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Abstract

Anomaly-based detection is effective against
evolving insider threats but still suffers from
low precision. Current data processing can re-
sult in information loss, and models often strug-
gle to distinguish between benign anomalies
and actual threats. Both issues hinder precise
detection. To address these issues, we propose
a precise anomaly detection solution for be-
havior logs based on Large Language Model
(LLM) fine-tuning. By representing user behav-
ior in natural language, we reduce information
loss. We fine-tune the LLM with a user behav-
ior pattern contrastive task for anomaly detec-
tion, using a two-stage strategy: first learning
general behavior patterns, then refining with
user-specific data to improve differentiation be-
tween benign anomalies and threats. We also
implement a fine-grained threat tracing mecha-
nism to provide behavior-level audit trails. To
the best of our knowledge, our solution is the
first to apply LLM fine-tuning in insider threat
detection, achieving an F1 score of 0.8941 on
the CERT v6.2 dataset, surpassing all baselines.

1 Introduction

Malicious insider threats typically manifest as em-
ployees misusing their legal permissions and trust
to compromise the confidentiality, integrity, and
availability of organizational assets. As technol-
ogy advances, the concealment and complexity of
insider threats have progressively increased, expos-
ing businesses and organizations to unprecedented
risks. Innovation in insider threat detection is ur-
gently needed.

Due to the scarcity and latency of labeled insider
threat data, classification-based detection has dif-
ficulty remaining effective against evolving threat
activities. Consequently, anomaly-based detection,
which models only benign user behaviors, has be-
come common. However, current anomaly detec-
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tion methods suffer from low precision, compro-
mising their credibility.

Two main factors reduce anomaly detection pre-
cision. First, current behavior data processing of-
ten results in information loss. Common meth-
ods classify user behaviors into categories to con-
struct behavioral sequences (Yu et al., 2022; Yuan
et al., 2020; Rashid et al., 2016) or count vectors
(Tuor et al., 2017; Meng et al., 2020; Song et al.,
2024b) for anomaly detection. Due to the com-
plexity of user behavior, these methods rely on
hundreds (Tuor et al., 2017) to thousands (Yuan
et al., 2020) of behavioral categories. Neverthe-
less, not only is information loss unavoidable, but
data sparsity is also introduced. Moreover, behav-
ioral sequences and count vectors are highly ag-
gregated and encoded, resulting in poor readabil-
ity and coarse-grained threat identification, posing
challenges for security audits.

Second, detection models struggle to differen-
tiate between threatening behaviors and benign
anomalies. User behavior patterns can change
due to environmental factors, many of which are
not threatening. Common anomaly detection al-
gorithms (e.g., distance-based algorithms (Meng
et al., 2020), one-class classification (Lin et al.,
2017; Soh et al., 2019; Rashid et al., 2016), autoen-
coder reconstruction (Yu et al., 2022; Tuor et al.,
2017; Nasir et al., 2021)) lack the capability to
distinguish between benign anomalies and actual
threats. Moreover, the definition of an insider threat
varies based on the specific needs of organizations,
introducing additional uncertainties in threat detec-
tion.

To address the above issues, we propose a novel
solution: precise anomaly detection in behavior
logs based on Large Language Model (LLM) fine-
tuning. By leveraging the inherent strong pat-
tern identification and generalization capabilities
of LLMs, we enhance insider threat detection per-
formance.
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We represent user behavior in natural language
using a template to enhance readability and infor-
mation retention. LLM-based Customizable topic
specification is introduced for free text analysis,
allowing targeted focus on threat clues that orga-
nizations truly care about. We propose a user be-
havior pattern contrastive task based on contrastive
learning to fine-tune the LLM, enabling it to dis-
tinguish between different behavioral patterns for
effective anomaly detection. Our novel two-stage
fine-tuning strategy first adapts the model to gen-
eralized behavior patterns, then fine-tunes it to
user-specific patterns. The model learns common
changes in generalized user behavior patterns, al-
lowing it to assess a lower degree of threat for
similar benign changes exhibited by specific users,
thereby enhancing its ability to distinguish between
benign anomalies and threats. Additionally, we in-
troduce a fine-grained threat tracing mechanism,
leveraging a model-agnostic local explanation tech-
nique (Ribeiro et al., 2016) to achieve behavior-
level threat capture, enhancing detection credibil-
ity.

The contributions of this paper are summarized
as follows:

1. To the best of our knowledge, this is the first
application of LLM fine-tuning in the field
of insider threat detection. We develop a
framework for insider threat detection based
on LLM fine-tuning, encompassing the en-
tire process from natural language behavior
representation, through LLM fine-tuning for
anomaly detection, to behavior-level threat
tracing.

2. We propose a two-stage fine-tuning strategy
that enables the LLM to learn both general
and specific behavior information.

3. We propose a novel user behavior pattern con-
trastive task for LLM fine-tuning, which sup-
ports both user behavior pattern learning and
anomaly-based detection.

4. We introduce a fine-grained threat tracing
mechanism based on a model-agnostic lo-
cal explanation technique for behavior-level
threat capture.

5. We validate the performance of our solution
using the CERT v6.2 dataset. Experimental
results show that our solution outperforms all
baselines with an F1 score of 0.8941.

2 Related Work

Current insider threat detection mainly in-
cludes classification-based and anomaly-based ap-
proaches. Classification-based detection utilizes
labeled data for supervised learning, usually main-
taining low false alarm rates. However, due
to the scarcity of labeled threat behavior data,
classification-based detection experiences severe
data imbalance issues and struggles to detect un-
known threat behaviors beyond the training set (Le
et al., 2021; Yuan et al., 2020; Wu and Li, 2021).

