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Abstract

The volume of academic articles is increasing
rapidly, reflecting the growing emphasis on
research and scholarship across different sci-
ence disciplines. This rapid growth necessitates
the development of tools for more efficient and
rapid understanding of these articles. Clear and
well-defined Research Questions (RQs) in re-
search articles can help guide scholarly inquiries.
However, many academic studies lack a proper
definition of RQs in their articles. This research
addresses this gap by presenting a comprehen-
sive framework for the systematic extraction,
detection, and generation of RQs from scientific
articles. The extraction component uses a set of
regular expressions to identify articles contain-
ing well-defined RQs. The detection component
aims to identify more complex RQs in articles,
beyond those captured by the rule-based ex-
traction method. The RQ generation focuses on
creating RQs for articles that lack them. We in-
tegrate all these components to build a pipeline
to extract RQs or generate them based on the
articles’ full text. We evaluate the performance
of the designed pipeline on a set of metrics de-
signed to assess the quality of RQs. Our results
indicate that the proposed pipeline can reliably
detect RQs and generate high-quality ones.

1 Introduction

Scientific articles, often characterized by their
extensive and complex nature, pose challenges for
users seeking specific key findings or addressed
questions within the research (Zia and Mushtaq,
2023; Candal-Pedreira et al., 2023). These
challenges are partially due to the absence of
standardized Research Question (RQ) formulations
across articles (Khongsdier, 2007), with many
failing to state their findings or even feature RQs
explicitly. With the rapid expansion of scholarly
literature, there is a growing need for efficient and
reliable methods to both detect (and annotate) RQs
if present and generate them if missing within the
context of articles (Zia and Mushtaq, 2023). Such
high-quality questions can play an important role

in motivating researchers to engage deeply with the
study and think critically (Dickman, 2009; Walsh
and Sattes, 2016; Mehta and Bhandari, 2016).

The primary objective of this study is to construct
a pipeline to detect and annotate RQs within
articles, subsequently leveraging this annotated
data to formulate RQs for articles that lack them.
This pipeline not only aids in annotating RQs, but
also serves as a tool for formulating RQs. The
proposed pipeline has three main components: RQ
extraction, RQ detection, and RQ generation.

The RQ extraction component tries to identify
a set of easily recognizable RQs. The primary ap-
plication of this component is to annotating RQs in
research articles and compiling an RQ dataset. The
goal of the RQ detection component is to detect
RQs in articles with well-defined RQs. The ex-
tracted compilation of RQs from the RQ extraction
step serves as a reference dataset, which is used to
train a sentence classifier to tag sentences within arti-
cles as containing an RQ or not. These RQs found in
a corpus of articles by this trained model are used to
augment the set of RQs extracted by the extraction
component. The RQ generation component aims at
generating RQs for articles lacking them. To build
this component, the augmented dataset resulting
from the RQ detection step is employed to fine-tune
a set of text generation models, including Large
Language Models (LLMs). By integrating all these
components together, we establish a comprehensive
framework to extract, identify, and generate RQs.

In summary, this study investigates the following
research questions:

RQ1: How effective is a text classification
approach in detecting different research question
patterns in research articles?

RQ2: How do different LLMs perform on the
task of generating well-defined research questions?

RQ3: How does a unified pipeline combining
research question extraction, detection, and genera-
tion components perform in forming well-structured
research questions for scientific articles?

We evaluate the performance of each component
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on a set of articles with their RQs. For the RQ
detection task, we evaluate its performance in distin-
guishing RQs from non-RQ sentences. Our results
show that the models trained on the dataset resulting
from the RQ extraction component can effectively
detect RQs. We further improve the performance of
this model using an Active Learning (AL) pipeline
integrating LLMs into the data annotation process.
Our results on the RQ generation task also indicate
the capability of the fine-tuned LLMs in generating
high-quality RQs for research articles.

2 Related Work

Our work touches upon several related works
from different aspects: question answering and
generation, RQ formulation, and fine-tuning LLMs.

2.1 Question Asking and Answering
The ability to ask and formulate a good question is
an important skill that facilitates critical reasoning,
leading to improved thinking and understanding
(Stanlick and Strawser, 2015). Posing high-quality
questions motivates researchers to think critically
(Dickman, 2009; Walsh and Sattes, 2016; Mehta
and Bhandari, 2016). While there is not much work
on the automatic generation of such high-quality
questions, there has been a lot of work around
answering questions in the scientific domain (Chen
and Yih, 2020; Gupta and Gupta, 2012; Lehnert,
2022; Mollá and Vicedo, 2007; Voorhees, 2001).
In this work, we reverse this process and we aim to
build a pipeline to generate engaging and interesting
questions based on a given scientific article that are
answerable by the article.

2.2 Automatic Question Generation
Automatic Question Generation (AQG) is the
process of creating questions from textual content
using computational methods or AI without human
intervention. AQG techniques have been developed
to meet the growing demand for high-quality
questions, notably in educational settings where
questions were often generated and ranked using lo-
gistic regression models trained on tailored datasets,
significantly enhancing their acceptance rate by the
annotators (Kurdi et al., 2020; Heilman and Smith,
2010). Recent surveys highlight a shift towards
semantic information and transformer-based
models that improve accuracy and efficiency by
leveraging self-attention mechanisms (Lu and Lu,
2021; Ning et al., 2023). These models are used for
various applications, such as data augmentation in
Question Answering (QA) systems or reading com-
prehension tasks. AQG systems now predominantly

use statistical methods over rule-based templates.
Although there is no standard evaluation metric,
automatic and human evaluations remain common.

2.3 Research Question Formulation

Ratan et al. (2019) defined the characteristics of a
good RQ by the acronym “FINERMAPS”, which
stands for Feasible, Interesting, Novel, Ethical, Rel-
evant, Manageable, Appropriate, Potential value
and publishability, and Systematic. Detailing the
problem statement, refining the issue under study,
adding focus to the problem statement, guiding data
collection and analysis, and setting the context of
the research are detected as the key steps for defining
a good RQ. They also highlighted the importance
of developing a hypothesis that gives insight into
the RQ, is testable and measurable, has a logical
basis, and follows the most likely outcome. Finally,
they noted that having a grounded interest in the
RQ, conducting a comprehensive literature review,
and having a deep understanding of the specific area
or problem to be investigated are important keys
to forming a good RQ. In this work, we adapt and
use a subset of these characteristics to evaluate the
generated RQs.

2.4 Fine-tuning Large Language Models

LLMs stand out for generating human-like text,
understanding context, and performing complex
language tasks. Fine-tuning has proven effective
in optimizing them for specific domains (Dong
et al., 2024; Huang et al., 2023). In this research,
we use specific models from the BERT series for
the RQ detection task and from the T5, Mistral, and
Llama series for the RQ generation task due to their
open-source availability.

