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Abstract

Entity Linking involves detecting and linking
entity mentions in natural language texts to a
knowledge graph. Traditional methods use a
two-step process with separate models for en-
tity recognition and disambiguation, which can
be computationally intensive and less effective.
We propose a fine-tuned model that jointly in-
tegrates entity recognition and disambiguation
in a unified framework. Furthermore, our ap-
proach leverages large language models to en-
rich the context of entity mentions, yielding bet-
ter performance in entity disambiguation. We
evaluated our approach on benchmark datasets
and compared with several baselines. The eval-
uation results show that our approach achieves
state-of-the-art performance on out-of-domain
datasets.

1 Introduction

Entity Linking (EL) in knowledge graphs (KGs)
involves identifying and connecting entities within
a text to their corresponding entries, enhancing
the semantic understanding of the text (Oliveira
et al., 2021). This process includes two main steps:
(i) Named Entity Recognition (NER), which de-
tects entity spans such as names, dates, and loca-
tions; and (ii) Entity Disambiguation (ED), which
resolves ambiguities by accurately matching these
entities to their corresponding entries in the knowl-
edge graph.

Traditional EL approaches, such as the two-stage
architecture (Sevgili et al., 2022), divide the task
into candidate generation and entity re-ranking
phases. Another approach involves bi-encoder and
cross-encoder models, as demonstrated by systems
like BLINK (Wu et al., 2020). Bi-encoder mod-
els independently encode mentions and entities for
efficient retrieval. In contrast, cross-encoder mod-
els jointly evaluate mention-entity pairs to enhance
accuracy. Additionally, generative models (Wang
et al., 2023) consider candidate generation as a text

generation task, where models learn to generate
unique entity names based on contextual informa-
tion. However, While these traditional methods
excel in identifying and linking common entities,
they often struggle with handling long-tail entities,
i.e., rare or those with multiple meanings, making
it difficult to accurately disambiguate them in dif-
ferent contexts. For example, consider the entity
‘Jaguar’. In a general context, ‘Jaguar’ could
refer to the animal, the car brand, or even a sports
team. However, in a domain-specific context, such
as a biology research paper, ‘Jaguar’ would most
likely refer to the animal. Traditional methods may
not effectively handle such distinctions, leading to
potential errors in Entity Linking. Another exam-
ple, "Angelina met her partner Brad and her
father Jon in AK", where entities are identified
by their first names, while news articles commonly
use surnames.

In this paper, we propose a LLM-based aug-
mentation strategy to enrich the context of enti-
ties mentions in short texts such as questions. Our
approach expands entities mentions by prompting
the LLM to extend them to their likely Wikipedia
titles, thereby replacing ambiguous entity spans
with more easily linkable ones. For example, the
spans “Angelina”, “Brad” and “Jon” should be
expanded to “Angelina Jolie”, “Brad Pitt”
and “Jon Voight”. Additionally, our strategy re-
places abbreviations like “AK” commonly used for
the state of Alaska, with the full name “Alaska”.
To link entities in out-of-domain datasets, we use
an autoregressive model (De Cao et al., 2021).
which generates entity names token-by-token based
on context. This approach allows the model to
adapt to new or unseen entities by leveraging the
surrounding text, thereby improving accuracy of
identifying and linking entities that are absent from
the training data. We conducted several experi-
ments on different benchmarks to evaluate the per-
formance of our approach against various baselines.
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Specifically, we experimented with two types of
models: An end-to-end model, which directly links
entities and a traditional two-step approach, which
first identifies entity spans before applying the dis-
ambiguation step. The evaluation results demon-
strate that our approach significantly outperforms
different baselines by a large performance margin
on the benchmarking datasets. We summarize the
main contributions in this paper as follows:

• We propose an LLM-based approach for En-
tity Linking that leverages zero-shot prompt-
ing, which achieves state-of-the-art results on
most out-of-domain evaluation datasets.

• We evaluated different LLM-based augmen-
tation strategies for Entity Linking, compar-
ing their effectiveness in both the two-step
approach and the end-to-end approach.

• We evaluated the performance of a joint model
for entity recognition and disambiguation
compared to end-to-end models and NER
models.

• We make our source code and fine-tuned mod-
els publicly available at the GitHub reposi-
tory.1

2 Related Work

Entity Linking is typically involves two phases:
span detection and entity disambiguation (Sevgili
et al., 2022). During span detection phase, most
existing approaches employ standard named entity
recognition to identify relevant spans in text. In
the disambiguation phase, candidate entities are
generated from a knowledge graph and linked to
the most appropriate match using pre-built search
indices, where each entry corresponds to a KG
entity.