Anomaly-based detection models only benign
behaviors and detects threats by identifying the dif-
ferences between test data and benign behavioral
patterns. Currently, one-class classification (Meng
et al., 2020; Rashid et al., 2016; Lin et al., 2017;
Soh et al., 2019) and autoencoder reconstruction
(Tuor et al., 2017; Nasir et al., 2021; Yu et al., 2022)
are two of the most common anomaly detection
techniques. Anomaly detection is favored by re-
searchers due to its lack of requirement for labeled
data and sensitivity to evolving threat behaviors.
However, existing anomaly detection schemes still
struggle with high false alarms.

Natural Language Processing (NLP) was intro-
duced into the field of insider threat detection. Liu
et al. (Liu et al., 2019) embedded the behavior cat-
egories using Word2vec. Yuan et al. (Yuan et al.,
2020) introduced the Transformer and Masked Lan-
guage Model (MLM) for behavioral sequence rep-
resentation. However, these schemes did not repre-
sent behaviors in natural language, and their detec-
tion performance was limited by the state of NLP
techniques at the time.

Since the successful practice of LLMs, their po-
tential in outlier detection has gained increasing
attention. Egersdoerfer et al. assess ChatGPT’s
capabilities in log outlier detection (Egersdoerfer
et al., 2023); Liu et al. use LLM-based knowledge
distillation for time series outlier detection (Liu
et al., 2024); Li et al. achieve tabular data out-
lier detection through supervised LoRA fine-tuning
(Li et al., 2024); Dong et al. investigate the ap-
plication of LLMs in time series outlier detection
through direct detection, prompt engineering, and
fine-tuning (Dong et al., 2024). These studies all
show promising results.

While insider threat detection shares similarities
with outlier detection, it involves greater complex-
ity, demanding advanced capabilities of contextual
understanding, pattern identification, and general-
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Figure 1: The framework of our solution.
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Figure 2: Data pre-processing details. Each log field
uses the same color as the corresponding processing
method.

ization. Recently, Song et al. (Song et al., 2024a)
proposed a novel multi-agent collaborative frame-
work for insider threat detection based on LLMs,
marking an exciting and recent advancement. In
contrast, our work focuses on applying LLM fine-
tuning, which remains a promising and comple-
mentary direction in this field.

3 Our Solution

As shown in Figure 1, our solution is divided into
three stages: data pre-processing, model construc-
tion, and threat tracing. In data pre-processing,
user behavior logs are transformed into natural lan-
guage text. In model construction, we fine-tune
an LLM for insider threat detection using the user
behavior pattern contrastive task. In threat tracing,
we analyze the instances detected as positive with
a model-agnostic local explanation technique to
identify insider threat behaviors.

3.1 Data Pre-Processing

As shown in Figure 2, data pre-processing involves
topic specification, template conversion, and user-
adaptive time slicing, which we detail separately in
the following sections.

3.1.1 Topic Specification
Free text in the logs, which includes email content,
web page content, web URLs, etc., typically has
a volume far exceeding that of other attribute val-
ues, much of which is not valid information for

detection. Placing the free text directly alongside
other attribute values in the natural language text
converted from the behavior logs can introduce
significant noise, interfering with the LLM and in-
creasing the complexity of the behavior detection.

Therefore, we divide the entire behavior detec-
tion process into two parts for detection task sim-
plification. First, we use a general LLM to analyze
whether the free text contains specific topics related
to insider threats. If identified, the topic keywords
are converted with other log attribute values into
natural language text for subsequent detection.

The prompt for topic specification is customiz-
able. Leveraging the powerful generalization capa-
bilities of the LLM, organizations can set the topics
to be identified in the prompt according to their
specific needs and determine which content corre-
sponds to which topics. This enables the detection
model to accurately capture the threat activities of
genuine concern for the organization.

3.1.2 Template Conversion
User behavior logs are inherently composed of
natural language vocabulary and character strings.
Therefore, we only need to simply rearrange the
content of the behavior logs using templates to con-
form to the basic syntax of natural language, thus
converting behavior logs into natural language text.

The structure of the conversion template is as fol-
lows. Round brackets indicate optional parts, while
italic square brackets represent the log contents
(and their variations). The choice of prepositions
may vary depending on the type of activity.

[activity] ([decoy]) ([media]) ([to/from])
(with [attachments]) (about [topic key-
words]) on [pc].

Since we use the user behavior pattern con-
trastive task (detailed in 3.2.1) as the fine-tuning
task for the LLM, user IDs are not explicitly in-
cluded in the behavioral sentences to adapt to the
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fine-tuning task. Additionally, we assign roles
(e.g., colleague, supervisor, separated employee) to
email addresses and PC IDs to describe the corre-
sponding users’ relationships to the behavior sub-
jects, facilitating interpersonal interaction analysis.

3.1.3 User-Adaptive Time Slicing
Using the method described above, we convert a
behavior log item into a behavioral sentence, de-
noted as s. Behavioral sentences are aggregated
by user ID and ordered by timestamps. Each
day’s log forms a behavioral paragraph, denoted
as p = (s1, s2, . . . , sn), where n is the number
of behavioral sentences in a behavioral paragraph.
We apply a user-adaptive time slicing scheme from
Song et al.’s work (Song et al., 2024b) to the behav-
ioral paragraphs to strengthen the temporal distribu-
tion information of user behavior. Each behavioral
paragraph is split into two parts, with a slicing tag
(written as ’Go off duty’ for context and treated
as a behavioral sentence) inserted between them.
Identical behavioral sentences within each part are
merged to reduce paragraph length and increase
information density.