Meta’s Llama models (Touvron et al., 2023a)
(Touvron et al., 2023b), trained on public datasets,
outperform GPT-3 (Brown et al., 2020) in most
benchmarks while using substantially lower
parameters, and Llama 3 (Dubey et al., 2024) closes
the gap with GPT-4 (OpenAI et al., 2024). Mistral
7B (Jiang et al., 2023) stands out for its innovative
approach to complex language processing, but per-
forms worse in linguistic accuracy in comparison to
ChatGPT and Llama models (Hou and Lian, 2024).
BERT (Devlin et al., 2019), with its bidirectional
context understanding, excels at tasks like question
answering. T5 (Raffel et al., 2020), by framing
tasks as text-to-text, performs well across multiple
NLP problems.
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3 Methods

In this section, we commence by defining what
constitutes an RQ in this work, after which we
describe our pipeline for extracting, detecting, and
generating such RQs.

3.1 Research Question Definition
An RQ within a study serves as a statement that
summarizes the goal of the study or identifies the
main problem that the study aims to answer with
a potential solution. It may be framed as a question
or a declarative statement. Based on this definition,
we define a snippet of text to “contain an RQ” if an
RQ can be constructed solely using the information
present in that snippet.

Based on the characterization of RQs discussed
by Ratan et al. (2019), a good RQ possesses the
“FINERMAPS” characteristics. For our research,
we simplify these characteristics to “FIRE”, stand-
ing for Feasible, Interesting, Relevant, and Ethical.
Feasible means that the question or problem should
be solvable and able to be realistically answered.
Interesting implies that the RQ should engage and
curiosity of researchers. Relevant requires the RQ
to be aligned with the topic of the article and to raise
a question or problem that the article is seeking
to address. We assess relevance based on the RQs
connection to the specific content and focus of the
article. Lastly, Ethical mandates the RQ to adhere
to ethical standards and guidelines in research and
respect the rights, well-being, and privacy of all
individuals or groups involved. We exclude the
other characteristics primarily because they either
overlap with the selected characteristics or are
difficult to measure. For instance, Manageable
is essentially synonymous with Feasible, and
assessing attributes like Novel or the version of
Relevant provided by Ratan et al. (2019) would
require analyzing the relevant literature review for
each article, which is beyond the scope of this study.

3.2 Research Question Pipeline
The goal of the RQ pipeline is to seamlessly handle
the entire process of identifying or generating an
appropriate RQ for a given article. The framework
takes an article as input and either extracts a suitable
RQ from the text or generates one if none can be
found. Figure 1 illustrates the architecture of our
pipeline. The process begins with RQ extraction,
where we extract RQs from articles using a set of
predefined regular expressions. If a sentence in the
article matches one of these patterns, the pipeline
concludes having successfully extracted the RQ.
If no patterns match, the pipeline proceeds to the

RQ extraction Yes

No

RQ detection

No

Yes

Context
containing RQ

found?

RQ

Selected
article
section

RQ found?

Context
containing

RQ

RQ generation RQ

Article

Figure 1: Overview of the RQ processing pipeline:
extraction, detection, and generation.

RQ detection phase. The RQ detection component
classifies a context of three sentences as containing
an RQ or not. Consequently, the classifier processes
each three-sentence segment of the article. If
an RQ-containing context is identified, it is
reformulated into an RQ using the RQ generation
component. If no explicit RQs are detected in the
text, we use sections where RQs are frequently
introduced, such as “Abstract” or “Introduction”. 1

3.3 Research Question Extraction
The first step for training RQ detection models
is to create a dataset for this task. Manually
creating large-scale datasets is resource-intensive.
Therefore, we create a weakly-labeled dataset using
a set of regular expressions. The goal is to extract
RQs that are easily identifiable within the text to
form an initial dataset. To do this, we first perform
an extensive qualitative analysis of the structure of
RQs on a set of articles. In doing so, we try to spec-
ify the commonalities of RQs and then convert such
commonalities to a set of regular expressions. These
regular expressions are subsequently used to detect
RQs from a large set of articles. As a result, these
extracted RQs will serve as our initial corpus to train
RQ detection models, which will accordingly make
the identification of more complex RQs possible.

For the purpose of RQ extraction, we match the
article text with regular expressions (regex patterns)
that are likely to contain or be followed by an RQ.
For example, a phrase such as “...aim of this study
is...” is expected to be followed by an RQ. To
gather negative samples, we aim to find non-RQ
sentences that closely resemble RQs to enhance
our classification models’ ability to accurately
distinguish between the classes. To achieve this,
we select the negative sentences close to where the
RQs are extracted, specifically within the range of
20 to 10 sentences before and after the RQ, while
ensuring that they do not contain any RQ patterns.

1As we show in Appendix B, RQs appear most frequently
in the “Abstract” or “Introduction” sections” of the articles.
Therefore, we use these sections to generate an RQ when an
RQ-containing context is not identified.
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Furthermore, we extract negative samples based
on regex patterns, similar to the approach used for
RQ extraction. Occasionally, it is observed that ar-
ticles refer to RQs from other studies, particularly
in the “Related work” or “Background” sections. In
such instances, we classify those sentences as nega-
tive and refer to them as negative RQs, since they do
not present an RQ from the article itself. Identifying
and labeling these cases as negative samples is cru-
cial, as it helps the model to more accurately distin-
guish genuine RQs within the article and improves
its ability to detect real RQs in shorter texts. The de-
tails of the regex patterns are given in Appendix A.

3.4 Research Question Detection
The RQ detection component identifies RQs in an
article by dividing it into three-sentence contexts
and determining if each contains an RQ. To achieve
this, a sentence classifier is trained on data from
the RQ extraction process. The SciBERT model
(Devlin et al., 2019) is fine-tuned for sequence
classification, with three-sentence contexts used
as input, where the potential RQ is placed in the
middle sentence. Incorporating the surrounding
context of a sentence provides more information,
leading to a more accurate and effective model for
RQ detection. For half of the data, we remove the
RQ patterns (the strings that matched the regex
pattern in RQ extraction) to maintain a level of
complexity in the training data that encourages the
model to develop a deeper understanding of what
constitutes an RQ. To improve the generalizability
of the model, we further extract negative samples
using an Active Learning (AL) process.

Active Learning The negative samples extracted
for RQ classification are randomly selected from
contexts adjacent to where the RQs are located
within the articles. To enhance the robustness and
generalization of our model, we need more hard
negative samples.

To extract hard negatives, we devise an algorithm
using the AL framework: we first train a classifier
on an initial dataset, which is then used to classify
a new, unseen set of samples. The samples detected
as positive (i.e., containing an RQ) by the model are
subsequently fed into an LLM, accompanied by spe-
cific instructions, to verify whether an RQ is indeed
present in the given context (a detailed description
of the prompt can be found in Appendix D). We then
retain the samples that the LLM identifies as neg-
ative. We consider these samples as hard negatives,
as they closely resemble texts containing an RQ but
are incorrectly flagged as positive by the initial RQ
detector. Next, the hard negative samples identified

Training
data

Trained
model

Train the
classification model

Detected
positive
samples

Inference

Testset ti

Negative samples

LLM Validation

+

Figure 2: Active Learning process to identify and refine
negative samples for RQ detection.