Disambiguation Approaches like MAG (Mous-
sallem et al., 2017) and DoSeR (Zwicklbauer et al.,
2016) rely on pre-built indices for effective entity
disambiguation. For example, MAG utilizes five
distinct indices—surface forms, personal names,
rare references, acronyms, and contextual infor-
mation—to query entities. Following the index
query, MAG applies an additional step to refine
the candidate set for final disambiguation. In con-
trast, DoSeR integrates text-based retrieval with
surface forms, leverages a Word2Vec embedding

1https://github.com/dice-group/AugmentedEL

model, and uses a priori probabilities derived from
occurrence frequency for candidate generation, em-
ploying a similar candidate expansion strategy as
MAG. Other approaches such as Mulang’ et al.
(2020) introduce context information by extract-
ing triples from knowledge graphs and verbalizing
them to the input sequence. Meanwhile, Raiman
and Raiman (2018) incorporate type information
into the disambiguation process to improve accu-
racy. Moreover, BLINK (Wu et al., 2020) adopts
an embedding-centric approach for candidate gen-
eration, employing a Bi-Encoder model to generate
representations of both candidates and mentions.
Entity search within the index is executed through
KNN-Search based on context embedding vectors.
Other methods, similar to BLINK (Lai et al., 2022),
combine text-based retrieval with deep neural em-
bedding models for entity disambiguation.

Alternatively, Parravicini et al. (2019) propose
an embedding-based approach where node embed-
dings, derived using the word2vec algorithm, as-
sesses vertex similarity. This method involves eval-
uating candidates via tuples, where each tuple cor-
responds to candidate entities linked to mentions
in a document. A global similarity score, calcu-
lated from these node embeddings, determines the
score for each tuple. In contrast, some approaches
utilize re-ranker models to calculate embeddings,
considering both the mention’s context and candi-
date entities. These models employ a feedforward
layer to re-rank candidates (Wu et al., 2020; Lai
et al., 2022). Lastly,Xin et al. (2024) introduce the
first use of LLMs for context augmentation in en-
tity disambiguation, focusing solely on enhancing
the context of entity mentions without addressing
NER. This method, however, is computationally
intensive due to the need to augment each mention
individually.

End-to-end Entity Linking Unlike, the tradi-
tional two-step Entity Linking process, recent ap-
proaches omit the NER step and directly extract-
ing or annotating entity candidates from the input
sequence. These approaches often employ fine-
tuned models for autoregressive annotation (Zhang
et al., 2021). Early work by Kolitsas et al. (2018)
integrated mention and entity embeddings based
on Word2Vec and sequence-to-sequence models
like LSTM (Hochreiter and Schmidhuber, 1997)
to incorporate contextual information. Further-
more, van Hulst et al. (2020) introduced an ap-
proach that predicts coherence scores to align en-

https://github.com/dice-group/AugmentedEL
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Figure 1: The architecture of our approach, including Jointly Fine-tuning and LLM-based Augmentation

tity annotation. Modern Entity Linking methods
mainly involve fine-tuning Large LLMs for this
task. For instance, GENRE framework (De Cao
et al., 2021) leverages a fine-tuned BART model for
autoregressive annotation of input sequences, uti-
lizing an offline prefix trie from Wikipedia titles to
constrain the decoding process and thus reduce the
search space. In contrast, EntQA approach (Zhang
et al., 2021) uses a vector-based search index simi-
lar to BLINK to identify entities within the input
sequence. During the disambiguation phase, it com-
putes candidate spans for each entity and selects
the highest-scored candidate for linking. Our work
differs from these methods by addressing the entire
Entity Linking pipeline, including NER, and intro-
duces an LLM-based augmentation to improve en-
tity disambiguation, particularly on out-of-domain
datasets.

3 Approach

This section outlines our approach for Entity Link-
ing using a fine-tuned T5 model and contextual
augmentation using LLMs. First, we provide the
task definition of Entity Linking, then a description
our approach’s with the main components, includ-
ing: Named Entity Recognition (NER), LLM-based
Augmentation, Entity Disambiguation (ED) and the
Joint Fine-tuning of (NER&ED). Afterwards, we
describe our strategy to mitigate LLMs hallucina-
tion and the ablations of our approach to assess the
performance of LLM-based augmentation.

3.1 Task Definition

Entity Linking task involves two main steps: (I)
Named Entity Recognition, and (II) Entity Disam-
biguation. Named Entity Recognition identifies

and extracts entity mentions (e.g., people, orga-
nizations, locations) from text. Given a context
C = (t1, t2, · · · , tk), the goal is to identify a sub-
set of tokens M = m1,m2, · · · ,mi representing
entity mentions. The NER function maps C to a list
of entity mention spans M (Sevgili et al., 2022).

