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Abstract

In this study, we tackle three main challenges of
deep sequential processing models in previous
research: (1) memory degradation, (2) inaccu-
rate gradient backpropagation, and (3) compat-
ibility with next-token prediction. Specifically,
to address (1–2), we define a Flashback prop-
erty in which memory is preserved perfectly
as an identity mapping of its stored value in a
memory region until it is overwritten by a hid-
den state at a different time step. We propose
a Flashback mechanism that satisfies this prop-
erty in a fully differentiable, end-to-end man-
ner. Further, to tackle (3), we propose archi-
tectures that incorporate the Flashback mecha-
nism into Transformers and Mamba, enabling
next-token prediction for language modeling
tasks. In experiments, we trained on The Pile
dataset, which includes diverse texts, to evalu-
ate tradeoffs between commonsense reasoning
accuracy, processing speed, and memory usage
after introducing the Flashback mechanism into
existing methods. The evaluations confirmed
the effectiveness of the Flashback mechanism.

1 Introduction

The term “Generative AI” has rapidly gained
widespread attention, particularly due to applica-
tions such as ChatGPT (OpenAI) and Stable Dif-
fusion (Stability AI). Consequently, various appli-
cations, such as chat-based interfacing (OpenAI),
image generation (Stability AI), and programming
support (GitHub, Inc.), have emerged. Several of
these systems are built on foundation models (Bom-
masani et al., 2021), which can process not only
text (Touvron et al., 2023; OpenAI et al., 2024) but
also multimodal data such as video and audio (Gird-
har et al., 2023; Madan et al., 2024).

For tasks that solve users’ problems through
natural language processing, as seen with Chat-
GPT, these systems typically rely on deep neural
networks (DNNs), particularly Transformer-based
models (Vaswani et al., 2017; Touvron et al., 2023;

OpenAI et al., 2024). Such models are highly scal-
able, especially in terms of handling larger datasets,
enabling them to tackle complex tasks that were
previously infeasible before 2022.

However, as generative AI advances, a signifi-
cant limitation arises in terms of handling informa-
tion not included in the training dataset, such as
newly acquired user input or continuously updated
databases (referred to as external memory (Graves
et al., 2014, 2016)). Transformer-based models
struggle to retain this external memory beyond a
certain capacity due to their architectural character-
istics stemming from the computational and mem-
ory costs that increase with the length of input
sequences in attention mechanisms (Vaswani et al.,
2017; Dai et al., 2019). Two general approaches
have been explored to address this issue: (1) imple-
menting memory mechanisms on the application
side or (2) integrating memory capabilities within
the DNN architecture.

The first approach involves enhancing appli-
cations with memory capabilities, such as en-
abling large language model (LLM)-based agents
to search databases (Press et al., 2023) or re-
trieve relevant information using techniques such as
retrieval-augmented generation (Lewis et al., 2020)
(RAG). The second approach directly incorporates
memory mechanisms within DNN architectures,
leading to memory-capable neural networks (MC-
NNs) (Hochreiter and Schmidhuber, 1997; Graves
et al., 2014; Weston et al., 2015; Sukhbaatar et al.,
2015; Graves et al., 2016; Rae et al., 2020; Gu
et al., 2021; Bulatov et al., 2022; Fu et al., 2023;
Gu et al., 2022; Yang et al., 2023; Peng et al., 2023;
Gu and Dao, 2023; Arora et al., 2024). These
approaches often build upon recurrent neural net-
works (RNNs), which store input information in
hidden states or extend them with explicit memory
components known as memory-augmented neural
networks (MANNs).

RNN-based methods offer the advantage of not
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Figure 1: Conceptual illustration of (a) a basic RNN
and (b) the Flashback mechanism.

requiring a custom memory architecture for each
application. Recently, subquadratic models that
do not impose limitations on sequence length have
garnered attention, particularly state-space mod-
els (Gu et al., 2021, 2022; Fu et al., 2023; Gu and
Dao, 2023) (SSMs) and linear attention-based mod-
els (Yang et al., 2023; Peng et al., 2023; Arora et al.,
2024). Further, efforts to improve the efficiency of
attention computation in Transformers for long in-
put sequences have been made (Parmar et al., 2018;
Child et al., 2019; Beltagy et al., 2020; Sun et al.,
2023; Ding et al., 2023). Owing to their scalability
in handling large datasets through self-supervised
learning, both Transformer- and RNN-based meth-
ods are becoming the backbones for foundation
models used across diverse applications. However,
achieving higher precision, faster processing, and
less memory usage remains challenging, especially
for more advanced applications, such as running
LLMs on mobile devices or robots and process-
ing multimodal data that includes text, video, and
audio. In this study, we focus on enhancing the
efficiency of RNN-based methods that can handle
inputs with no constraints on sequence length.