Dataset of
articles

RQ Detection Context
containing

RQ

Question Formation
LLM

Formed
RQ

dataset

Regex
pattern

RQs

+ RQ
dataset

RQ Generation model

Figure 3: Workflow for generating RQs using detected
contexts and LLM fine-tuning.

by the LLM are incorporated into our training set
and labeled as negative. This process of training
and extracting hard negatives is iterative, allowing
us to continually expand the dataset with additional
hard negatives over multiple training cycles. The
primary aim is to develop a robust dataset enriched
with high-quality negative samples, which are then
used to train a lightweight classification model.
This model is more efficient and cost-effective than
using LLMs for classification. Figure 2 shows the
process of AL for extracting hard negative samples.
We repeat the AL loop four times in our pipeline.

3.5 Research Question Generation

The RQ detection method focuses on identifying
explicit RQs or contexts that closely resemble RQs
within articles. However, some articles may lack
clearly defined and structured RQs or contexts that
include RQs. To address this gap and ensure that
all articles have well-formulated and precise RQs, it
becomes necessary to generate these RQs for them.

Our RQ generation approach uses the contexts
and RQs detected by the RQ detection method
to train models that, given a context within an
article, generates an RQ describing the context in
a well-defined question-like format.

We prepare a dataset for RQ generation by
running an inference of the RQ detection model
(enhanced via the AL process) on a set of articles
and extracting the positive detections. This dataset
comprises contexts that include an RQ, but these
contexts often lack well-formatted RQs necessary
to train an RQ generation model. These contexts
are transformed into well-defined RQs prior to
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model training. We use an LLM to convert the
detected contexts into well-defined RQs. The
process involves feeding the context into the LLM
with specific instructions to generate questions
based on the context. These instructions include
a description of the task and a definition of RQs.
Assuming we have a set of articles D in our dataset,
we first extract C = ModelAL(D) as the set of
contexts containing RQs detected by the model
from the AL experiment. The set of RQs is formed
as Rformed=LLM(C). For a detailed description
of the prompt used, refer to Appendix E.

In addition to generating RQs for articles with
detected RQs, we also extract a set of question-type
RQs from those obtained through regex patterns.
These extracted RQs are incorporated into the
dataset, resulting in a comprehensive collection
of question-type RQs that enhance the dataset’s
robustness and diversity. Assuming that Rregex is
the set of question-type RQs extracted using regex
patterns, the combined set of question-type RQs is:
Q=Rformed∪Rregex.

To have a model that can generate an RQ from an
article, we need to use a relatively big and important
part of it as input to the model. Therefore, to train
our model, we extract the specific paragraphs
or sections that contain the original RQs or the
parts of the text from which the RQs are formed.
We define P and S as the set of paragraphs and
sections (respectively) in D that contain the text
from which we found or formed the RQs in Q.
After constructing this enriched dataset (Q,P,S),
we proceed to fine-tune several LLMs for the task
of RQ generation. We consider two types of input
tasks: paragraph-level input, where P serves as the
input, and section-level input, where S serves as
the input. In both cases, the output of the models
is Q, the set of well-formed RQs. The process of
RQ generation is shown in Figure 3. For a detailed
description of the prompt used, refer to Appendix E.

4 Experimental Setup

4.1 Article Corpus

As the article corpus, we use the full text of articles
published in peer-reviewed journals from Elsevier’s
ScienceDirect2 database. This database contains
over 19 million full-text articles published in
different science domains. We specifically consider
a single domain, Computer Science (CS), to narrow
the range of RQ possibilities and to maintain consis-
tency in their formulation. There are in total 555,688
articles in the CS domain with full text accessible.

2https://www.sciencedirect.com/

4.2 Benchmark Set
For evaluation, we designate a subset of the
extracted RQs from our dataset as our standard test
set, though its proximity to the training data may
introduce bias. To tackle this problem, we create
an additional test set consisting of 40 articles with
manually identified RQs. We refer to this as the
benchmark set. These articles are randomly selected
and are completely distinct from the data used for
RQ detection. To ensure accuracy and consistency,
four data scientists, experienced in working with
scientific articles and conducting scientific research,
particularly in the CS domain, meticulously extract
all RQs from these articles. The findings are cross-
checked to resolve any discrepancies. A total of
159 RQs are identified in these articles, which serve
as the gold standard for evaluating the performance
of our models across various experiments.

4.3 Experimental Setup
RQ Detection For training different RQ detection
methods, we use a dataset of 27,137 articles con-
taining RQs and negative samples resulting from
the method described in Section 3.3. We take 20%
of the samples for testing and split the remaining
samples into sets of 80% train and 20% validation.

Next, we separate the positive RQ and negative
RQs to ensure that all sentences from a single article
remain within the same training, validation, or test
set, preventing any potential overlap between sets.
We end up with 299,431 train, 75,117 validation,
and 94,002 test data points. Out of 299,431 train
samples, np = 17,367 are positive. Then, based
on the training negative/positive proportion (TNP)
value, we sample nn = TNP× np negative data.
This results in a total of np×(TNP+1) samples.

We further experiment with adding the samples
containing negative patterns to the train data.
For this experiment, there are 30,807 data points
achieved using the method outlined in Section
3.3. We denote the inclusion of negative pattern
data with the WNEG variable. Consequently, the
total number of training samples is given by the
following expression:

np×(TNP+1)+WNEG×30,807. (1)
We evaluate the models on our test split and the
benchmark set. For the evaluation on the test set, we
consider accuracy, precision, recall, and F1 metrics.
The latter three metrics are macro averages over the
positive and negative labels. For the evaluation on
the benchmark set, we consider precision, recall,
and F1 metrics on positive labels only.

We use a batch size of 32 for our experiments,
a warm-up step of 400, and a weight decay of 0.01.

https://www.sciencedirect.com/
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We train the models for 2 epochs and use a learning
rate of 3×10−7.

Active Learning For the initial model training of
the AL algorithm, we take 5,000 training samples
as the initial training set. We train the classifiers
with TNP = 1 and a learning rate of 3× 10−7 for
30 epochs. We use GPT-3.5-turbo for validating
RQs, with its temperature, frequency penalty, and
presence penalty values set to zero. We run the AL
algorithm for four iterations, fine-tuning a SciBERT
model for RQ classification each time. We consider
a large test set consisting of 95,848 data points for
all experiments, along with separate smaller test
sets for each iteration.

RQ Generation For RQ generation, we consider
13,359 articles containing 940,279 three-sentence
contexts as the data on which we perform RQ de-
tection. These articles are selected from a larger set
that excludes those identified using regex patterns
for RQ extraction. We employ the AL experiment
model after the final training iteration to perform RQ
detection on this dataset. After applying the model,
we identify 7,116 positive samples that contain RQs
from 3,922 articles. These 7,116 three-sentence
contexts are then given to GPT-3.5-turbo to form
RQs. Temperature, frequency penalty, and presence
penalty are set to zero. We then extract RQs in ques-
tion format from our set of RQs containing regex
patterns. As a result of this process, we extract a total
of 7,258 RQs. We then add this data to the previously
formed RQs dataset obtained from the RQ detection
and formation components, resulting in a combined
total of 14,374 RQs. For each RQ, we also extract
the corresponding paragraph and the smallest sub-
section of the article in which the RQ was found, to
be used as input for our RQ generation models.

