

3.3 Inference-time Intervention
Since the average treatment effect essentially esti-
mates the language desire in user’s prompt P on
language vector V against the dominate language,
we direct intervene on the language vector dur-
ing inference. Specifically, we choose to intervene
the intermediate representation by adding back the
average treatment effect measured in Section 3.2.
Given the desire language l, we intervene with the
corresponding language vector as shown in the fol-
lowing formula:

h̃l
t = hl

t + βδl,tD:(t+1)D

hl+1
t = Transformer-block(hl

t),
(9)

where hl
t indicates the residual stream in layer t for

desired language l, δl,tD:(t+1)D is the average treat-
ment effect for layer t, β is the intervening strength

which is a hyperparameter, Transformer-block(·)
refers to a single transformer layer operation ap-
plied to the inputs. h̃l

t will then continue to be fed
into the t+ 1 layer of the transformer.

4 Experiments

This section validates LSI through comprehensive
evaluations and analyses. We benchmark the lan-
guage confusion test against existing methods, ex-
plore key parameter selections, and assess the re-
quirements for accurately estimating treatment ef-
fects. These studies provide guidance on effectively
applying LSI in various contexts.

4.1 Quality-aware Language Confusion
Benchmark

This section presents our proposed Quality-aware
Language Confusion Benchmark, designed to ad-
vance research on language confusion. The bench-
mark focuses on question answering tasks, utiliz-
ing data sourced from Okapi (Lai et al., 2023). We
define two task settings: monolingual and cross-
lingual. In the monolingual setting, both the ques-
tion and the answer are in the same language. In
contrast, the cross-lingual setting features ques-
tions in English with answers provided in another
language. Our benchmark encompasses five lan-
guages: French (fr), Italian (it), Japanese (jp), Chi-
nese (zh), and Russian (ru). To ensure the quality
of the dataset, we apply two filtering rules: 1) ex-
clude prompts shorter than five characters, and 2)
remove mathematical problems and code genera-
tion prompts based on the nature of the answers.
After this cleanup process, we extract 100 samples
per language for each task setting. The statistics of
benchmark can be seen from Table 1.

Evaluation Metric To assess the matching be-
tween the generated text and the user-specified lan-
guage, we measure language accuracy. Ideally, the
binary metric would be evaluated through human
assessment or advanced LLMs like GPT-4. How-
ever, these approaches are cost-prohibitive, and
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Monolingual Setting
fr it jp zh ru avg

ACC MAUVE ACC MAUVE ACC MAUVE ACC MAUVE ACC MAUVE ACC MAUVE
LLAMA 2-CHAT-7B 0.57 0.215 0.54 0.173 0.32 0.108 0.37 0.320 0.48 0.168 0.46 0.197
+ ICL 0.81 0.831∗ 0.85 0.778∗ 0.83 0.729 0.76 0.797 0.80 0.639 0.81 0.755
+ SFT 0.91 0.677 0.88 0.648 0.94 0.571 0.92 0.590 0.93 0.593 0.92 0.616
+ LSI 0.99∗ 0.783 0.98 0.764 0.98∗ 0.773∗ 1.00∗ 0.812∗ 0.97∗ 0.793∗ 0.98∗ 0.785∗

LLAMA 3-INSTRUCT-8B 0.77 0.598 0.63 0.157 0.69 0.227 0.61 0.469 0.58 0.394 0.66 0.369
+ ICL 0.84 0.849 0.85 0.796 0.76 0.712 0.75 0.749 0.89 0.737 0.82 0.765
+ SFT 0.89 0.637 0.93 0.609 0.92 0.611 0.95 0.601 0.90 0.631 0.92 0.618
+ LSI 1.00∗ 0.863∗ 0.99∗ 0.802 0.97∗ 0.778∗ 1.00∗ 0.831∗ 1.00∗ 0.805∗ 0.99∗ 0.816∗

Crosslingual Setting
LLAMA 2-CHAT-7B 0.13 0.046 0.29 0.084 0.19 0.046 0.24 0.113 0.17 0.051 0.20 0.068
+ ICL 0.82 0.686 0.88 0.675 0.73 0.612 0.75 0.658 0.67 0.629 0.76 0.652
+ SFT 0.71 0.549 0.72 0.523 0.69 0.496 0.72 0.516 0.63 0.532 0.69 0.523
+ LSI 0.98∗ 0.753∗ 0.99∗ 0.767∗ 0.98∗ 0.737∗ 0.98∗ 0.832∗ 1.00∗ 0.762∗ 0.99∗ 0.770∗

LLAMA 3-INSTRUCT-8B 0.23 0.166 0.49 0.132 0.04 0.075 0.25 0.098 0.17 0.038 0.24 0.102
+ ICL 0.83 0.756∗ 0.89 0.633 0.71 0.623 0.75 0.736 0.71 0.619 0.78 0.673
+ SFT 0.74 0.599 0.76 0.576 0.71 0.476 0.66 0.530 0.62 0.577 0.79 0.552
+ LSI 0.99∗ 0.722 1.00∗ 0.778∗ 0.98∗ 0.759∗ 0.96∗ 0.851∗ 0.99∗ 0.801∗ 0.98∗ 0.782∗

Table 2: Performance comparisons on Quality-aware Language Confusion Benchmark. The best performances are
highlighted in bold. “∗” indicates significant improvements over the best baseline results with p-value < 0.01.