In previous studies on MCNNs, the following
challenges have been identified when improving
performance and scalability for practical applica-
tions.

1. Memory Degradation. Memory regions,
such as hidden states or explicit memory com-
ponents, must be updated regularly at specific
intervals to retain external memory. However,
it is difficult to completely prevent memory
degradation over time, whether due to incor-
rect updates or continuous alterations.

2. Inaccurate Gradient Backpropagation.
Similar to the issues identified with RNNs,
architectures that continuously update mem-
ory suffer from vanishing or exploding gra-
dients when backpropagating through long
sequences because the gradients must be prop-
agated over many time steps.

3. Incompatibility with Next-Token Predic-
tion. When memory is updated at regular
intervals or based on segments of input rather
than at every time step, the architecture cannot
be seamlessly applied to next-token predic-
tion, a common pretraining task for modern
LLMs.

1.1 Overview

In this study, we tackle all three challenges by
introducing a novel memory mechanism, the
FLASHBACK mechanism, which retains memory
sharply and can be incorporated into next-token
prediction architectures without modification. The
FLASHBACK property ensures that once external
memory is stored, it is retained as an identity map-
ping until explicitly overwritten. This allows gradi-
ents to be backpropagated directly from later time
steps in a fully differentiable, end-to-end manner
when the memory is referenced.

In the proposed Flashback mechanism, memory
regions are represented as hidden states, similar
to RNNs. At each time step, the current hidden
state is compared with the input data and elements
in the memory region are replaced if necessary
to satisfy the Flashback property, as shown in Ta-
ble 1. Finally, we propose architectures that inte-
grate the Flashback mechanism into both Trans-
formers and Mamba, thereby allowing them to han-
dle next-token prediction for language modeling
tasks.

The effectiveness of the Flashback property was
evaluated through experiments on The Pile (Gao
et al., 2020), focusing on language modeling tasks.
We assessed the changes in processing accuracy,
speed, and memory usage after incorporating the
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Flashback mechanism into existing methods to
demonstrate its effectiveness.

The major contributions of this study are
twofold: (1) defining a Flashback property to ap-
proach the three challenges of existing MCNNs and
(2) proposing a Flashback mechanism that can be
integrated into next-token prediction architectures
such as LLMs.

2 Related Work

2.1 Early MCNNs

MCNNs for handling sequential data have been ex-
tensively studied, and numerous approaches have
been proposed, including RNNs and long-short-
term memory (LSTM) networks (Rumelhart et al.,
1986; Hochreiter and Schmidhuber, 1997). Early
RNN-based methods store external memory solely
within the hidden states of neural networks at each
time step. However, these models struggle to ac-
count for dependencies between temporally distant
input data. In response to this limitation, methods
based on MANNs, which extend RNN architec-
tures, have been proposed in recent years (Graves
et al., 2014; Weston et al., 2015; Sukhbaatar et al.,
2015; Graves et al., 2016). Notably, neural Turing
machines (Graves et al., 2014) and differentiable
neural computers (DNCs) (Graves et al., 2016) in-
troduce explicit memory regions distinct from hid-
den states in neural network architectures, allowing
for direct read and write operations to memory
stores.

2.2 Transformer-Based Approaches

As discussed in Section 1, the high generalizability
gained from large-scale training datasets has led
to the widespread adoption of Transformers, par-
ticularly for language modalities. Consequently,
several methods that extend the MANN concept
by explicitly integrating external memory into the
Transformer architecture have been proposed (Rae
et al., 2020; Bulatov et al., 2022). Such methods
enable the handling of long-range input sequences
by referencing past information from memory re-
gions while maintaining inference efficiency that
remains constant with respect to the input sequence
length. In addition, techniques have been devel-
oped in application-layer solutions outside DNNs,
where pretrained LLMs function as agents that
query databases (Press et al., 2023) or use methods
such as RAG (Lewis et al., 2020) to extract relevant
information from external sources.