We conduct our experiments on Flan-T53 (Chung
et al., 2024), Mistral 7B4(Jiang et al., 2023), and
Llama-3-8B 5. We use METEOR, BLEU, ROUGE-1,
ROUGE-2, ROUGE-L, ROUGE-LSUM, and BERT
scores to evaluate these models. For each model
and input type, we conduct two experiments: one
without any training (evaluating the zero-shot
model) and one where we fine-tune the model for
2 epochs. We take 15% of the data as the test split,
then divide the remaining data into 85% training
and 15% validation sets for all the experiments.

For the T5 model, we set a warm-up ratio of
0.05, a weight decay of 0.01, and a learning rate
of 3×10−5. The model is trained with a maximum

3https://huggingface.co/google/flan-t5-base
4https://huggingface.co/unsloth/mistral-7b-bnb
5https://github.com/llama3/tree/main

generation length of 512 tokens. We evaluate
the model every 500 steps, using the ROUGE-L
metric to select the best model from the evaluations.
We select a maximum length of 512 tokens for
paragraph inputs and 2048 tokens for section inputs
(refer to Appendix H). Respectively, we use a
training batch size of 4 and 1.

For Llama-3-8B and Mistral 7B, we use the
Unsloth library6, which enables fast and low
memory-intensive fine-tuning of LLMs. We utilize
QLoRA (Dettmers et al., 2024) to use and fine-tune
the LLMs efficiently on a single GPU, along with
4-bit quantized model weights that we access from
the same library. Similar to the T5 model, we use a
maximum token length of 512 for paragraph inputs
and 2048 for section inputs for the tokenizer, a
learning rate of 3×10−5, and a warm-up ratio of
0.05. We use a training batch size of 4, a weight
decay of 10−4, and 8-bit AdamW (Loshchilov and
Hutter, 2019) optimizer. We choose ROUGE-L as
the metric to select the best model among evalua-
tions, which we do every 500 steps. Finally, we use
similar but slightly different prompt templates for
fine-tuning and evaluation (RQ generation) for the
LLMs, which we elaborate on in Appendix F.

RQ Pipeline To evaluate our pipeline, we use an
approach leveraging an LLM with an extensive input
capacity, namely GPT-4, allowing the full text of an
article to be processed at once. We design a prompt
that instructs the LLM to evaluate the proposed RQ
of our pipeline for the considered article based on
the four FIRE criteria (feasible, interesting, relevant,
and ethical). In the prompt, we define the task and
provide explanations of these characteristics. We
further include instructions to assign a score of 1,
2, or 3 for each criterion that reflects the quality
of the proposed RQ in each of the FIRE aspects.
For a detailed description of the prompt, refer to
Appendix G. For RQ generation, the “Abstract” sec-
tions of the articles are used as input. The pipeline
is evaluated on 50 chosen papers using GPT-4 as its
evaluator, with its temperature set to zero for a more
deterministic outcome. The generated RQs are then
evaluated against the corresponding articles by run-
ning our custom-designed prompt through the LLM,
yielding four scores based on the FIRE criteria.

5 Results

In this section, we present the results of the RQ
detection and generation components as well as the
RQ pipeline.

6https://github.com/unslothai/unsloth

https://huggingface.co/google/flan-t5-base
https://huggingface.co/unsloth/mistral-7b-bnb-4bit
https://github.com/meta-llama/llama3/tree/main
https://github.com/unslothai/unsloth
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Experiment w-neg TNP Test Split 4.3 Benchmark Set 4.2

Acc P R F1 TP TR TF1

N2 No 2 96.85 83 94 88 78 31 44
N4 No 4 98.07 89 95 92 65 16 26
N8 No 8 99.78 100 99 99 41 8 14
W0 Yes 0 95.42 86 90 88 82 26 39
W1 Yes 1 98.99 96 99 97 60 18 28
W2 Yes 2 96.11 80 92 85 88 38 54
W4 Yes 4 99.44 98 99 98 21 4 6
W8 Yes 8 99.13 98 97 98 23 4 7

Table 1: RQ classification experiments. w-neg (with
negative) denotes whether the negative samples extracted
from negative patterns were used for training. TNP
(training negative/positive proportion) shows the ratio
of negative to positive samples. The experiment name
is defined as {w-neg}{TNP}. Metrics are expressed as
percentages (%).

5.1 Research Question Detection

Table 1 shows the results of different experiments
for the RQ classification task. We observe over-
fitting patterns in experiments except for N2, N4,
W0, and W2, as the metrics for the test split are
considerably high, in contrast to the benchmark set.
Through various experiments, we find that using
high TNP values, such as 4 or 8, consistently wors-
ens the model’s performance, sometimes resulting
in very low precision, recall, and F1 scores. Al-
though a high TNP value more accurately reflects
real-world conditions–—where the ratio of RQ sen-
tences to non-RQ sentences is significantly low—–it
negatively impacts the model’s learning ability. For
instance, in our benchmark set, we identified 159
RQs in 8,178 sentences, equating to a 1.94% ratio.
Consequently, the TNP value for this set exceeds 50.

While our initial objective was to experiment
with high TNP values to emulate real-world data
distributions, we discovered that the model learns
better with a more balanced ratio of negative to
positive samples, such as a TNP value of 2.

In experiments with high TNP values, such as 4
or 8, incorporating the negative data extracted based
on regex patterns disrupts the training process. This
results in an excessive number of negative samples
in the training data, causing the model to focus on
identifying negative samples rather than learning
to detect RQs. Consequently, experiments W4
and W8 achieve very low precision, recall, and F1
scores on the benchmark set.

For low TNP values, adding negative data
based on regex patterns can noticeably improve
performance. In the W0 experiment, the TNP
value of 0 means that there are no ordinary negative
samples used in the training, and only the negative
data based on regex patterns are incorporated. In
this case, the model achieves a precision of 0.82

on the benchmark set, which is higher than that of
N2, an experiment with a similar total number of
negative samples. The recall and F1 score are lower,
but given our interest in higher precision, using
negative data based on regex patterns could prove
more useful here. Maintaining ordinary negative
samples while incorporating the negative data based
on regex patterns in experiment W2 results in sig-
nificantly higher precision, recall, and F1 score on
the benchmark set, suggesting that using both types
of negative data can further improve performance.
Therefore, we conclude that incorporating negative
data based on regex patterns is beneficial.

Overall, we observe that the model based on
the W2 setting performs the best, achieving 88.4%
precision, 38.36% recall, and 53.5% F1 score on
the benchmark set. Also, the results indicate that
a TNP value of 2 is the most effective.

The results of the AL experiments can be seen in
Table 2. We observe that after the second training,
the model’s precision improves significantly, and
although the recall decreases, the overall F1 score
improves by 2%. Across all experiments, precision
increases and recall drops for both the test split
and the benchmark set, except for the benchmark
set in the fourth training. After the third training,
the model achieves the highest precision of 93%.
Despite a decrease in recall and F1 score, this high
precision is beneficial for detecting RQs that are not
typically identified through regex patterns, aiding in
training RQ generation models in other experiments.
After the fourth training, the test split metrics remain
constant, while the benchmark set metrics decline.
This is due to the fact that adding negative samples
to the training data reduces the number of positive
samples detected, as shown in the “pos" column
of Table 2. Consequently, after the fourth iteration,
the model detects fewer true positive samples in the
benchmark set, but the number of false positives
remains the same, resulting in lower precision.