NER : C → Mn (1)

After identifying entities, Entity Disambiguation
resolves any potential ambiguities by linking each
mention mi to the correct entity ei in a knowledge
graph, using similarity measures and contextual
information (Sevgili et al., 2022).

ED : [(m1, · · · ,mn), C] → (e1, · · · , en) (2)

3.2 Architecture
We employ the T5 model as the foundation archi-
tecture in our approach and fine-tune it on NER and
ED tasks. This joint fine-tuning allows our model
to leverage shared knowledge across both tasks,
improving its overall performance. The following
sections summarize the main components of our
approach.

3.2.1 Named Entity Recognition
We use the T5 model with a transformer architec-
ture to captures contextual information from both
preceding and succeeding text. Furthermore, the
T5 model regards NER task as a text-to-text prob-
lem, where both input and output are sequences
of text. Initially, the input text is tokenized and
processed by the model’s encoder, which gener-
ates contextual embeddings by considering the sur-
rounding words. These embeddings are then used
by the decoder to produce an output sequence with
entity tags.



8538

In our approach, we fine-tune the T5 model on
annotated datasets with entities, allowing it to learn
accurate tagging based on context. For instance,
the sentence "Angelina met her partner Brad
and her father Jon in AK" is transformed
into [BEGIN_ENT] Angelina [END_ENT] met
her partner [BEGIN_ENT] Brad [END_ENT]
and her father [BEGIN_ENT] Jon [END_ENT]
in [BEGIN_ENT] AK [END_ENT]. In this output,
"Angelina", "Brad", "Jon", and "AK" are recog-
nized as entities and marked with an annotation
tag.

3.2.2 LLM-based Augmentation
To further augment the NER process, we employ
the LlaMA3 model to perform additional entity
recognition and expand on the entities detected
from the previous step. The core idea is to re-
place ambiguous or incomplete entity mentions
with more precise and recognizable forms, such
as full names or specific titles. This is achieved
by prompting the LlaMA3 model to generate these
extended forms based on the given context. Our
prompt includes a structured input with the entity
mention and its surrounding context. For exam-
ple, consider the entity mention "Angelina" in the
sentence: "Angelina met her partner Brad and her
father Jon in AK.". We prompt the LlaMA3 model
to expand entity mentions as follows:

LLM Prompt

Expand the following entity mention
’Angelina’ and abbreviations ’AK’
based on the context: .
Context: ’Angelina met her partner
Brad and her father Jon in AK.’

In response, the LlaMA3 model expands the enti-
ties (e.g., "Angelina"−→"Angelina Jolie" and
for the abbreviation "AK"−→"Alaska". This ap-
proach allows us to replace ambiguous mentions
with their more specific counterparts, thereby im-
proving the ability of the model to link entities in
the follow-up entity disambiguation step.

3.2.3 Entity Disambiguation
Entity Disambiguation is crucial for resolving am-
biguities when multiple entities share the same
name. In our approach, the T5 model addresses
this by encoding the context around an entity men-
tion and creating a representation that captures both
semantic (e.g., word meaning) and syntactic infor-

mation (e.g., sentence structure). determine the
correct entity based on the surrounding text. Then,
it decodes this representation to predict the cor-
rect entity from a set of candidates, using attention
mechanisms to focus on relevant parts of the input
text. Formally, given a context C, the model gen-
erates an output sequence T with entity mentions
m ∈ Mn and their corresponding URIs e ∈ En,
represented by their titles in a target knowledge
graph. The output structure is defined as:

[BEGIN_ENT] m [END_ENT][title(e)] (3)

where m ∈ Mn denotes an entity mention and
e ∈ En represents the associate URI.

Unlike traditional methods, our approach is
unique as it leverages one single T5 model to per-
form both NER and ED sequentially. First, the T5
model generates an intermediate sequence I for
NER:

I = [BEGIN_ENT]m [END_ENT]|m ∈ Mn (4)

Afterward, it predicts the target output based on
the output of the NER step. At inference time,
the target output is expanded by our augmentation
strategy as presented in section 3.2.2.

3.2.4 Jointly Fine-tuning (NER&ED)

To fine-tune the T5 model for both NER and Entity
Disambiguation, we create two different training
samples: one for the NER task and another for the
Disambiguation task. For the NER task, the input
is a text sequence without annotations, appended
with the suffix target_ner. The target sequence is
the same text with annotated entity mentions, as de-
tailed in section 3.2.1. For the Disambiguation task,
the input is a text sequence with annotated entities,
appended with the suffix target_el, and the target
sequence includes the corresponding Wikipedia en-
tity labels, as described in section 3.2.3.