2.3 Backbone Architectures

Enhancing the performance of core DNNs that
serve as the backbone for foundation models could
allow them to handle longer input sequences, elim-
inating the need for introducing additional memory
regions into either the DNN architecture or appli-
cation layer. In line with this approach, several
methods that improve attention mechanisms to ef-
ficiently process long-range input data have been
proposed (Parmar et al., 2018; Child et al., 2019;
Beltagy et al., 2020; Sun et al., 2023; Ding et al.,
2023). Such methods broaden and sparsify the re-
lationships modeled by attention mechanisms, en-
abling attention computation between temporally
distant inputs. However, this approach inherently
limits the maximum sequence length that can be
processed by DNNs.

Approaches based on SSMs (Gu et al., 2021,
2022; Fu et al., 2023; Gu and Dao, 2023) and
linear attention models (Yang et al., 2023; Peng
et al., 2023; Arora et al., 2024), which are inspired
by RNN architectures, store external memory in
hidden states without imposing limitations on the
input sequence length. Such RNN-based meth-
ods not only exhibit generalizability comparable to
Transformers, especially in problem settings with
relatively few weight parameters, but also have the
advantage of inference efficiency independent of
sequence length.

This study draws inspiration from certain
MANN approaches that directly store input vectors
in memory regions (Weston et al., 2015; Sukhbaatar
et al., 2015). Unlike these methods, we selectively
stores each element of the input vector as an iden-
tity mapping, enabling a fully differentiable, end-
to-end process.

3 Proposed Method

In this section, we first explain the principles of
RNNs and clarify the challenges faced in previous
studies. Next, we define the Flashback property,
propose the Flashback mechanism that satisfies
this property, and present a DNN architecture that
incorporates the Flashback mechanism.

3.1 Challenges in RNN-Based Approaches

In RNNs, the hidden state at time t, ht ∈ RD, is
computed from the hidden state at time t− 1, ht−1,
and the input at time t, xt ∈ RD, as follows:

ht = f(ht−1,xt), (1)
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where f(·) is the state update function. The output
of the RNNs at time t, yt, is computed using ht:

yt = g(ht), (2)

where g(·) denotes the output function. Thus, the
hidden state at time t+ T , ht+T , can be expressed
recursively as follows:

ht+T =f(f(f(· · · f(ht−1,xt)

· · · ),xt+T−1),xt+T ).
(3)

Because ht is recursively transformed by f(·) until
time t+ T , there is a risk of memory degradation
due to incorrect transformations or error accumula-
tion (see Challenge 1 in Section 1). At this point,
the gradient of loss at time t + T , Lt+T , with re-
spect to hidden state ht can be computed using
backpropagation as follows:

∂Lt+T

∂ht
=

∂Lt+T

∂ht+T
· ∂ht+T

∂ht+T−1
· · · · · ∂ht+1

∂ht
. (4)

Note that in next-token prediction tasks, the loss L
is computed at every time step. The multiplication
of several derivatives in this chain rule introduces
the risk of vanishing or exploding gradients (see
Challenge 2 in Section 1).

When external memory is stored in a hidden
state, many prior works on MANNs, although com-
plex, fundamentally adhere to the basic principles
of RNNs. For example, operations on memory ma-
trices using a controller in DNCs (Graves et al.,
2016) or write operations to memory tokens in
RMTs (Bulatov et al., 2022) can be interpreted as
updates to the hidden state via f(·). In addition,
methods based on SSMs or linear attention are de-
signed based on RNN concepts.

3.2 Flashback Property

In the proposed method, the computation of hidden
state ht can be performed as follows:

ht = f(xt,ht−1) = Update(r(xt),ht−1), (5)

where r(xt) ∈ RD denotes a function that trans-
forms xt either linearly or nonlinearly. The func-
tion Update(r(xt),ht−1) updates the i-th element
of ht by selecting either the corresponding element
of r(xt) or ht−1 as follows:

h
(i)
t =

{
r(i)(xt) if u(i) = 1

h
(i)
t−1 if u(i) = 0

, (6)

where u(i) denotes a flag determined by a prede-
fined criterion for each element of ht based on the
Update(·) function.