Overall, we find that AL significantly improves
the model’s performance in terms of precision, mak-
ing it highly useful for our use case. Additionally,
our results show that using an LLM for validating
whether an RQ is present in a context is practical
and beneficial.

5.2 Research Question Generation

Table 3 presents the results of RQ generation experi-
ments, comparing the performance of models using
paragraph and section inputs. For T5, we observe
that additional training significantly enhances
performance compared to the zero-shot model. The
fine-tuned T5 models achieve significantly higher
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Train # Train Test Split 4.3 Benchmark Set 4.2 Large Test Set 4.3

Iteration Samples Acc P R F1 TP TR TF1 pos

1 5000 96.36 87 96 91 38 25 30 3.13
2 5389 96.58 88 95 91 81 20 32 1.32
3 5617 96.85 90 94 92 93 13 22 0.85
4 5710 96.93 90 94 92 92 11 19 0.75

Table 2: Results of the Active Learning (AL) experiment.
pos denotes the percentage of samples detected as
positive. Metrics are expressed as percentages (%).

performance compared to the Llama-3 and Mistral
models, with the one using section inputs being
the overall best model across all metrics. Notably,
in the zero-shot setting, the T5 models achieve
significantly higher BERT scores than Mistral and
Llama-3, suggesting they have a better semantic
understanding. Although T5 is pre-trained with a
maximum token length of 512, it adapts effectively
to a maximum token length of 2048, even achieving
a better performance.

5.3 Research Question Pipeline
Table 4 presents the results of the evaluation for
our pipeline. Due to the novelty of the task, no
established baseline method is available for direct
comparison. All test samples achieved a full score
of 3 out of 3 for both the Feasibile and Ethical cri-
teria. For the Relevant criterion, only three samples
scored a non-perfect 2, while 11 samples received a
score of 2 for the Interesting criterion. None of the
samples achieved a score of 1 in any criteria. These
results indicate that the pipeline is highly effective
in identifying or generating well-defined RQs.

6 Conclusion

In this study, we have addressed the critical need
for efficient and reliable methods to detect and
generate Research Questions (RQs) in academic
articles, particularly within the domain of computer
science. We proposed a comprehensive framework
for extracting, detecting, and generating RQs for
scientific articles. For RQ extraction, by developing
a rule-based methodology using a set of regular ex-
pressions, we were able to extract a subset of articles
with common RQ patterns. We then proposed RQ
detection, a method to identify RQs in the article by
fine-tuning a BERT-based classifier to detect if any
three-sentence pieces of the article contain an RQ.
We devised the Active Learning (AL) algorithm to
enhance the performance of our model. The results
demonstrated that using AL significantly improved
the precision of the classifier. We achieved a
high performance on our proposed benchmark set,
validating the effectiveness of our detection method.

Regarding RQ generation, using the dataset of

RQs from the extraction and detection components,
we trained several Large Language Models (LLMs)
to generate RQs from paragraphs or sections of
articles. We found Flan-T5 to perform the best
when trained on section inputs, excelling across
all evaluation metrics and being able to closely
predict the RQs from the given section of the article.
Consequently, by combining the components of RQ
extraction, detection, and generation, we developed
a novel end-to-end framework that either identifies
or generates a suitable RQ from a given article.
We provided a definition for RQs and specified
evaluation criteria using the FIRE characteristics.
We then demonstrated the strong performance of
our framework through our proposed LLM-based
evaluation method.

In conclusion, this study offers a robust solution
for the detection and generation of RQs in scientific
articles. By integrating advanced text classification
and generation techniques, we have created a
framework that enhances the identification of RQs,
simplifying the process of reading and comprehend-
ing scientific articles for researchers and students.
The framework lays the foundation for future
advancements in managing and understanding
scholarly literature. Future work could enhance
the framework, generalize it across domains, or
evaluate it on larger benchmarks.

Limitations

While our framework has shown to be capable of
detecting and generating well-defined RQs, several
areas for future research and improvement remain:

Generalizability Across Domains: Extending
the framework to other domains beyond computer
science to assess its generalizability and adaptability
is crucial. Testing these methods on articles from
diverse fields, including medicine, social sciences,
and engineering, would be necessary.

Exploring Different Context Lengths for RQ
Detection: For RQ classification, we included
the surrounding context of the RQ to provide the
model with additional information, making it easier
to determine whether an RQ is present. In our
experiments, we used a context length of three
sentences, but we did not test with longer contexts.
Future research can explore different context
lengths to assess their impact on the performance
of detection models.

Improving Data Used for Training and Evalua-
tion: The data we gather for RQ detection and gener-
ation is primarily based on regex patterns. This intro-
duces potential bias in the data. Although we used
techniques such as synthesizing data with LLMs,
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Experiment METEOR BLUE ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LS BERT-P BERT-R BERT-F1

T5-para-ep0 23.18 10.47 28.99 14.95 25.22 25.35 85.45 84.63 84.97
T5-para-ep2 57.51 40.62 62.37 48.42 57.36 57.57 93.39 92.98 93.17
T5-section-ep0 20.79 4.64 27.00 11.27 22.19 22.50 86.51 86.60 86.49
T5-section-ep2 65.89 45.21 70.44 58.61 66.06 66.26 94.92 94.38 94.64
Mistral-para-ep0 31.44 9.79 20.76 13.81 18.44 18.49 63.77 68.04 65.82
Mistral-para-ep2 39.14 12.61 27.02 19.19 24.25 24.21 65.82 72.89 69.13
Mistral-section-ep0 27.11 10.15 22.38 15.72 20.27 20.40 56.35 59.67 57.94
Mistral-section-ep2 32.19 11.06 22.88 15.24 20.06 20.67 58.27 64.20 61.05
Llama3-para-ep0 28.26 12.47 27.41 17.96 24..42 24.45 63.73 65.22 64.42
Llama3-para-ep2 37.06 10.27 23.16 15.84 20.60 20.48 70.30 75.70 72.88
Llama3-section-ep0 30.23 13.96 29.13 19.99 26.32 26.19 66.22 68.09 67.09
Llama3-section-ep2 35.85 11.39 26.58 17.62 22.98 23.40 69.83 74.19 71.90

Table 3: RQ generation experiments. Experiment names specify the training model (T5, Mistral, or Llama-3), input
type (paragraph or section), and number of fine-tuning epochs (ep0 for zero-shot and ep2 for two epochs). All values
are expressed as percentages (%).

Criterion Score

Feasible 100
Interesting 92.67
Relevant 98
Ethical 100

Table 4: Pipeline evaluation results based on the FIRE
criteria.

there remains room for improvement in extracting
more diverse RQs from articles. For evaluation, we
created a benchmark set; however, it is limited to
40 papers. Expanding this effort by manually anno-
tating RQs for a larger set of articles would greatly
enhance the dataset for a more robust evaluation.

Improving RQ Generation in the Pipeline:
Currently, the pipeline uses the “Abstract” section of
articles as input for the RQ generation component.
However, incorporating the “Introduction” section
could offer improvements. A study could be
conducted to determine the optimal sections or
combinations of sections that yield higher-quality
generated RQs. Using the full article as the input
context is yet another possibility.