We combine the NER and Disambiguation sam-
ples into a single dataset to fine-tune the model
jointly for both tasks. Additionally, we integrate
the NER and Entity Disambiguation tasks within
a unified framework (see Figure 1). This integra-
tion enhances the robustness and accuracy of our
approach in identifying and disambiguating enti-
ties, leading to improved performance in Entity
Linking.
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3.3 Mitigating LLMs Hallucination
During our implementation, we found that LLM
hallucination is a critical problem, especially in the
augmentation and disambiguation phase. In the
disambiguation step, the LLM model occasionally
predicts labels, that do not exist in Wikipedia. To
avoid this, we generated a dictionary that maps all
Wikipedia titles to their URIs. By applying this
dictionary, we can omit all annotations, where no
exact match in the dictionary exists. In the augmen-
tation step, hallucination occurs when the LLM
model provides augmentations for spans that do
not exist in the sequence or are not annotated by
the NER step. To avoid misleading expansions,
we only consider those spans for expansion that
precisely match one of the annotated spans from
the NER step. Unlike, the augmentation and dis-
ambiguation steps, we did not encounter problems
with hallucination in the NER step.

4 Ablations

We conducted various ablations of our model to
evaluate the impact of augmentation in different
setups of EL models, as follows:

End-to-end foundational model Recent studies
focuses on developing Entity Linking models that
omits mention detection step and directly predicts
the entity set (De Cao et al., 2021; Zhang et al.,
2021). In the end-to-end (E2E) approach, an ex-
panded set of entities is used to directly compute
En for the context C.

To setup the end-to-end approach, we trained our
T5 model to directly predict the target sequence T
from the input context C. This approach aligns
with the same experiments setup by De Cao et al.
on end-to-end Entity Linking. However, our imple-
mentation employs the T5-base model instead of
the BART model. We selected the T5-based model
due to its superior performance without requiring a
prefix trie. Additionally, we used an augmentation
strategy with two inference steps with the model:
first, the model identifies entity mentions to be ex-
panded, then, performs final entity disambiguation.
After the first step, we extract entities mentions
from the output sequence, ignoring the predicted
titles. Subsequently, we use the same LLM prompt,
as in the augmentation Section 3.2.2, to find possi-
ble expansions. To integrate these expansions into
the sequence, we replace the mentions with their
expanded forms, omitting the tags for annotating
entity mentions, similar to the foundational model.

NER augmentation To improve the performance
of our Entity Linking system, we introduce our
LLM prompt to find additional entity spans in the
input texts. We use the following instruction to
guide the LLM in finding accurate entity spans
from the input text:

LLM Prompt

Please generate one list with all
entities from the following text in
JSON format, excluding numbers. Do
not format the json output:
Context: ’Angelina met her partner
Brad and her father Jon in AK.’

We then apply a regular expression, similar to
the first expansion strategy, to extract the new entity
spans. Since we cannot rely on specified indices
in the LLM output, we only consider spans that ex-
actly match the original input sequence. To avoid
overlapping annotations, we order the newly ex-
tracted spans by length in descending order and
add expansions only where no surrounding annota-
tion is present.

Alternative NER approaches we conducted ex-
periments using the state-of-the-art framework
Flair (Akbik et al., 2019) for the mention detection
step. Additionally, we experimented with a hybrid
approach that employs an end-to-end foundational
model for mention detection and then introduces
those entities into the disambiguation step.

5 Experiments

We conducted our experiments to answer the fol-
lowing research questions:

RQ1 How well does our approach compared to
state-of-the-art baselines?

RQ3 How does the LLM-based augmentation im-
pact foundational models?

RQ3 Which augmentation strategy works best?

5.1 Experimental Setup
We fine-tuned the T5 model, using it as a founda-
tional model, on the KILT dataset. The fine-tuning
was conducted on 4 NVIDIA-A100 GPUs, each
with 40GB of memory, for one week. Following
this, we further trained the model on the AIDA-
train dataset for up to 125 epochs with an early
stopping strategy. We used the AIDA-test-A split
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as the development set. We chose the base version
of the T5 model due to its size, which is compara-
ble to the models used in baseline approaches. The
T5 implementation was obtained from Hugging
Face.2 Our training setup mirrors that of the base-
line approaches; no additional datasets were used
for further training. The end-to-end foundational
model, as detailed in Section 4, was trained under
the same conditions. For inference, we deployed
the foundational model and the LLM for the aug-
mentation strategy on a separate machine equipped
with two NVIDIA H100 GPUs. This setup facil-
itated the use of large models like the LLaMA3
with 70 billion parameters.