3.2 Model Construction

We propose a user behavior pattern contrastive task
based on contrastive learning as a fine-tuning task,
and introduce three fine-tuning strategies: ITDLM-
0, ITDLM-U, and ITDLM-II, for LLM fine-tuning
to achieve insider threat detection.

3.2.1 User Behavior Pattern Contrastive Task
Contrastive learning, being a self-supervised learn-
ing algorithm, does not require data labels, which
aligns with the needs of anomaly detection models.
We construct the user behavior pattern contrastive
task based on contrastive learning to fine-tune the
LLM for behavioral anomaly detection.

Firstly, we use a behavioral sentence s as the ba-
sic unit for augmenting the behavioral paragraphs.
Drawing on Xie et. al’s work (Xie et al., 2022),
we establish a set of data augmentation operations,
denoted as A = {acrop(·), amask(·), areorder(·)}.
User behavior contains inherent randomness in
both attributes and order. Data augmentation helps
the model learn stable behavior patterns. The crop
operation enhances focus on key behavioral details,
the mask operation helps to mitigate overfitting,
and the reorder operation reduces reliance on be-
havior sequence order.

We augment each behavioral paragraph with a

probability of α to obtain augmented paragraph
p̂. The augmentation operation ai(·) is randomly
selected from A.

p̂ =

{
ai(p), with probability α,
p, with probability 1− α.

(1)

We form a pair (p̂a, p̂b) with two augmented
behavioral paragraphs, p̂a and p̂b, for contrastive
learning. To better adapt to the LLM, we add
prompts to the behavioral paragraph pair and gen-
erate the input data as follows:

Instruction: Are behavioral sequences A
and B from the same user?

Input: Behavioral sequence A is as fol-
lows: [p̂a] SEP Behavioral sequence B
is as follows: [p̂b]

Answer:

During training, we set the augmentation prob-
ability to αtrain, considering a pair of augmented
behavioral paragraphs from the same user as a neg-
ative instance, and a pair from different users as a
positive instance to train the model to distinguish
behavioral patterns. During testing, we use the
unaugmented behavior paragraph to be tested as
the experimental subject to preserve threat features,
and a known benign paragraph from the same user,
augmented with αtest, as the control subject. The
model then analyzes the control-experiment pair to
generate the detection result ŷ. A negative result
indicates the experimental subject is benign, and a
positive result indicates a threat.

By pairing the experimental subject with N
known benign behavioral paragraphs for detection,
we obtain N results. The frequency r of positive
results is calculated as the threat rate of the experi-
mental subject:

r =
1

N

N∑
i=1

1(ŷi = y+) (2)

3.2.2 LLM Fine-Tuning Strategies
We propose three fine-tuning strategies based on
the user behavior pattern contrastive task, named
ITDLM-0, ITDLM-U, and ITDLM-II, as shown in
Figure 3. In this section, we denote the user to be
tested as u∗, and denote a set of non-tested users
as U = {u1, u2, . . . , uM} with a size of M . Let
p̂ui represent the augmented behavioral paragraph
with index i from user u. Let M0 represent the
pre-trained LLM. Each training set contains only
benign behaviors.
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Figure 3: Three fine-tuning strategies: ITDLM-0,
ITDLM-U, and ITDLM-II based on the user behav-
ior pattern contrastive task. Blue represents behavioral
information of the user to be tested; purple represents
behavioral information of the non-tested users.

1) ITDLM-0 We construct the training set using
the augmented paragraphs from only non-tested
users as follows:

D0 = {((p̂uk
i , p̂ul

i ), y+), ((p̂uk
i , p̂uk

j ), y−)|uk, ul ∈ U}
(3)

Next, M0 is fine-tuned using the LoRA method
as follows. Here, ∆W represents the updatable
weight matrix.

MITDLM-0 = Fine-Tune(M0,D0; ∆W ) (4)

The original M0 is trained into a detection model,
MITDLM-0, capable of distinguishing different be-
havior patterns. Since the training set does not
include behavior data from the user to be tested
u∗, MITDLM-0 detects threatening behaviors for u∗

without any prior information on u∗’s behavior pat-
terns.

2) ITDLM-U We construct a training set using
the augmented paragraphs from both the user to be
tested u∗ and the non-tested users as follows:

DU = {((p̂u∗
i , p̂uk

i ), y+), ((p̂u
∗

i , p̂u
∗

j ), y−)|uk ∈ U}
(5)

Pairs consisting solely of the augmented para-
graphs from u∗ are considered negative instances,
while pairs that include augmented paragraphs
from both u∗ and non-tested users are considered
positive instances. Next, M0 is fine-tuned using
the LoRA method as follows:

MITDLM-U = Fine-Tune(M0,DU; ∆W ) (6)

The augmented paragraphs from non-tested
users in the training set DU are used solely as be-
haviors “different from u∗’s pattern“. Compared to
MITDLM-0, MITDLM-U is built primarily using u∗’s
behavioral pattern information rather than general
user behavioral pattern information, making it a
single-user detection model tailored to u∗.