Developing an RQ Ranking Framework: The
RQ detection component can be employed to detect
multiple RQs as opposed to the current pipeline,
which is limited to one. Consequently, multiple
RQs can be generated for an article. Beyond
detection and generation, developing a ranking
framework to assign scores to RQs based on
relevance and informativeness would be beneficial.
This tool could measure how relatable the detected
or generated RQs are to the article’s content. Specif-
ically, it can help identify the best RQ and suggest
improvements if the detected RQ is not optimal.
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Examples matching RQ regex patterns
The following research question will guide our study: How
does social media influence consumer behavior?
The goal of this research is to determine the impact of
climate change on agriculture.
The purpose of our study is to explore the effects of remote
work on employee productivity.
The objective of the research is to analyze the relationship
between diet and mental health.
RQ1: What are the key factors affecting customer satisfac-
tion in e-commerce?

Table 5: Examples of RQ sentences identified using
regex patterns.

A RQ Extraction Details

The regex pattern we consider for extracting RQs
consists of four types of rules as follows:

following research question|
(goal|purpose|objective|aim) of
(this|our|the)
(study|research|article) is)|
RQ\d(:|.|-| -)|
research question(s?)(:| (is|are)

To optimize the extraction process, we filter
out sections of the articles that are unlikely to
contain RQs. Specifically, we exclude the following
sections from the articles: “highlights”, “literature”,
“related work”, “background”, “ethical considera-
tions”, “conflict of interest”, “acknowledgments”,
and “computing power”.

Table 5 shows some examples of text that
matches the specified regular expression.

Moreover, we include regex patterns that capture
the definition of research hypotheses, which
constitute another type of RQ reformulation.
Phrases such as “We hypothesize...” are highly
likely to define the RQ of the article. The full regex
consists of three types of rules:

following (hypothesis|hypotheses)|
(W| w)e hypothesis(s|z)e|
((T| t)he|(O| o)ur|(M| m)ain)
(hypothesis|hypotheses) (is|are)

Table 6 demonstrates examples of text that match
the specified regular expression.

It is also possible that the hypothesis is merely
a secondary theory rather than the primary aim
of the article. Additionally, such patterns might
include definitions of mathematical theorems,
leading to false positive detections. To address this
issue, we limit the extraction of hypothesis-related
regex patterns to the “Abstract” and “Introduction”
sections of the articles. Sentences matching the
defined regular expression in these sections are
highly likely to contain an RQ.

Examples matching hypothesis-related regex patterns
The following hypothesis is central to our study: Increased
screen time negatively impacts sleep quality in teenagers.
We hypothesize that regular physical exercise can reduce
symptoms of anxiety and depression.
Our hypothesis is that there is a positive correlation between
employee motivation and workplace productivity.
Our main hypotheses are: 1. Dietary changes can prevent
chronic diseases. 2. Mindfulness practices reduce stress
levels.

Table 6: Example sentences matching hypothesis-related
regex patterns.

To extract negative samples based on regex
patterns, we propose regex patterns similar to RQ
patterns, specifically as below:

((T|t)(heir|hey)|
((P|p)revious|ast|rior))
(stud(y|ies)|research|
article|goal|purpose|
objective|aim|hypothesi(s|z)e|
hypothes(is|es))

For example, this pattern covers phrases such as
“Their aim”, “They study”, “Previous studies”, and
“prior hypotheses”.

B Statistics of Extracted RQs

After obtaining the article corpus in Section 4.1, we
use the proposed RQ extraction method, explained
in Section 3.3, to extract sentences containing RQs.
We use the PySBD (Sadvilkar and Neumann, 2020)
library in Python to perform sentence segmentation.
This process leads to a dataset of 39,128 articles
with sentences containing RQs.

Subsequently, the negative RQ extraction step
based on regex patterns is performed to obtain the
negative samples. Out of 555,688 articles, 30,807
are extracted that contain a sentence that matches the
pattern. The combined set of positive and negative
samples is used to train our RQ detection methods.

After RQ extraction, we perform an analysis to
gain insight into the distribution of matched regex
patterns along with the distribution of the placement
of RQs across different sections of the articles.

First, we place the regex patterns presented
in A into the following categories: “Research
Questions”, “Objective”, “Purpose”, “Aim”,
“Goal”, “Hypothesis”, and “Research Question
(RQ-id)”. As shown in Figure 4, we find that
the most frequent patterns are in the "Research
Questions" category, containing patterns:

following research question|
research question(s?)(:| (is|are)
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Figure 4: Distribution of RQ patterns across different
categories in the dataset

. The least frequent pattern, on the other hand, is
“RQ-id” (RQ(.:|.|-| -)|).

In order to verify that our defined patterns
correctly identify RQs, we manually annotate a set
of extracted RQs. We randomly select a set of 30
extracted RQs for each of the 7 pattern categories,
after which 3 human evaluators manually evaluate
whether they are indeed RQs. We found that 187 out
of 210 samples were considered correct, resulting
in a precision of 0.891. While this evaluation does
not consider the recall, we must also consider the
purpose of the RQ pattern detection method using
regular expressions. The set of detected positive
and negative samples will simply be used as the
training set for a model that detects RQs. This
model is trained with the intent to generalize well
and detect RQs beyond the scope of our previously
defined exact pattern matches. We therefore argue
that recall in this evaluation can be omitted.

Next, we analyze the frequency and distribution
of the RQs found in different sections of the articles.
To achieve this, we locate the section where each
RQ is found and count the number of articles
containing an RQ in that section. As authors use
various titles for the same type of section, we
categorize the section titles into the following
categories: “Introduction”, “Abstract”, “Method-
ology”, “Results”, “Experiments”, “Conclusion”,
“Problem Statement”, “Discussion”, “Evaluation”,
and “Research Questions”.

As shown in in Figure 5, we find that the “Intro-
duction” section contains the most RQs by far, with
20,868 articles. The “Abstract” section follows with
4,550 articles, and the “Methodology” section ranks
third with 2,267 articles. Interestingly, 479 articles
are found to have a dedicated section for their
RQs, labeled as “Research questions”, “Research
question”, or “Research questions and hypotheses”,
which occupy the tenth position in the ranking.

Figure 5: Sections with the highest frequency of RQs
in scientific articles

C Data Augmentation with LLM

Our dataset, constructed using the method outlined
in Section 3.3, is inherently limited by a specific
set of regex patterns. As a result, it may lack the
diversity of RQ variations needed to effectively
train a model that can generalize well. To address
this issue, we aim to enrich the dataset by including
RQ samples that do not necessarily conform to the
predefined regex patterns. In order to achieve this
goal, we propose a novel approach that leverages
an LLM to generate a set of new context samples
containing RQs, thereby augmenting our dataset.
We utilize a specifically adjusted prompt as input
to the LLM, which explains the task of generating
text samples with embedded RQs. The prompt
specifies the desired structure of the output and
provides detailed instructions for avoiding the use
of RQ patterns in the samples and circumventing
certain generation restrictions. To further clarify the
task for the model, we include manually selected
examples of text containing RQs sourced from
legitimate articles. The prompt concludes with
reminders to emphasize key instructions and help
the model stay focused on the defined task, even
when processing a large volume of text.