5.2 Evaluation
We conducted our experiments using the GERBIL
framework (Röder et al., 2018), which benchmarks
Entity Linking on various datasets. We configured
an A2KB experiment and integrated our approach
as a web service. We report the InKB micro F1
scores, which is a standard metric in the litera-
ture. This metric considers only entities with a
corresponding link in the target knowledge graph,
thereby excluding out-of-wiki entities from the eval-
uation (Röder et al., 2018). For our baseline ex-
periments, we focused only on the approaches that
were evaluated in an end-to-end setup, including
NER. This inclusion is critical as the NER output
significantly impacts the performance of entity dis-
ambiguation.

5.3 Datasets
We used different datasets for the end-to-end Entity
Linking task in our experiments (De Cao et al.,
2021; Zhang et al., 2021). These datasets are:
AIDA-test-B (Hoffart et al., 2011)(AIDA), Der-
czynski (Derczynski et al., 2015)(DER), KORE
50 (Hoffart et al., 2012)(K50), MSNBC, NS3-
Reuters-128, NS3-Reuters-500 (Röder et al.,
2014)(R-128,R-500), and the OKE challenge
datasets OKE-2015 and OKE-2016 (Nuzzolese
et al., 2015). Table 1 provides detailed statis-
tics of these datasets, including number of enti-
ties that have a corresponding entry in the knowl-
edge graph (#InKG entities) and number of docu-
ments (#Docs). The AIDA-test-B (Hoffart et al.,
2011) dataset contains the largest number of enti-
ties with corresponding entries in the knowledge
graph. Given that our models were trained on the

2https://huggingface.co/docs/transformers/
model_doc/t5

Table 1: Dataset Statistics

Dataset #InKB entities #Docs
AIDA-test-B 4,485 230
Der 201 183
KORE50 139 48
MSNBC 737 20
N3-Reuters-128 626 115
N3-RSS-500 515 425
oke-2015 481 100
oke-2016 221 55

AIDA-train dataset, AIDA-test-B serves as an in-
domain dataset. All other datasets are considered
out-of-domain. For the knowledge graph, we used
the 2019-Wikidata-dump from the KILT dataset, 3

which is commonly used by state-of-the-art Entity
Linking systems.

5.4 Experimental Results

5.4.1 Comparison to Baseline Approaches
(RQ)1

In this section, we compared the performance of
our model against state-of-the-art baselines across
various datasets. We obtained the scores of base-
lines from Zhang et al.. Our evaluation focused
on three setups that demonstrated the most stable
results: the foundational T5 model with entity span
expansion (T5(NER+ED)), a combination of the
T5 model with the Flair framework for NER (Flair
& T5(ED)), and an end-to-end T5 ablation model
(Section 4) with span expansion (E2E T5).

Table 2 reports the evaluation results on across
all datasets. Unlike traditional Entity Linking sys-
tems such as (Hoffart et al., 2011) and (van Hulst
et al., 2020), which uses separate components
for span detection and entity disambiguation, our
models do not generate candidate entity sets. In-
stead, we use the fine-tuned T5 models with LLM-
augmentation for entity expansions for contextual
information. Our model achieves the best perfor-
mance on all datasets except AIDA and MSNBC.
On the MSNBC dataset, our model’s performance
is comparable to the state-of-the-art. However, we
observed a performance drop on the in-domain
AIDA-test-B dataset compared to the baselines. In-
terestingly, the expansion strategy is less effective
on the AIDA and MSNBC datasets, as described
in Section 5.4.2. This might be due to our founda-
tional models have been trained the AIDA data, so

3https://github.com/facebookresearch/KILT

https://huggingface.co/docs/transformers/model_doc/t5
https://huggingface.co/docs/transformers/model_doc/t5
https://github.com/facebookresearch/KILT
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Table 2: Performance comparison against baseline approaches using InKB micro F1 (RQ1). T5(ED) is fine-tuned for
Entity Disambiguation, while T5(NER+ED) is jointly fine-tuned for both NER and Disambiguation. The best result is
highlighted in bold.

Approach AIDA MSNBC Der K50 R-128 R-500 OKE 2015 OKE 2016 Avg
Hoffart et al. 72.8 65.1 32.6 55.4 46.4 42.4 63.1 0.00 47.2
Steinmetz and Sack 42.3 30.9 26.5 46.8 18.1 20.5 46.2 46.4 34.7
Moro et al. 48.5 39.7 29.8 55.9 23.0 29.1 41.9 37.7 38.2
Kolitsas et al. 82.4 72.4 34.1 35.2 50.3 38.2 61.9 52.7 53.4
van Hulst et al. 80.5 72.4 41.1 50.7 49.9 35.0 63.1 58.3 56.4
De Cao et al. 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2
Zhang et al. 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5
Flair & T5(ED) 71.4 61.3 51.6 72.7 54.5 56.3 66.6 61.5 62.0
T5(NER+ED) 71.6 69.3 55.7 70.6 51.7 56.6 59.4 58.5 61.7
E2E T5 69.0 64.2 53.7 64.3 51.9 57.3 61.6 58.4 60.1

the expansion did not provide substantial new con-
textual information for the input sequences. The
MSNBC dataset, which includes 20 news articles,
shares similarities with the in-domain AIDA-test-
B dataset. The other datasets often contain much
shorter texts with fewer entities and are exclusively
news-based.