3) ITDLM-II MITDLM-0 offers better generaliza-
tion but lacks specific user behavior information,
while MITDLM-U incorporates specific information
but loses some generalization. To address these
shortcomings, we propose a two-stage fine-tuning
strategy, ITDLM-II:

MITDLM-II = Fine-Tune(MITDLM-0,DU; θp)
(7)

In the first stage, the training set D0 is used with
the LoRA method to fine-tune M0, resulting in
MITDLM-0. In the second stage, the training set
DU is used with the P-tuning v2 method to further
fine-tune MITDLM-0, resulting in MITDLM-II. Here,
θp represents the parameters of the prompt vec-
tors. By adding prompt vectors specific to u∗ to
MITDLM-0, MITDLM-II inherits the general user be-
havior pattern information from MITDLM-0 and also
possesses behavior pattern information specific to
the user to be tested.

3.3 Fine-grained Threat Tracing

The fine-tuned LLM detects threats by identifying
anomalous patterns in behavioral paragraphs, al-
lowing us to trace specific sentences that led to
a positive judgment using explanation techniques.
Following Ribeiro et al.’s method (Ribeiro et al.,
2016), we use a simple linear model to map the
sample space around positive instances to the corre-
sponding detection result space. The weights of the
linear model help identify sentences contributing
more to positive results, pinpointing specific threat
behaviors.

Fine-grained threat tracing mechanism consists
of local sampling and linear fitting.

3.3.1 Local Sampling
For a positive behavioral paragraph πu∗

=
(s1, s2, . . . , sn) of a user to be tested u∗, we ran-
domly generate a selection vector set V of size
K, V = {v1, v2, . . . , vK}, vi ∈ {0, 1}n. We
sample the behavioral paragraph πu∗

using s as
the basic unit based on V , which results in a
sampling set Πu∗

V = {πu∗
v1 , π

u∗
v2 , . . . , π

u∗
vK

}, where
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πu∗
vi = πu∗ ⊗ vi and ⊗ represents the selection

operation.
We construct a test set DΠu∗

V
=

{(p̂u∗
j , πu∗

vi )|π
u∗
vi ∈ Πu∗

V }, where p̂u
∗

j is the
augmented known benign behavioral paragraph of
user u∗. We use the detection model to analyze the
test set DΠu∗

V
, obtaining the detection results.

3.3.2 Linear Fitting and Threat Tracing
To better capture the impact of selecting behavioral
sentences on prediction results and avoid informa-
tion loss, we process the predictions of fine-tuned
LLM as follows:

r̂i = softmax{ω−
i ,ω+

i }(ω
+
i ) =

eω
+
i

eω
−
i , eω

+
i

(8)

Here, ω+ denotes the predicted probability of the
positive label word, and ω− represents the pre-
dicted probability of the negative label word. Since
the output of the fine-tuned LLM is only related
to the positive and negative label words, the prob-
abilities of other words are not considered. We
calculate the softmax of the set {ω−, ω+} and use
the resulting value corresponding to ω+ as a mea-
sure of threat for samples.

Construct a training set DL = {(vi, di, r̂i)|i =
1, 2, . . . ,K}, where di is the weight for sampling
vi. Using mean squared error as the loss func-
tion, we train a linear model ML(w, b) on DL,
where w ∈ Rn and b ∈ R. To prevent overfit-
ting, batch normalization and Dropout are included
during training.

Due to the positive detection results of all sam-
pled instances, the samples are also predominantly
detected as positive. The sampling dataset DL is
heavily imbalanced, leading to skewed positive
weights in the linear model and interfering with
threat tracing. To correct this, we center the weights
w by subtracting the mean to reduce the impact of
data imbalance.

ŵi = wi −
1

n

n∑
j=1

wj (9)

The weights ŵ = (ŵ0, ŵ1, . . . , ŵn)
T correspond

one-to-one with the behavioral sentences in πu∗
. If

ŵi > 0, it indicates that si represents a threat be-
havior; otherwise, si represents a benign behavior.

4 Experiments

In this section, regarding the behavior log anomaly
detection solution based on LLM fine-tuning pro-

# of Users # of Insiders # of Insider
Insts.

# of Threat
Insts.

4,000 5 1,360 33

Table 1: Statistics of CERT v6.2 Dataset.

posed for insider threat scenarios in this paper, we
pose the following three research questions:

RQ1: What is the performance of the detection
model based on LLM fine-tuning? How does it
compare with the baselines in the field of insider
threat detection?

RQ2: How do the hyperparameters involved in
the solution affect detection performance?

RQ3: How accurate is the fine-grained threat
tracing in behavior-level threat capturing? What
do the tracing results reveal about our detection
method?

We address the above research questions through
experiments and case studies.

4.1 Experimental Settings

4.1.1 Dataset

The CMU CERT v6.2 dataset (Lindauer et al.,
2014) is a simulated dataset developed by the
CERT division of Carnegie Mellon University for
insider threat detection. It includes behavioral logs
from 4,000 employees over 516 days, covering lo-
gon, HTTP, file, email, and device logs, among
others. There are 5 insiders included, each corre-
sponding to different insider threat scenarios.

In this paper, we process each user’s daily behav-
ioral logs as a single data instance. Instances con-
taining threatening behaviors are labeled as threats.
We filter out instances containing fewer than 5 be-
havioral sentences. The dataset size is shown in
Table 1.

4.1.2 Baselines

We select 8 baselines for comparison experiments,
including 2 commonly used machine learning mod-
els for outlier detection, iForest and OCSVM; 4
representative anomaly-based works in the field of
insider threat detection, including Tuor et al.’s work
(Tuor et al., 2017), Meng et al.’s work (Meng et al.,
2020), Yu et al.’s work (Yu et al., 2022), and Song
et al.’s work (Song et al., 2024b); and 2 representa-
tive classification-based works which are Yuan et
al.’s work (Yuan et al., 2020) and Wu et al.’s work
(Wu and Li, 2021).
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Figure 4: Experimental results for 5 insiders with varying prompt lengths in P-tuning v2. Green bars indicate threat
rate ranges for benign instances; pink bars indicate threat rate ranges for threat instances.