For creating the training data for the RQ
classification model, we use the following prompt:

## TASK ##

- You are an AI assistant that generates
research questions. Generate research
questions and the important context around
them, in 3 sentences, just as in a natural
scientific paper.

## INSTRUCTIONS ##

- Use the following template:
[

{{"rq_with_context": "..."}},
{{"rq_with_context": "..."}},
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...
]
- Remember to make it a JSON array. Use
double quotes every time.

- The research question is not necessarily
a question, but can also be summarizing
the goal of the paper.

- Use exactly 3 sentences for each example.
The actual research question, aka the goal
of the paper, should come in the middle
sentence. The length of the sentences does
not matter.

- Try to avoid obvious patterns that show
the example contains a research question,
such as "The objective of this study is ..."
or "We aim to solve the following research
question: ...".

- The research question and the context around
it don't need to be at the start or end of a
paragraph. It can and is encouraged to be in
a manner that can be continued.

## EXAMPLES ##
{example}

For instance, the middle sentences in the
examples are considered research questions
even though they are not literal questions.

## REMINDERS ##

- Generate 5 examples.
- The research questions should preferably
not be in a question format.

- Use different patterns for different
examples. In other words, avoid similarity
between any two examples you provide.

- The last sentence from the 3 sentences, which
preferably comes after the research question
and thus does not contain one, must be
completely different among the examples.

- Remember that the 3 sentences are not
necessarily a whole paragraph or coming
from the start or end of a paragraph.

- The middle sentence should contain the
research question.

- For each example try to vary sentence
structure.

We use five sets of different examples in place of
{example} in the prompt, each with a JSON array
containing two samples.We use GPT-3.5-turbo
to generate RQs with context, consisting of three
sentences containing an RQ. We set the temperature
to 1 in order to encourage diversity in generated
samples while maintaining coherence, and we set
both the frequency and presence penalty to 0. Inside
the prompt, we instruct the LLM to generate five
RQs with context. We do this 250 times and with
five different examples inside the prompt, resulting
in 6,250 RQs with contexts. After removing
generated samples with errors, such as those not
properly formatted in the requested JSON format,
we are left with 6,174 valid samples.

In this experiment, we investigate the impact of
adding LLM-generated samples to the training data

for RQ classification. In our approach, we train
a model once with the standard training data and
once with the addition of LLM-generated samples.
We then compare the performance of these models.
We use the experimental setup from N2, with the
data consisting of three sentence contexts, a TNP
value of 2, and a learning rate of 3×10−7. We con-
duct two sets of experiments: one using the entire
training split and the LLM-generated samples, and
another where we limit the data to 3,250 samples
but increase the training duration. In the first setup,
we have N2 and N2G experiments, with the letter
G indicating the inclusion of LLM-generated sam-
ples. In the second setup, we have the N2_lim and
N2G_lim experiments, similar to the previous exper-
iments but with limited data. We evaluate the exper-
iments on the test split and the benchmark set. For
the test split, we assess accuracy, precision, recall,
and F1 score, using the macro average for precision,
recall, and F1 score. For the benchmark set, we eval-
uate precision, recall, and F1 score, but calculate
these metrics based only on the positive samples.
Table 7 shows the results for these experiments.

In the limited version, we take 3000 samples
randomly from the train split for both N2_lim and
N2G_lim. We then add 250 random samples from
the train split to N2_lim and 250 LLM-generated
samples to N2G_lim to keep the training data equal
for both experiments. Due to the reduced data size,
we increase the number of training epochs to 30.
We observe that the model with LLM-generated
samples achieves slightly lower performance on the
test split across all metrics. However, it achieves sig-
nificantly higher scores on the benchmark set for all
evaluated metrics. This suggests that the model with
LLM-generated samples has learned more general
properties and is less overfitted to the training data.

For the N2 and N2G experiments, where all the
data is included for training, we train the models
for 2 epochs. As with the first set of experiments,
we observe a similar pattern for both the test
split and the benchmark set. Despite the ratio of
LLM-generated samples to normal training data
being approximately 1:50—much lower than the
1:12 ratio in the limited experiment—we still
observe a significant improvement of nearly 7% in
both precision and recall on the benchmark set.

Another interesting finding is that although we
limited the data to only 3250 samples in the first set
of experiments, the experiments achieved almost the
same F1 score as in the second set of experiments.
Specifically, the precision was lower, but a higher
recall was observed in both normal data and data
augmented with LLM. This suggests that increasing
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Experiment # Train Test Split 4.3 Benchmark Set 4.2

Samples Acc P R F1 TP TR TF1

N2_lim 3250 96.47 82 94 87 62 35 44
N2G_lim 3000+250 95.55 78 93 84 71 42 52
N2 299431 96.85 83 94 88 78 31 44
N2G 299431+6174 96.17 80 94 86 85 38 52

Table 7: Impact of LLM-augmented data on RQ
detection model performance

the training data can result in the model becoming
stricter in detecting the RQs, but also more precise.

Overall, we note that augmenting the training
data with LLM-generated samples can result in sig-
nificantly better models and improved performance.

D RQ Validation Prompt

For RQ validation in the Active Learning experi-
ment, the main prompt that we use is the following:

## TASK ##

- You are an AI assistant. Your task is to
determine if there are any research questions
inside a piece of text or not.

- You are given a text consisting of 3
sentences. The text is part of a scientific
paper for which you want to say if a research
question can be seen in that part.

- The research question is not necessarily a
question, but can also be one or multiple
sentences defining a problem that the paper
sets out to answer.

## INSTRUCTIONS ##

Perform the following actions:
1 - If the given text defines a research

question, try to formulate the question
or problem that the paper wants to solve.
Do not try to guess what the research
question might be, only formulate it if
it is clearly found in the given text.

2 - If you could generate a well-defined
problem statement (research question),
answer yes.

3 - If the given text doesn't define a research
question or you are not able to form a proper
research question, answer no.

Now answer for the following text:

'''
{example}
'''

## REMINDERS ##
- Only answer with yes or no.

We replace {example} in the prompt with the
sample that we want to validate.

E RQ Formation Prompt
For the task of RQ formation from a given three-
sentece context, we experiment with the following
prompt:

## TASK ##

- You are a scientific researcher. Your task is
to write clear research questions for
scientific papers.

- In order to do that, you are given a snippet
of text that contains the goal of a research
paper. You will rewrite this text into a
research question.

## INSTRUCTIONS ##

Perform the following actions:
1 - summarize the problem that the paper is

addressing.
2 - Based on that and the given text generate

a research question that best describes
the aim of the paper.

3 - Revise the research question. Does it
make sense as a standalone question?
Does it seem like a high quality insightful
research question? Is it understandable or
does it need some more explanations?
Try to improve it.

4 - your output should be in the following
format:

'''
problem summary: ...
initial research question: ...
research question: ...
'''

Now answer for the following text:

'''
{example}
'''

The placeholder {example} in the prompt is
replaced by the sample from which we want to form
an RQ. After the LLM generates the output in the
requested format, we take the text generated after
"research question:" as the final RQ.