Our findings indicate that the more a dataset dif-
fers from our training data, the better our model
performs relative to the baselines. Notably, on the
KORE 50 dataset, which contains highly ambigu-
ous entities, our model with a joint mention detec-
tion and disambiguation improves the F1 score by
over 6 points and 8 points when combined with the
third-party flair NER framework.

5.4.2 Evaluation of foundational models
(RQ)2

To address this research question, we evaluated the
performance of various foundational models, spe-
cially T5, and investigated how our LLM-based
augmentation strategy on affected their perfor-
mances. We employed the LlaMA3 model for en-
tity expansion (e.g., "Angelina" to "Angelina
Jolie") to facilitate entity disambiguation, as de-
scribed in Section 5.4.3).

Table 3 reports the evaluation results for this
experiment. We employed the same models as in
the previous section, along with the mixed foun-
dational model (Mixed model) presented in 4. By
analyzing the results of both the foundational mod-
els and those enhanced with our expansion strategy,
we observed significant improvements on most out-
of-domain datasets. The augmented version of the
traditional setup, which separates mention detec-
tion and evaluation– outperforms the augmented

end-to-end model on five out of eight datasets. For
the other three datasets, the performance difference
between the two setups was negligible. However,
without augmentation, the end-to-end model gen-
erally performs works better than the traditional
setup. This finding suggests that our LLM-based
entity expansion is particularly effective with a tra-
ditional setup for disambiguating and liking entities
to knowledge graphs more accurately.

5.4.3 Evaluation of augmentation strategies
(RQ)3

Table 4 shows the results for the two augmentation
strategies –mention expansion and NER expansion–
for both the foundational model (T5(NER+ED)) and
the combination of Flair and the foundational
model (Flair & T5(ED)). As previously described,
the mention expansion consistently improves the
performance of the Entity Linking system. Con-
versely, the NER expansion strategy shows variable
efficacy on some of the datasets. It improves perfor-
mance on some datasets but leads to worse results
on others compared to using only mention expan-
sion. This variation in performance may originate
from the differences in annotation strategies among
the datasets. Particularly, in the Der dataset, there
is a significant variance in performance, where the
NER expansion strategy annotates more entities
the benchmarks datasets, negatively impacting re-
sults relative to the foundational model and other
strategies.

To further explore this issue, we conducted an ad-
ditional experiment using only the LLM expansion
strategy for entity extraction, labeled as "LLM-
only" in Table 4). The results indicate that the
LLM-only strategy performs well with short texts
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Table 3: Comparison of different foundational models (RQ)2. The first 4 rows present of the approach, when no
augmentation strategy is applied. The other rows present results when the entity expansion strategy (Section 3.2.2)
is applied. The best result is highlighted in bold.

Model AIDA MSNBC Der K50 R-128 R-500 OKE 2015 OKE 2016 Avg
Flair & T5(ED) 73.5 67.0 48.8 50.0 41.0 55.1 58.9 55.0 56.2
T5(NER+ED) 67.4 61.5 53.9 50.0 47.6 55.2 55.9 56.0 56
E2E T5 68.0 63.0 50.4 49.6 49.1 56.8 56.1 56.5 56.1
Mixed model 66.8 61.9 53.5 48.5 49.2 55.3 56.8 50.0 55.2
Flair & T5(ED) aug. 71.4 61.3 51.6 72.7 54.5 56.3 66.6 61.5 62.0
T5(NER+ED) aug. 71.6 69.3 55.7 70.6 51.7 56.6 59.4 58.5 61.7
E2E T5 aug. 69.0 64.2 53.7 64.3 51.9 57.3 61.6 58.4 60.1
Mixed model aug. 69.0 63.1 55.0 69.6 52.3 58.1 60.6 53.5 60.2

Table 4: Evaluation of different augmentation strategies (RQ3). Models with NER-exp indicate the use of both NER
and mention expansion, while other models use only mention expansion. The best result is highlighted in bold.