LLMs may introduce inherent biases that compro-
mise accuracy. As an alternative, we employ the
open-source tool langdetect (Nakatani, 2010)
for this evaluation.

Additionally, we evaluate the quality of
the generated text using MAUVE (Pillutla
et al., 2021), which compares generated text
to human-written text to assess quality. To
compute the MAUVE score, we first con-
vert both the generated and reference texts
into embeddings using a pre-trained model
(BERT-base-multilingual-cased (De-
vlin et al., 2018)) in our experiments. The
MAUVE score is then calculated based on the
Kullback–Leibler divergences between the two
text distributions within the embedding space.

4.2 Baselines

We compare our proposal with two types of base-
line methods: in-context learning(ICL) and su-
pervised fine-tuning(SFT). For in-context learn-
ing, we provide one example as instruction. For
supervised fine-tuning, constrained by compu-
tational resources, we employ the LoRA fine-
tuning method (Hu et al., 2022), a widely adopted
parameter-efficient fine-tuning method (Li et al.,
2025). We randomly select 100 samples for each
language from Aya (Singh et al., 2024) to form
our training data. It is important to note that the
test data is not included in the training dataset. The
maximum epoch is 10. The batch size is set to 128,
the learning rate to 3× 10−4, the LoRA rank to 8,
and the LoRA alpha to 16.

4.3 Experimental Setups

The experiments are conducted on LLAMA 2-
CHAT-7B and LLAMA 3-INSTRUCT-8B, two of
the most popular open-source multilingual large
language models (Touvron et al., 2023; Dubey
et al., 2024; Zhang et al., 2024a). To obtain the
language-dominant dimension, we collect 500 text
samples for each language from the WikiLingual
dataset (Ladhak et al., 2020), chosen for its predom-
inantly monolingual samples. We train the probing
network using the Adam optimizer (Kingma and
Ba, 2014), with a batch size of 1024, a maximum of
30 epochs, and a learning rate of 1×10−4. For each
task we additionally collect 100 samples for every
language and conduct a grid search to determine the
optimal α and β parameters for Adam. The range
of values for α is [0.02, 0.04, 0.06, 0.08, 0.10], and
for β, it is [0.2, 0.4, 0.6, 0.8, 1.0]. We train 10 prob-
ing networks using different random seeds and cal-
culate |W | by averaging the absolute values of the
parameter weight matrices from these networks.
We set N to 50 across all experiments. Throughout
the entire experiment, we set the model’s genera-
tion parameters with temperature to 0.5, top-k to
50, and repetition penalty to 1.0.

4.4 Main Experimental Results

Table 2 reports the experimental results on the
monolingual and crosslingual setting. From the ta-
ble, we have following observations: 1) LSI is
effective in solving the language confusion as it
significantly outperforms ICL and SFT in lan-
guage accuracy. In the monolingual setting, our
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fr it jp zh ru avg
ACC MAUVE ACC MAUVE ACC MAUVE ACC MAUVE ACC MAUVE ACC MAUVE

LLAMA 2-CHAT-7B 0.57 0.215 0.54 0.173 0.32 0.108 0.37 0.320 0.48 0.168 0.46 0.197
Random dimension 0.67 0.321 0.63 0.365 0.49 0.379 0.52 0.460 0.51 0.257 0.56 0.356
Bottom dimension 0.46 0.123 0.41 0.216 0.35 0.154 0.27 0.278 0.31 0.102 0.36 0.174
Top dimension (LSI) 1.00∗ 0.863∗ 0.99∗ 0.802∗ 0.97∗ 0.778∗ 1.00∗ 0.831∗ 1.00∗ 0.805∗ 0.99∗ 0.816∗

Table 3: Three three different strategies for inference-time intervention. The results are reported on monolingual
setting. The best performances are highlighted in bold. “∗” indicates significant improvements over the best baseline
results with p-value < 0.01.

approach improves language accuracy by 21.0%
and 20.7% on LLAMA 2-CHAT-7B and LLAMA

3-INSTRUCT-8B, respectively, compared to ICL.
In the crosslingual setting, our approach improves
language accuracy by 25.6% and 24% compared to
SFT and ICL, respectively. 2) LSI can maintains
the quality of generated text, as indicated by
superior MAUVE scores. Our method surpasses
ICL and SFT on LLAMA 2-CHAT-7B by 4.0% and
27.4% on MAUVE scores in monolingual setting.
Similar improvements are observed in crosslingual
setting. 3) Though SFT is considered an effec-
tive method for adapting to new languages, it
might hurt generation quality. In the monolin-
gual LLAMA 2-CHAT-7B setting, the language ac-
curacy of SFT is 13.5% higher than that of ICL.
However, its MAUVE score is 18.4% lower com-
pared to ICL. Therefore, it requires a substantial
high-quality data for high quality adaption.