F RQ Generation Prompt
For Llama-3 and Mistral LLMs we use for RQ
generation, we consider the following prompt:

Below is a snippet of text from a scientific
paper. Write the research question that the
paper aims to answer. A research question is
a clearly articulated question that identifies
the specific issue or problem that a research
study aims to address.

### Text:
{text}

### Research question:
{RQ}

The placeholder {text} is replaced by the
paragraph or section that we want to generate an RQ
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from, and {RQ} is replaced by the actual RQ (label).
The prompt is followed by an End-Of-Sequence
(EOS) token in order to prevent the model from
generating unlimited output.

For evaluation, no RQ is given in the prompt, and
there would not be an EOS token in the end. The
fine-tuned model is responsible for generating the
RQ using the rest of the prompt. Consequently, the
prompt used for evaluation is as follows:

Below is a snippet of text from a scientific
paper. Write the research question that the
paper aims to answer. A research question is
a clearly articulated question that
identifies the specific issue or problem that
a research study aims to address.

### Text:
{text}

### Research question:

G RQ Evaluation Prompt

To evaluate a proposed RQ for an article based on
the FIRE criteria, we use the following prompt:

## TASK ##
- You are an AI evaluator specializing in
evaluating the quality of research
questions formulated based on the full text
of research articles.

- You are given a scientific article and a
research question. Your task is to evaluate
the quality of the research question based
on a set of quality metrics.

- You need to do the evaluation in terms of
feasibility, interestingness, relevance,
and ethical.

- The generated question is targeting readers
to understand the article better. You
penalize the generated question if it does
not fully capture the main ideas or
contributions of the article.

## INSTRUCTIONS ##
- Make sure you read and understand the
question, the article, and the evaluation
criteria carefully.

- Make sure you capture the main ideas and
novelties of the article. Such ideas and
novelties should be reflected in the
research questions as well, otherwise the
research question should get a low score.

- For each criterion (feasibility,
interestingness, relevance, and ethics),
you need to assign a score of 1 (low), 2
(moderate), or 3 (high).

- Feasibility reflects that the research
question or problem should be solvable and
able to be realistically answered given the
available resources and constraints.
Feasibility score of 1 would mean that the
question is not feasible and realistic in
the context of the article, while a score
of 3 would reflect the the question is
realistic and feasible.

- Interestingness denotes that the research

question should capture the attention and
curiosity of researchers or practitioners
in the relevant field. A score of 1 would
mean that the question lacks novelty or
relevance and fails to engage the intended
audience, while a score of 3 would reflect
that the question is highly engaging,
thought-provoking, and likely to stimulate
further inquiry or discussion in the field.

- Relevance requires the RQ to be aligned
with the subject matter of the article and
to raise a question or problem that the
article is seeking to address. A score of 1
would mean that the research question is
completely irrelevant to the subject matter
and goals of the article, making it
unrelated and unimportant in the given
context, while a score of 3 would reflect
that the research question is highly
pertinent to the subject matter of the
article, directly addressing key issues or
problmes that the article aims to explore.

- Ethical is a prerequisite condition for a
research question to be valid, and mandates
that the research question respects privacy
and adheres to ethical standards and

guidelines in research. A score of 1 would↪→
mean that the question raises significant
ethical concerns or violates ethical
standards, making the research potentially
harmful or unethical, while a score of 3
would indicate that the question fully
complies with ethical guidelines, ensuring
that the research can be conducted
responsibly and without harm.

- Your output should be in the following
format:

'''
Feasibility score: [1-3]
Interestingness score: [1-3]
Relevance score: [1-3]
Ethical score: [1-3]
'''

Now evaluate the following research question
in relation to the given article:

Article:
'''
{article}
'''

Research question:
'''
{rq}
'''

## REMINDERS ##
- Only answer in the requested format.

The placeholder {article} is substituted by the
desired article, and {rq} is replaced by the RQ to
be evaluated for that article.

H Supplementary RQ Generation Results

After RQ detection is performed, we reformulate
detected samples into RQs to prepare the data
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Detected context containing RQ Formed RQ
By applying sentiment analysis using LSTM, the model achieved
an impressive accuracy of 92% in recommending the most suitable
medication for a patient’s condition. The novelty of this research
lies in integrating deep learning techniques, specifically LSTM, with
heterogeneous networks for medication recommendation. This approach
combines the power of deep learning in understanding and extracting
patterns from textual reviews with the versatility of heterogeneous
networks in handling diverse data types.

How can the integration of deep
learning techniques, specifically
LSTM, with heterogeneous
networks improve medication
recommendation?

The influence of water content on the mechanical characteristics and wear
resistance of hyaluronic acid hydrogels was investigated and analyzed
in this paper. All-atomic molecular dynamics (MD) simulation was
employed to simulate the network of hyaluronic acid hydrogels with
varied water content. The goal of this work is to investigate and analyze
the molecular space distribution after different compression strains, the
mechanical properties affected by different water content, and the wear
resistance of hydrogels affected by different friction environments under
the influence of different water content.

How does the water content affect
the molecular space distribution,
mechanical properties, and
wear resistance of hyaluronic
acid hydrogels under different
compression strains and friction
environments?

Both Internet users and the industry suffer tremendous economic losses as
a result [1]. Consequently, it is imperative to develop practical solutions
that provide high levels of accuracy and fast response times when it comes
to detecting phishing attacks. In this study, we develop a practical method
to detect phishing websites based on machine learning approaches.

What machine learning ap-
proaches can be used to develop
a practical method for detecting
phishing websites with high
accuracy and fast response times?

Table 8: Examples of detected context containing RQs after RQ detection, along with their formed RQ by
GPT-3.5-turbo.

Prediction Label
How can the concept of distance-field regression be
used to accurately delineate hc from US images, and
what is the effectiveness of this approach in automatic
hc delineation from US images?

How can distance-field regression be used to accu-
rately delineate hc from US images, and what are the
potential benefits of this approach compared to other
methods?

What are the individual trust influencing factors in
social media communication?

What are the individual trust influencing factors in
social media communication?

How can deep learning techniques, specifically
LSTM, be integrated with heterogeneous networks to
improve the accuracy and effectiveness of medication
recommendations?

How can the integration of deep learning techniques,
specifically LSTM, with heterogeneous networks
improve medication recommendation?

Table 9: Examples of generated RQs (Prediction) and the actual RQ (Label) for the Flan-T5 model fine-tuned on
section data.

we need for training our RQ generation models.
Table 8 shows some examples of detected context
containing RQs along with their formed RQ by the
LLM, GPT-3.5-turbo.

Table 9 shows some examples from evaluation by
comparing generated RQs with their corresponding
labels, on the best-performing model, the Flan-T5
model fine-tuned on section inputs. Most of the
generated RQs are highly similar or even identical
to the labels, resulting in the high performance of
the model.

To determine the optimal maximum token length
(number of tokens) for the tokenizer, we measure
the token lengths for paragraph and section inputs
after tokenization. Figure 6 presents histograms
showing the token lengths for both input types.
Based on this analysis, we select a maximum length
of 512 tokens for paragraph inputs and 2048 tokens
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Figure 6: Histogram plots of token lengths (number of to-
kens) for paragraph and section inputs after tokenization.

for section inputs.
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