Model AIDA MSNBC Der K50 R-128 R-500 OKE 2015 OKE 2016 Avg
T5(NER+ED) 71.6 69.3 55.7 70.6 51.7 56.6 59.4 58.5 61.7
T5(NER+ED), NER-exp 68.0 70.3 37.4 69.3 53.0 45.4 44.6 57.4 55.7
Flair & T5(ED) 71.4 61.3 51.6 72.7 54.5 56.3 66.6 61.5 62.0
Flair & T5(ED), NER-exp. 67.4 57.0 37.1 76.1 51.7 46.5 62.8 61.2 57.5
LLM-only 63.7 62.6 36.4 75.1 49.3 47.3 61.7 59.6 57.0

in the KORE 50 dataset but underperforms on
other datasets when not combined with with the
T5 model. We retain the T5 model for predict-
ing final identifiers, since using mention expansion
alone led to hallucinations, making many predicted
identifiers untraceable in the title dictionary.

6 Conclusion and future work

In this paper, we present our approach for Entity
Linking using a jointly fined-tuned model and con-
textual augmentation with LLMs. In particular, our
approach employs a fine-tuned T5 model that inte-
grates NER and disambiguation tasks into a unified
framework, reducing resource demands compared
to separate models for each task. Although this
setup may slightly drop performance, our experi-
ments showed that this performance loss is only
marginal, mainly due to unseen entities. Further-
more, our approach leverages the LlaMA-3-70B
model to expend entities mentions with contextual
augmentation. The evaluation results demonstrate
that LLM-based augmentation significantly im-
proves the performance on out-of-domain datasets,
achieving state-of-the-art results compare to tra-
ditional two-step methods (i.e., entity recognition
and disambiguation).

Future work will focus on analyzing the perfor-
mance of LLM-based disambiguation strategies
in predicting rare entities, which require creating

a new benchmark datasets. In the appendix, we
present an additional experiment that shows larger
LLMs performs better than smaller ones, as they
return more consistent output with fewer variations.

7 Limitations

Similar to the approaches (De Cao et al., 2021),
we use Wikipedia as the main knowledge graph,
where unique titles facilitate entity identification.
However, this method is not always possible with
other knowledge graphs like Wikidata (Vrandečić
and Krötzsch, 2014). Existing benchmarks and
training datasets are also based on Wikipedia, mak-
ing text-based features sufficient for efficient Entity
Linking. However, in other knowledge graphs, the
graph-based structure is crucial for disambigua-
tion. For instance, the German state of Berlin and
the city of Berlin share the same label but are dis-
tinct entities, making interconnected entities cru-
cial for disambiguation. The current benchmarking
datasets used for evaluation are outdated and do
not address newer challenges like predicting rare
entities. Additionally, it is unclear to what extent
these datasets have been included in the training
data of current LLMs. Therefore, future research
should focus on developing new datasets that also
address the limitations of modern LLMs.



8543

Acknowledgement

This work has been supported by the Ministry of
Culture and Science of North Rhine-Westphalia
(MKW NRW) within the project SAIL under the
grant no NW21-059D, by the German Federal Min-
istry of Education and Research (BMBF) within
the project KIAM under the grant no 02L19C115,
by the German Federal Ministry of Education and
Research (BMBF) within the project COLIDE un-
der the grant no 01IS21005D and the European
Union’s Horizon Europe research and innovation
programme under grant agreement No 101070305.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Leon Derczynski, Diana Maynard, Giuseppe Rizzo,
Marieke van Erp, Genevieve Gorrell, Raphaël Troncy,
Johann Petrak, and Kalina Bontcheva. 2015. Anal-
ysis of named entity recognition and linking for
tweets. Information Processing &amp; Management,
51(2):32–49.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
KORE: keyphrase overlap relatedness for entity dis-
ambiguation. In Proceedings of the 21st ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’12, page 545–554, New York,
NY, USA. Association for Computing Machinery.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 782–792, Edinburgh, Scotland, UK. Associa-
tion for Computational Linguistics.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas
Hofmann. 2018. End-to-end neural entity linking.
In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 519–529,

Brussels, Belgium. Association for Computational
Linguistics.

Tuan Manh Lai, Heng Ji, and ChengXiang Zhai. 2022.
Improving candidate retrieval with entity profile gen-
eration for wikidata entity linking. arXiv preprint.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity linking meets word sense disam-
biguation: a unified approach. Transactions of the
Association for Computational Linguistics, 2:231–
244.

Diego Moussallem, Ricardo Usbeck, Michael Röder,
and Axel-Cyrille Ngonga Ngomo. 2017. Mag: A
multilingual, knowledge-base agnostic and determin-
istic entity linking approach. In K-CAP 2017: Knowl-
edge Capture Conference, page 8. ACM.

Isaiah Onando Mulang’, Kuldeep Singh, Chaitali
Prabhu, Abhishek Nadgeri, Johannes Hoffart, and
Jens Lehmann. 2020. Evaluating the impact of
knowledge graph context on entity disambiguation
models. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Man-
agement, CIKM ’20, page 2157–2160. ACM.