Pre-trained Model Parameter Size P Recall F1
BERT-Large 340M 0.1030 0.8000 0.1672

ChatGLM-6B 6B 0.8667 0.9600 0.8941

Table 2: Comparison results between 2 pre-trained mod-
els.

4.1.3 Evaluation Metrics
We use P (Precision), Recall, F1, and Acc (Accu-
racy) as evaluation metrics. P, Recall, and F1 assess
the models’ ability to identify positive instances,
which is crucial when insider threats are rare. Acc
measures overall classification accuracy.

To more strictly compare model precision, we
set the threshold for anomaly detection to the mini-
mum non-zero threat rate of the ground truth threat
instances.

4.1.4 Implementation Details
In the experiments, we utilize ChatGLM-6B (Du
et al., 2022) as the pre-trained LLM. The insiders
in the dataset are regarded as users to be tested,
while another 200 users are randomly selected as
non-tested users. Each user’s first 250 days of logs
(or 150 days if fewer are available) serve as training
instances. The remaining logs of the insiders serve
as experimental subjects for testing, with all their
training instances as control subjects (where N
equals the size of training instances).

The hyperparameters are set as follows: αtrain =
0.8, αtest = 0.3, lora_rank = 8, batch_size = 32,
epochs = 15, learning_rate = 1e-4, K=5,000.

To achieve better identification results, we use
ChatGLM-3-turbo for free text topic specification
on the users being tested. To conserve LLM re-
sources, we randomly insert topic keywords into
the data of non-tested users instead.

4.2 Comparison Experiments(RQ1)

ITDLM-0, ITDLM-U, and ITDLM-II perform in-
dividual detection for each insider and average the
evaluation results. Detection performance compar-
ison is shown in Figure 5. ITDLM-II combines

Scheme P F1
iForest 0.4549 0.5510

OCSVM 0.2471 0.3741
Tuor et al. (Tuor et al., 2017) 0.3827 0.4805

Meng et al. (Meng et al., 2020) 0.4471 0.5406
Yu et al. (Yu et al., 2022) 0.3850 0.4850

Song et al. (Song et al., 2024b) 0.8072 0.8540
Our ITDLM-II 0.8667 0.8941

Table 3: Comparison results between our solution and 6
anomaly-based baselines.

Scheme # of Threat
Insts. P Recall F1

Yuan et al.
(Yuan et al., 2020)

8 0.8824 0.3750 0.5263
10 0.7333 0.5789 0.6471
15 0.9200 0.6970 0.7931

Wu & Li
(Wu and Li, 2021)

15 0.9091 0.6061 0.7273

Our ITDLM-II 0 0.8667 0.9600 0.8941

Table 4: Comparison results between our solution and
2 classification-based baselines. Column # of Threat
Insts. represents the number of threat instances used for
training.

generalization and specificity, achieving optimal
detection performance. ITDLM-0, lacking spe-
cific user information, has weaker detection perfor-
mance but still can detect threat instances, validat-
ing the approach of distinguishing user behavior
patterns in pairs. ITDLM-U, learning only the be-
havioral patterns of the specific user to be tested,
shows improved P over ITDLM-0 but suffers from
overfitting, limiting its performance.

We also compare the performance of the models
fine-tuned with BERT-Large and ChatGLM-6B in
Table 2. ChatGLM-6B’s larger parameter scale
leads to superior detection performance, making it
more effective for insider threat detection.

The comparison results with the baselines in
Table 3 and Table 4 show that our solution pos-
sesses the best comprehensive detection perfor-
mance, with the F1 score outperforming all base-
lines. Our P surpasses all anomaly-based baselines
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Figure 5: Comparison re-
sults between ITDLM-0,
ITDLM-U, and ITDLM-II.
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Figure 6: Experimental re-
sults with varying αtrain and
αtest.

Mean Centering Acc P Recall F1
Centered 0.8731 0.7945 0.8234 0.7792

Non-Centered 0.7318 0.5160 0.8724 0.5997

Table 5: Performance of threat tracing mechanisms un-
der mean centering and uncentering.

and approaches that of classification-based base-
lines, while our Recall exceeds all classification-
based baselines.

It should be noted that the detection results of
anomaly-based baselines fall within the (0,1) range
and hardly ever reach 0, making their recall consis-
tently 1 in our evaluation system. Thus, we omit
recall scores for anomaly-based baselines.

4.3 Hyperparametric Analysis(RQ2)

We evaluate the detection performance of ITDLM-
U under varying αtrain and αtest parameters, as
shown in Figure 6. Both curves exhibit an over-
all upward trend, indicating that behavioral para-
graph augmentation improves detection perfor-
mance. The steeper αtrain curve suggests that data
augmentation during training has a greater impact
on performance.

Figure 4 shows the detection performance of
ITDLM-II across 5 insiders with varying prompt
lengths in P-tuning v2. The F1 score gener-
ally increases as prompt length grows (ACM2278,
PLJ1771, CDE1846) or initially rises then declines
(MBG3183, CMP2946). The figure indicates that
F1 peaks when the prompt length matches the
user’s behavioral complexity, maximizing the dif-
ferentiation between benign and threat instances.
Short prompts lead to underfitting, while exces-
sively long prompts may cause overfitting.