In this study, we focus on a property where each
element of ht becomes an identity mapping of the
elements of previous inputs or hidden states. When
this property is satisfied, the hidden states are main-
tained at the updated value, reducing the risk of
memory degradation due to recursive transforma-
tions described in Section 1. Further, if the i-th
element of the hidden state at time t + T , h(i)

t+T ,
retains the value from time t,

∂h
(i)
t+T

∂h
(i)
t

= 1 (7)

holds, meaning that the gradient of the loss at time
t + T , ∂Lt+T /∂h

(i)
t , can be computed without

the multiplication of derivatives described in Equa-
tion (4). As a result, the risk of vanishing or explod-
ing gradients in RNNs is significantly reduced. We
refer to this property, which mitigates the issues of
RNNs, as the Flashback property. By maintaining
the direct forward and backward propagation of
memory information and its gradients over long
periods, we aim to promote efficient memorization
and stable learning.

3.3 Flashback Mechanism
In this study, we propose the Flashback mechanism,
a memory mechanism that possesses the Flashback
property. Its architecture is shown in Figure 1.
First, hidden state ht is updated using the linear
transformation r(xt) of xt and the previous hidden
state ht−1 as follows:

ht = MaxPool(r(xt);ht−1), (8)

where Max-Pooling is adopted as the simplest
Update(·) function that satisfies the Flashback
property, and MaxPool(·) selects the maximum
value across the elements in the channel dimen-
sion. Next, the output yt is obtained as follows1:

zt = LayerNorm(xt

+ GeLU(q(xt) + Norm(ht−1))),
(9)

yt = LayerNorm(zt + FFN(zt)), (10)

where LayerNorm(·) represents layer normaliza-
tion, GeLU(·) is the Gaussian error linear unit

1Although the definition from input to output function
does not exactly match the simplified RNN formulation in
Section 3.2, it is equivalent in principle.
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function, q(·) is a linear transformation function,
Norm(·) is a normalization function, and FFN(·)
denotes feed forward networks (FFNs).

3.4 Flashback DNN Architecture

In this study, we propose DNN architectures that
integrate the Flashback mechanism into both Trans-
formers (Vaswani et al., 2017) and Mamba (Gu and
Dao, 2023). For the Transformer architecture, we
use Transformer++ (Touvron et al., 2023) (LLaMa).
The attention mechanism and FFNs are treated as
a single block. For Mamba, the SSM architec-
ture is considered a single block. Figure 2 shows
the architectures of Transformer++ and Mamba
integrated with the Flashback mechanism. The
Flashback mechanism is inserted at every even-
numbered block in the architectures to introduce
the Flashback property.

In the Transformer-based architecture, we em-
ploy sliding window attention (Parmar et al., 2018;
Child et al., 2019; Beltagy et al., 2020) (SWA)
to keep computational complexity within the sub-
quadratic range, ensuring that processing efficiency
does not degrade as input sequence length increases.
The embedding dimensions for input tokens and
hidden states in the Flashback mechanism are set
according to the specific configurations of Trans-
former++ and Mamba.

4 Experiments

In this section, we describe the experimental con-
figuration in detail and then verify the effectiveness
of the proposed method from the following three
perspectives.

• Evaluate the language modeling performance
of the proposed method in the context of com-
monsense reasoning tasks.

• Assess the generalizability of the proposed
method when applied to input data that exceed
the learned sequence length.

• Analyze the effectiveness and characteristics
of the Flashback property through multiple
ablation studies.

4.1 Datasets

For the experiments, we used The Pile dataset (Gao
et al., 2020) for training and the LM-Eval harness
tool (Gao et al., 2024) for evaluating language mod-
eling accuracy.

MLP block

Flashback mechanism

(a)

Transformer block

Transformer block

SWA-based 
Transformer block

Flashback block
+ Flashback

block & SWA

Transformer-based model

Mamba block

Mamba block

Mamba block

Flashback block

Mamba-based model

+ Flashback
block

Transformers

Mamba

(b)

Figure 2: An overview of the proposed architecture
design. (a) The Flashback block is integrated into (b)
the entire architecture.