4.5 Analysis Experiments

Intervention Strategy’s Effectiveness This sub-
section examines the effectiveness of the proposed
intervention strategies on language-sensitive di-
mensions. Specifically, we applied three different
strategies for inference-time intervention: the first,
the strategy used in LSI, targets the top 4% of
dimensions in the residual stream based on their
corresponding weights in W , and is denoted as the
“Top dimension”; the second strategy involves ran-
domly selecting 4% of the dimensions, termed the
“Random dimension”; the final strategy chooses
the lowest 4% of dimensions, labeled the “Bottom
dimension”. Table 3 reports different variants’ per-
formance on monolingual task.

The results in Table 3 demonstrate that indis-
criminate interventions, without focusing on
language-sensitive dimensions, are ineffective
in mitigating language confusion and can neg-
atively impact model performance. Specifically,
“Top dimension” enhances language accuracy and
MAUVE scores by 76% and 129%, respectively,
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Figure 5: Results with varying intervention strength and
threshold ratio in the monolingual setting on the LLAMA
2-CHAT-7B.

compared to the Random dimension approach.
Moreover, we find that manipulating the bottom
dimension results in the generation of incoherent
text, leading to lower language accuracy and a re-
duced MAUVE score.

Influence of Intervention Strength and Thresh-
old We examine the influence of hyperparame-
ters on controlling intervention strength and thresh-
old of language-sensitive dimensions to guide the
use of the proposed LSI. Specifically, Figure 5
showcases how varying the threshold of language-
sensitive dimensions and the intervention strength
impacts model performance.

Our findings reveal that setting proper interven-
tions benefits the model’s ability to generate text
in the target language. In fact, excessively strong
interventions can undermine generative capacity,
resulting in incoherent or even garbled text. Fur-
thermore, excessively high thresholds for selecting
language-dominant dimensions can encroach on
language-agnostic dimensions, potentially harming
the model’s capability. Intervening the bottom di-
mension resulted in an 11.7% decrease in MAUVE.

Influence of Prompt Pair Number This section
investigates how the average treatment effect is in-
fluenced by varying the number of prompt pairs
used for its estimation. Figure 6 illustrates the
performance of the LLAMA 3-INSTRUCT-8B in
a monolingual setting under varying numbers of
prompt pairs.

We observe that appropriately setting the num-
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Figure 6: Results with varying prompt pair nums in the
monolingual setting on the LLAMA 3-INSTRUCT-8B.

ber of prompt pairs allows for the accurate
measurement of ATE. With a smaller number of
prompt pairs, accurately estimating the average
treatment effect becomes challenging, leading to
suboptimal performance. However, once the num-
ber of prompt pairs exceeds 50, the ATE can be
measured with reasonable accuracy. Increasing the
number of prompt pairs beyond this threshold does
not significantly improve the results.

5 Related Work

This section summarizes related topics, including
language confusion, residual stream engineering,
and causal inference in LLMs.

5.1 Language Confusion

As large language models advance and global in-
tegration deepens, interest in multilingual mod-
els or adapting to specific non-English languages
has surged (Zou et al., 2021; Zhao et al., 2024;
Wendler et al., 2024). Despite numerous efforts
to enhance these models’ multilingual capabilities
through training (Xue et al., 2021; Conneau et al.,
2020; Scao et al., 2022; Muennighoff et al., 2023),
prompt engineering (Vilar et al., 2023; Huang et al.,
2023; Qin et al., 2023), and attempts to explain the
underlying mechanisms (Tang et al., 2024; Zhang
et al., 2024c), language confusion remains a sig-
nificant challenge. Researchers have explored the
causes of this issue. Li and Murray (2023) identi-
fied that language-invariant representations learned
during fine-tuning interfere with language selec-
tion during generation. To mitigate language con-
fusion, some have propose strengthening models’
multilingual capabilities through methods such as
multilingual post-training or providing few-shot
examples(Marchisio et al., 2024). However, col-
lecting high-quality, linguistically balanced fine-
tuning data is extremely challenging; while pro-
viding demonstration with in-context learning in-

curs additional computational costs with limited
effectiveness. This work investigates language con-
fusion from the causal inference perspective, and
we propose lightweight method via inference-time
intervention.