4.4 Verification of Threat Tracing and Case
Study(RQ3)

The proposed fine-grained threat tracing mecha-
nism analyzes each true positive instance and aver-
ages the evaluation results. Table 5 presents the per-

# Review Behavior Paragraph
1 Log on with own pc... View external email

on own pc for 3 times. Log off with own pc.
Go off duty. Log on with own pc. Connect the
device on own pc. Open file from usb on own
pc for 4 times. Upload information on harmful
pages on own pc for 4 times. Disconnect the
device on own pc. Log off with own pc.

2 Log on with own pc... Send external email on
own pc. Log off with own pc. Go off duty. Log
on with own pc. Connect the device on own pc.
Upload information on harmful pages on own
pc for 3 times. Open file from usb on own pc
for 3 times. Disconnect the device on own pc.
Log off with own pc.

Table 6: Case study of insider ACM2278. Sentences
identified as threats are highlighted in red, with ground
truth threat sentences italicized. Column # represents
the serial number of the instances.

formance comparison between the mean-centered
and non-centered schemes. Mean centering signifi-
cantly improves P, Acc, and F1, with only a slight
decrease in Recall.

Upon statistical analysis, each behavioral para-
graph averages 14.35 behavioral sentences. With
an Acc of 0.8731, about 12.53 sentences are cor-
rectly classified, with fewer than 2 misclassified on
average, which is acceptable in practice.

Table 6 displays two threat tracing instances
from insider ACM2278. The table shows that
threat behaviors traced by our solution basically
align with the ground truth. Interestingly, however,
our solution fails to detect the user’s log-off be-
haviors after "Go off duty" in both instances, and
even misidentifies a log-off before "Go off duty"
as a threat. This judgment is reasonable from the
perspective of paragraph pattern identification: a
log-off sentence is normal at the end of a para-
graph but abnormal in the middle. However, from
a behavioral logic perspective, the judgment is in-
correct: log-off behavior is normal before "Go off
duty" and abnormal afterward. This suggests that
our solution lacks an understanding of human be-
havioral logic, an issue also prevalent in existing
insider threat detection studies.

5 Conclusion

In this paper, we introduce a precise behavioral
anomaly detection solution tailored for insider
threats based on LLM fine-tuning. By represent-
ing user behaviors in natural language, we reduce
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information loss and improve behavioral data read-
ability. We fine-tune the LLM with a user behavior
pattern contrastive task to detect anomalous behav-
ior patterns. We propose three fine-tuning strate-
gies: ITDLM-0, ITDLM-U, and ITDLM-II. The
two-stage fine-tuning strategy, ITDLM-II, achieves
the highest F1 score of 0.8941 among all baselines.
Additionally, we implement a fine-grained threat
tracing mechanism to capture threats at the behav-
ioral level, achieving an Acc of 0.8731.

6 Limitation

The CERT v6.2 dataset uses outdated text gener-
ation techniques, leading to poor-quality free text
that prevents LLMs’ sentiment analysis from func-
tioning and reduces the accuracy of topic specifica-
tion, thereby limiting our approach’s performance.
ITDLM-0, which is better suited to the character-
istics of large models that achieve high general-
ization through massive data, has the potential to
develop a highly accurate universal insider threat
detection model. But this potential is limited by
our experimental environment and dataset quality.
Additionally, our solution lacks comprehension of
actual human behavioral logic, as noted in the case
study.
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A Glossary

As shown in Table 7, the terms and corresponding
explanations related to the field of insider threat
detection in this paper are presented.

B Technical Principle and Details of
Referenced Works

We reference several techniques from previous
works to enhance our insider threat detection. Song
et al.’s user-adaptive time slicing (Song et al.,
2024b) is adopted to incorporate behavioral time
distribution information into our behavioral para-
graphs, while Xie et al.’s data augmentation algo-
rithms (Xie et al., 2022) are adopted to augment
behavioral paragraphs for pattern contrast. Ribeiro
et al.’s local model-agnostic explanation technique
(Ribeiro et al., 2016) supports our fine-grained
threat tracing. This section details these techniques
and their underlying principles.

B.1 User-Adaptive Time Slicing
Song et al. (Song et al., 2024b) propose that when
time slicing aligns with a user’s behavioral tempo-
ral distribution, behavior within each slice remains

stable, while significant variation occurs across
slices.

Following their work, we divide the 24-hour
day into T time slices of granularity G, where
TG = 24h. Each slice spans from b + Gt to
b + G(t + 1), with b as the bias and t as the
slice index. G = 1, 2, 3, 4, 6, 8, 12, 24h, and
b = 0, 1, . . . , (G − 1)h. For each (G, b) set, we
calculate the categorical count vector x(G,b)

t of user
behaviors within each slice, covering 129 behavior
categories. The vectors form a matrix x(G,b) =

(x
(G,b)
1 , x

(G,b)
2 , . . . , x

(G,b)
t , . . . , x

(G,b)
T ) chronologi-

cally. We calculate the covariance c(G,b) =
cov(x(G,b)) to measure the alignment between time
slicing and the user’s behavioral temporal distribu-
tion. The average covariance c̄(G,b) is calculated
for a specific user, and the (G, b) with the highest
c̄(G,b) is considered optimal.

Based on Song et al.’s findings and our experi-
ence, the optimal G is typically 12 hours, dividing
the day into working and leaving periods. There-
fore, in our scheme, we set G to 12 hours and deter-
mine the optimal bias b for each user by calculating
covariance.

B.2 Data Augmentation
Drawing on Xie et al.’s work (Xie et al., 2022), we
employ cropping, masking, and reordering oper-
ations to augment behavioral paragraphs for user
behavioral pattern contrast.

