@inproceedings{li-etal-2025-semantic,
title = "Semantic Reshuffling with {LLM} and Heterogeneous Graph Auto-Encoder for Enhanced Rumor Detection",
author = "Li, Guoyi and
Hu, Die and
Liu, Zongzhen and
Zhang, Xiaodan and
Lyu, Honglei",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.572/",
pages = "8557--8572",
abstract = "Social media is crucial for information spread, necessitating effective rumor detection to curb misinformation`s societal effects. Current methods struggle against complex propagation influenced by bots, coordinated accounts, and echo chambers, which fragment information and increase risks of misjudgments and model vulnerability. To counteract these issues, we introduce a new rumor detection framework, the Narrative-Integrated Metapath Graph Auto-Encoder (NIMGA). This model consists of two core components: (1) Metapath-based Heterogeneous Graph Reconstruction. (2) Narrative Reordering and Perspective Fusion. The first component dynamically reconstructs propagation structures to capture complex interactions and hidden pathways within social networks, enhancing accuracy and robustness. The second implements a dual-agent mechanism for viewpoint distillation and comment narrative reordering, using LLMs to refine diverse perspectives and semantic evolution, revealing patterns of information propagation and latent semantic correlations among comments. Extensive testing confirms our model outperforms existing methods, demonstrating its effectiveness and robustness in enhancing rumor representation through graph reconstruction and narrative reordering."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-semantic">
<titleInfo>
<title>Semantic Reshuffling with LLM and Heterogeneous Graph Auto-Encoder for Enhanced Rumor Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guoyi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Die</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zongzhen</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Honglei</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media is crucial for information spread, necessitating effective rumor detection to curb misinformation‘s societal effects. Current methods struggle against complex propagation influenced by bots, coordinated accounts, and echo chambers, which fragment information and increase risks of misjudgments and model vulnerability. To counteract these issues, we introduce a new rumor detection framework, the Narrative-Integrated Metapath Graph Auto-Encoder (NIMGA). This model consists of two core components: (1) Metapath-based Heterogeneous Graph Reconstruction. (2) Narrative Reordering and Perspective Fusion. The first component dynamically reconstructs propagation structures to capture complex interactions and hidden pathways within social networks, enhancing accuracy and robustness. The second implements a dual-agent mechanism for viewpoint distillation and comment narrative reordering, using LLMs to refine diverse perspectives and semantic evolution, revealing patterns of information propagation and latent semantic correlations among comments. Extensive testing confirms our model outperforms existing methods, demonstrating its effectiveness and robustness in enhancing rumor representation through graph reconstruction and narrative reordering.</abstract>
<identifier type="citekey">li-etal-2025-semantic</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.572/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>8557</start>
<end>8572</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic Reshuffling with LLM and Heterogeneous Graph Auto-Encoder for Enhanced Rumor Detection
%A Li, Guoyi
%A Hu, Die
%A Liu, Zongzhen
%A Zhang, Xiaodan
%A Lyu, Honglei
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F li-etal-2025-semantic
%X Social media is crucial for information spread, necessitating effective rumor detection to curb misinformation‘s societal effects. Current methods struggle against complex propagation influenced by bots, coordinated accounts, and echo chambers, which fragment information and increase risks of misjudgments and model vulnerability. To counteract these issues, we introduce a new rumor detection framework, the Narrative-Integrated Metapath Graph Auto-Encoder (NIMGA). This model consists of two core components: (1) Metapath-based Heterogeneous Graph Reconstruction. (2) Narrative Reordering and Perspective Fusion. The first component dynamically reconstructs propagation structures to capture complex interactions and hidden pathways within social networks, enhancing accuracy and robustness. The second implements a dual-agent mechanism for viewpoint distillation and comment narrative reordering, using LLMs to refine diverse perspectives and semantic evolution, revealing patterns of information propagation and latent semantic correlations among comments. Extensive testing confirms our model outperforms existing methods, demonstrating its effectiveness and robustness in enhancing rumor representation through graph reconstruction and narrative reordering.
%U https://aclanthology.org/2025.coling-main.572/
%P 8557-8572
Markdown (Informal)
[Semantic Reshuffling with LLM and Heterogeneous Graph Auto-Encoder for Enhanced Rumor Detection](https://aclanthology.org/2025.coling-main.572/) (Li et al., COLING 2025)
ACL