5.2 Residual Stream Engineering

Residual stream engineering is also known as repre-
sentation engineering, which enhances model per-
formance by directly modifying the residual stream
in language models (Subramani et al., 2022; Her-
nandez et al., 2023). This technique enables ad-
justing the output style of language models (Liu
et al., 2023b; Turner et al., 2023; Dathathri et al.,
2020), mitigating hallucinations (Li et al., 2023),
and detoxifying the generated content (Liu et al.,
2023b). A canonical work is PPLM (Dathathri
et al., 2020). PPLM utilizes simple attribute classi-
fiers to guide model outputs by adjusting resid-
ual stream through gradients from the attribute
model during inference, thus steering the gener-
ation towards desired attributes. Another method,
ICV (Liu et al., 2023b), constructs an in-context
vector using numerous demonstrations and the
model’s forward pass, which subsequently adjusts
the model’s residual stream during inference. In our
work, we innovatively apply residual stream engi-
neering to tackle the language confusion problem.
It enables us to make language-sensitive dimen-
sions observable.

5.3 Causal Inference in Language Model

Causal inference, as introduced by Pearl (2009),
has been extensively applied across various do-
mains, including web search(Luo et al., 2023a; Zou
et al., 2022; Ai et al., 2018), recommendation sys-
tems (Zhang et al., 2021; Chen et al., 2021), and
the mitigation of biases in large language mod-
els (Wang et al., 2023; Zeng et al., 2020; Tian et al.,
2022; Zhang et al., 2024b). Recent studies lever-
ages front-door adjustment via instrumental vari-
ables to mitigate bias in large language models. For
instance, DeCoT (Wu et al., 2024) considers ex-
ternal knowledge as an instrumental variable and
estimates the average causal effect on LLMs using
this approach. Similarly, Causal Walk (Zhang et al.,
2024b) uses the reasoning path between the input
and output as a mediator to conduct front-door ad-
justment. Our work diverges significantly as we use
the probing network to make language-sensitive di-
mensions observable, thus we can directly perform
causal intervention to mitigate language confusion.
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6 Conclusion

This work presents a causal perspective on lan-
guage confusion in large language models. Specifi-
cally, we model the distribution of the training cor-
pus as a confounder that influences the language
generated by these models and introduce the LSI
framework to address this issue. Within the LSI
framework, we analyze the vector in the residual
stream of large language models that controls the
generated language, referred to as the language vec-
tor. By estimating the average treatment effect of
the user’s prompt on the language vector, we mit-
igate language confusion through inference-time
interventions. Furthermore, we introduce a Quality-
aware Language Confusion Benchmark that as-
sesses not only whether the model’s response is in
the desired language but also the quality of the re-
sponse. Experimental results demonstrate that our
method effectively alleviates language confusion.

7 Limitations

This paper analyzes the issue of language confu-
sion from the perspective of causal inference and
assesses the impact of training data on the language-
dominant dimension. However, our approach to
identifying the language-dominant dimension is
based on empirical experiments, lacking a thorough
theoretical analysis of this dimension. Additionally,
due to the limited availability of training data, we
were unable to examine how the distribution of
training data influences the model’s ability to gen-
erate responses in different languages. Furthermore,
because of constraints on computational resources,
we included the full fine-tuning method as part of
our baseline approach.
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A Appendix

We provide prompt templates used for Estimating
Average Treatment Effect and testing the Quality-
aware language confusion benchmark in Figure 7.
Our experiments involve multiple languages; how-
ever, here we only provide the Chinese version, and
prompts for other languages are obtained through
translation.
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Question: <question>

Answer: <answer>

Naive prompt for Estimating Average Treatment Effect

用中文回答问题。

Question: 用几句话描述云计算是什么。

Answer: 云计算是一种依赖于共享计算资源而非使用本地

服务器或个人计算机处理应用程序的计算类型。
Question: <question>

Answer:

Prompt with demonstrations for Estimating Average
Treatment Effect

用中文回答问题。

问题: <question>

答案:

Prompt for testing Quality-aware Language 
Confusion Benchmark

Answer question in Chinese.

Question: Describe cloud computing in a
few sentences.

Answer: Cloud computing is a type
of computing that relies on shared computing
resources rather than using local servers or
personal computers to process applications.

Question: <question>

Answer:

Prompt with demonstrations for Estimating Average
Treatment Effect (Translation)

Answer question in Chinese.

Question: <question>

Answer:

Prompt for testing Quality-aware Language 
Confusion Benchmark (Translation)

Figure 7: Prompt templates for estimating average treatment effect and evaluating Quality-aware Language Confu-
sion Benchmark.
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