The operation acrop(·) randomly takes a contin-
uous sub-paragraph with nc = ⌊η × n⌋ sentences
from paragraph p:

acrop(p) = (sc, sc+1, . . . , sc+nc−1) (10)

The operation amask(·) randomly masks nm =
⌊γ × n⌋ behavioral sentences in paragraph p. Let
Ip = (i1, i2, . . . , ij , . . . , inm), where ij represents
the index of a masked behavioral sentence.

amask(p) = (ŝ1, ŝ2, . . . , ŝi, . . . , ŝn) (11)

ŝi =

{
si, i /∈ Ip,
[MASK] , i ∈ Ip.

(12)

The operation areorder(·) randomly selects a
continuous sub-paragraph of nr = ⌊β × n⌋ be-
havioral sentences from paragraph p, denoted
as (sr, sr+1, . . . , sr+nr−1), and randomly shuffles
them into (ŝr, ŝr+1, . . . , ŝr+nr−1). That is:

areorder(p) = (s1, . . . , ŝr, . . . , ŝr+nr−1, . . . , sn)
(13)
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Terms Explanations
Insider Threat Employees misuse their legal permissions and trust to compromise the confidentiality,

integrity, and availability of organizational assets.
User vs. Insider In this paper, "user" refers to all organizational employees who interact with the

organization’s system, while "insider" specifically denotes those employees whose
actions pose insider threats.

User Behavior Logs / Be-
havior Logs

In this paper, user behavior logs refer to structured datasets that record users’ opera-
tions and activities within an organization’s system or network environment.

User Behavior Patterns The regular behavioral characteristics or time distribution of users in specific environ-
ments. In this paper, it refers to the typical interactions of users with organizational
systems or network environments.

Anomaly-Based Detection
/ Anomaly Detection

The process of modeling benign behavior patterns and evaluating the deviation of test
data from those patterns to identify anomalies.

Benign Anomalies vs.
Threats

In this paper, benign anomalies refer to deviations from benign behavior patterns that
do not fundamentally harm organizational assets, while threats are behaviors that may
cause substantial harm to organizational assets.

Threat Tracing The process of pinpointing specific behaviors or operations that lead to anomalies
within a detected sequence or set of behaviors.

Time Slicing The segmentation of continuous user behavior data into distinct time-based segments
to capture the temporal distribution and variation of behaviors.

Table 7: The terms and corresponding explanations related to the field of insider threat detection.

B.3 Local Interpretable Model-agnostic
Explanations

Ribeiro et al. (Ribeiro et al., 2016) suggest training
interpretable local surrogate models, such as lin-
ear models or decision trees, to explain individual
samples in complex models. We perturb a behav-
ior paragraph π by randomly selecting an arbitrary
number of behavior sentences, generating nearby
samples πvi , where vi is the selection vector with
vi ∈ V . The complex detection model produces
detection results of perturbed samples. Perturbed
samples are weighted based on their proximity to π,
with closer samples given higher weight. The sam-
ple weights are calculated using cosine distance
and the Gaussian kernel function. We train a linear
surrogate model on perturbed samples to approxi-
mate the complex model locally, and thus achieve
the interpretation of the behavior paragraph π.

It is worth noting that many explanation al-
gorithms can achieve fine-grained threat tracing
within our framework. In fact, insider threats often
involve multiple related behaviors rather than ex-
isting in isolation. For instance, information leaks
may consist of after-hours logins, file copying, and
uploading to WikiLeaks. Therefore, explanation
algorithms based on prototypical concepts (Zhang
et al., 2023) have the potential to perform better in
fine-grained threat tracing.

Instruction: Are behavioral sequences A and B from the same user?

Input: Behavioral sequence A is as follows: [ ො𝑝𝑎] SEP Behavioral

sequence B is as follows: [ ො𝑝𝑏]

Answer:

Prompts for Insider Threat Detection:

Determine which category the following domain belongs to: 

Harmful Information or Others. Note: Content that may lead to the 

leakage of information from government, enterprises, or 

organizations is also considered Harmful Information; domain 

names of piracy websites fall under Others; random strings are not 

necessarily classified as Harmful Information. If you are unsure, 

classify it as Others. Your response must follow the format: 

[answer]. Please provide the answer directly.

The domain to be tested is: [domain]

Your answer:

Prompts for URL Topic Specification:

Determine which category the following content belongs to: Job 

Application or Others. Your response must follow the format: 

[answer]. Please provide the answer directly.

The content to be tested is: [content]

Your answer:

Prompts for Topic Specification of Web Content and 

Email Content:

Figure 7: Prompts used in our solution.

C Prompts Used in Our Solution

As shown in Figure 7, the prompts used in our so-
lution are presented, including prompts for insider
threat detection, prompts for URL topic specifica-
tion, and prompts for topic specification of web
content and email content.
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D Baselines and Evaluation Metrics

D.1 Introduction to Baselines

We briefly introduce the 8 baselines as follows.

1) Anomaly-based Baselines Anomaly-based
baselines include iForest, OCSVM, Tuor et al.’s
work (Tuor et al., 2017), Meng et al.’s work (Meng
et al., 2020), Yu et al.’s work (Yu et al., 2022), and
Song et al.’s work (Song et al., 2024b), totaling six
methods.

• iForest and OCSVM are common outlier de-
tection models. We construct input vectors
using traditional behavior classification and
counting methods. Behavior counts are ob-
tained within a one-day window covering 129
categories. We utilize GridSearchCV from
sklearn to determine the hyperparameters for
both models.