Andrea Giovanni Nuzzolese, Anna Lisa Gentile,
Valentina Presutti, Aldo Gangemi, Darío Garigliotti,
and Roberto Navigli. 2015. Open knowledge extrac-
tion challenge. In SemWebEval@ESWC.

Italo L. Oliveira, Renato Fileto, René Speck, Luís P.F.
Garcia, Diego Moussallem, and Jens Lehmann. 2021.
Towards holistic entity linking: Survey and directions.
Information Systems, 95:101624.

Alberto Parravicini, Rhicheek Patra, Davide B. Bar-
tolini, and Marco D. Santambrogio. 2019. Fast and
accurate entity linking via graph embedding. In Pro-
ceedings of the 2nd Joint International Workshop
on Graph Data Management Experiences & Sys-
tems (GRADES) and Network Data Analytics (NDA),
GRADES-NDA’19, New York, NY, USA. Associa-
tion for Computing Machinery.

Jonathan Raiman and Olivier Raiman. 2018. Deeptype:
Multilingual entity linking by neural type system
evolution. Preprint, arXiv:1802.01021.

Michael Röder, Ricardo Usbeck, Sebastian Hellmann,
Daniel Gerber, and Andreas Both. 2014. N3 - a col-
lection of datasets for named entity recognition and
disambiguation in the NLP interchange format. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 3529–3533, Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

Michael Röder, Ricardo Usbeck, and Axel-
Cyrille Ngonga Ngomo. 2018. GERBIL -
benchmarking named entity recognition and linking
consistently. Semantic Web, 9(5):605–625.

https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.1016/j.ipm.2014.10.006
https://doi.org/10.1016/j.ipm.2014.10.006
https://doi.org/10.1016/j.ipm.2014.10.006
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/2396761.2396832
https://doi.org/10.1145/2396761.2396832
https://aclanthology.org/D11-1072
https://aclanthology.org/D11-1072
https://doi.org/10.18653/v1/K18-1050
https://doi.org/10.48550/ARXIV.2202.13404
https://doi.org/10.48550/ARXIV.2202.13404
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1162/tacl_a_00179
https://doi.org/10.1145/3340531.3412159
https://doi.org/10.1145/3340531.3412159
https://doi.org/10.1145/3340531.3412159
https://api.semanticscholar.org/CorpusID:6169907
https://api.semanticscholar.org/CorpusID:6169907
https://doi.org/10.1016/j.is.2020.101624
https://doi.org/10.1145/3327964.3328499
https://doi.org/10.1145/3327964.3328499
https://arxiv.org/abs/1802.01021
https://arxiv.org/abs/1802.01021
https://arxiv.org/abs/1802.01021
http://www.lrec-conf.org/proceedings/lrec2014/pdf/856_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/856_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/856_Paper.pdf
https://doi.org/10.3233/SW-170286
https://doi.org/10.3233/SW-170286
https://doi.org/10.3233/SW-170286


8544

Özge Sevgili, Artem Shelmanov, Mikhail Arkhipov,
Alexander Panchenko, and Chris Biemann. 2022.
Neural entity linking: A survey of models based on
deep learning. Semantic Web, 13(3):527–570.

Nadine Steinmetz and Harald Sack. 2013. Semantic
multimedia information retrieval based on contex-
tual descriptions. In The Semantic Web: Semantics
and Big Data, 10th International Conference, ESWC
2013, Montpellier, France, May 26-30, 2013. Pro-
ceedings, volume 7882 of Lecture Notes in Computer
Science, pages 382–396. Springer.

Johannes M. van Hulst, Faegheh Hasibi, Koen Derck-
sen, Krisztian Balog, and Arjen P. de Vries. 2020.
REL: An entity linker standing on the shoulders of gi-
ants. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’20, page 2197–2200,
New York, NY, USA. Association for Computing
Machinery.
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Table 5: Comparison for different models for the expansion. The best result is highlighted in bold.

Model AIDA MSNBC Der K50 R-128 R-500 OKE 2015 OKE 2016 Avg
LLama3 70B 71.6 69.3 55.7 70.6 51.7 56.6 59.4 58.5 61.7
LlaMA3 8B 69.6 67.7 53.2 53.3 48.1 54.7 53.5 49.1 56.2
LLama 2 70B 70.2 68.1 51.5 57.9 48.2 57.4 57.2 50.5 57.6
LLama 2 7B 70.3 70.0 53.0 51.5 47.7 54.7 55.6 54.3 57.1
Mistral 70.7 67.5 54.2 48.3 47.6 56.1 56.1 56.1 57.1
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