• Tuor et al. extract 408 behavior categories
from logs, obtaining user-day count vectors.
They utilize Deep Neural Network (DNN) to
reconstruct the count vectors and fit a multi-
variate Gaussian distribution to compute de-
composable anomaly scores.

• Meng et al. use Euclidean distance and Eu-
clidean norm to measure differences between
two behavioral profiles. The larger difference
between the test profile and benign profile in-
dicates higher anomaly levels.

• Yu et al. use an RNN-based autoencoder to
reconstruct behavioral sequences for anomaly
detection. They utilize adversarial learning
to align hidden layer features with a normal
distribution, thereby reducing feature space
uncertainty.

• Song et al., based on traditional behavior
counting, construct feature sequences consid-
ering covariances for user adaptation. Stacked
bidirectional LSTMs and feedforward neural
networks are used for detection.

2) Classification-based Baselines Classification-
based baselines include Yuan et al.’s work (Yuan
et al., 2020) and Wu et al.’s work (Wu and Li, 2021),
totaling two methods.

• Yuan et al. encode behavior category se-
quences using a Transformer, pre-training

with the MLM and fine-tuning for binary clas-
sification of behavior sequence representa-
tions.

• Wu et al. first employ the Fast Correlation-
Based Filter (FCBF) for feature selection from
activity features in system logs. They then
combine neural networks and random forests
to detect threats.

D.2 Introduction to Evaluation Metrics
We select Precision (P), Recall, F1, and Accuracy
(Acc) as our evaluation metrics. Let TP (True Posi-
tives) represent the number of threat instances pre-
dicted as positive; FP (False Positives) represent
the number of benign instances predicted as posi-
tive; TN (True Negatives) represent the number of
benign instances predicted as negative; FN (False
Negatives) represent the number of threat instances
predicted as negative.

P is the proportion of actual threat instances
among the predicted positive instances:

P =
TP

TP + FP
(14)

Recall is the proportion of correctly predicted
positive instances among all actual threat instances,
which is:

Recall =
TP

TP + FN
(15)

The F1 score is the harmonic mean of P and
Recall, providing a balanced metric that considers
both precision and recall:

F1 = 2× P ×Recall

P +Recall
(16)

Acc measures the overall proportion of correct
predictions and is more reflective of model perfor-
mance when the dataset is balanced.

Acc =
TP + TN

TP + TN + FP + FN
(17)

E ITDLM-II vs. ITDLM-U:
Experimental and Case Study Analysis
of Threat Differentiation Ability

As shown in Figure 8, ITDLM-U suffers from over-
fitting, as evidenced by its tendency to produce
extreme threat rates of 1 or 0, which prevents it
from distinguishing between benign anomalies and
threats, resulting in a high false alarm rate. In
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# Label rITDLM-U rITDLM-II Review Behavior Paragraph
1 threat 1.0000 1.0000 ...Go off duty. Log on with own pc. Connect the device on own pc. Open file from usb

on own pc for 4 times. Upload information on harmful pages on own pc for 4 times.
Disconnect the device on own pc. Log off with own pc.

2 threat 1.0000 0.9396 ...Go off duty. Log on with own pc. Connect the device on own pc. Upload information
on harmful pages on own pc for 3 times. Open file from usb on own pc for 3 times.
Disconnect the device on own pc. Log off with own pc.

3 benign 1.0000 0.8792 ...Go off duty. Log on with own pc. Connect the device on own pc for 2 times. Delete
file from usb on own pc for 3 times. Copy file from usb on own pc for 2 times. Copy
file to usb on own pc for 3 times. Open file from usb on own pc. Disconnect the device
on own pc for 2 times. Write file to usb on own pc. Log off with own pc.

4 benign 1.0000 0.6040 ...Go off duty. Log on with own pc. Connect the device on own pc for 3 times.
Disconnect the device on own pc for 3 times. Delete file from usb on own pc for 3
times. Copy file from usb on own pc. Open file from usb on own pc for 2 times. Open
decoy file in disk on own pc. Log off with own pc.

5 benign 1.0000 0.3087 ...Go off duty. Log on with own pc. Connect the device on own pc for 4 times. Open
file from usb on own pc. Copy file to usb on own pc for 3 times. Disconnect the device
on own pc for 4 times. Copy file from usb on own pc for 2 times. Log off with own pc.

Table 8: Case study of insider ACM2278 under ITDLIM-U and ITDLIM-II. Column # represents the serial number
of the instances.

contrast, the predictions from ITDLM-II are much
smoother.

Table 8 shows the detection results of ITDLM-
U and ITDLM-II for five test instances of user
ACM2278, including two threats and three benign
instances. According to the CERT descriptions, the
insider threat scenario for ACM2278 is:

User who did not previously use remov-
able drives or work after hours begins
logging in after hours, using a remov-
able drive, and uploading data to wik-
ileaks.org.

Each instance in the table involves ‘work after
hours‘ (e.g., "Log on" after "Go off duty"). How-
ever, the benign instances do not include ‘upload-
ing data to wikileaks.org.‘

From ITDLM-U’s perspective, all five instances

deviate from ACM2278’s past behavioral patterns
and are marked as anomalies with a threat rate
of 1. In contrast, ITDLM-II identifies the two in-
stances involving ’uploading data to wikileaks.org’
as more anomalous, assigning them higher threat
rates. The case study demonstrates that ITDLM-II
can better distinguish between benign anomalies
and threats.
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Figure 8: Threat rate distribution of instances to be
tested under ITDLM-II and ITDLM-U.
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