4.1.1 Training
The Pile is a large collection of high-quality text
gathered from various sources and has been widely
used in recent research on deep sequential models.
Specifically, it comprises 22 high-quality subsets,
which total approximately 800 GB. The subsets in-
clude text from academic papers, books, programs,
and technical documentation, enabling the evalu-
ation of language models’ generalizability across
diverse text domains.

4.1.2 Testing
The LM-Eval harness, provided by EleutherAI,
is a standardized benchmark that covers various
datasets, including the following.

• LAMBADA (Paperno et al., 2016): A dataset
that requires models to understand the en-
tire context and predict the final word. This
dataset evaluates the ability to consider multi-
ple sentences rather than just individual ones.

• HellaSwag (Zellers et al., 2019): A dataset
that measures commonsense reasoning by ask-
ing models to choose the most appropriate
option to complete a description of everyday
scenarios.
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• PIQA (Bisk et al., 2020): A dataset that as-
sesses physical commonsense reasoning by
requiring models to choose the correct solu-
tion for everyday situations.

• ARC (Clark et al., 2018): A dataset focused
on scientific commonsense and reasoning, di-
vided into Challenge and Easy subsets, each
containing scientific problems of varying dif-
ficulty.

• WinoGrande (Sakaguchi et al., 2019): A
dataset for resolving pronoun references based
on context, thereby testing the model’s ability
to understand contextual relationships.

4.2 Experimental Setup

We implemented the baseline methods and the pro-
posed method based on the publicly available im-
plementation of BASED (Arora et al., 2024). Both
the baseline and proposed methods were trained on
the same sequence of 10B tokens from The Pile.
The text was tokenized using the GPT-2 BPE tok-
enizer (Radford et al., 2019). For attention-based
methods, FlashAttention-2 (Dao et al., 2022; Dao,
2024) was used for both training and testing. The
batch sizes during training were adjusted for each
method to maximize memory usage, and the se-
quence length for training was set to 2K tokens
across all methods.

In the proposed method, we evaluated two model
sizes for Transformer++ and Mamba: approxi-
mately 360M and 1.3B parameters. The win-
dow size for the sliding window attention in the
Transformer-based Flashback architecture was set
to 512, which is one-fourth of the sequence length
used during training. The total number of blocks
in the proposed architecture was adjusted so that
the token prediction accuracy (perplexity, ppl.) re-
mained consistent before and after integrating the
Flashback mechanism (see Section 4.5.3). Tables 1
and 2 list the hyperparameters employed by the pro-
posed methods. To ensure a fair performance com-
parison, these configurations remain unchanged
from the conventional methods (Arora et al., 2024),
except for the number of blocks.

4.2.1 Evaluation Metrics
For evaluation metrics, we used the same criteria
as in (Arora et al., 2024); the details can be found
in their literature. To ensure fair comparison across
methods, all training and testing were conducted

Base architecture param. 360M 1.3B
Optimizer Adam

Optimizer momentum β1, β2 = 0.9, 0.95
Optimizer eps 1e − 8

Precision BFloat16
Warmup 1%

Learning rate decay Cosine
Learning rate (min, base) 8e − 5, 8e − 4

Global batch size 256
Weight decay 0.1

# blocks 36 64
Hidden size 1024 1680

# heads 16 24
RMSNorm True

MLP bias False
Rotary emb. fraction 0.5

MLP activation SwiGLU
MLP width 4

Table 1: Training configurations and hyperparameters
for the Transformer-based model.

Base architecture param. 360M 1.3B
Optimizer Adam

Optimizer momentum β1, β2 = 0.9, 0.95
Optimizer eps 1e − 8

Precision BFloat16
Warmup 1%

Learning rate decay Cosine
Learning rate (min, base) 8e − 5, 8e − 4

Global batch size 256
Weight decay 0.1

# blocks 42
Hidden size 1024 2048
RMSNorm True

Norm epsilon 1e − 5
Dt State 16

Dt (min, max) (0.001, 0.1)
Dt init. strategy Random

Dt init. floor 1e − 4
Dt scale 1.0

Dt softplus True
Projection expansion factor 2

Short conv. filter size 4

Table 2: Training configurations and hyperparameters
for the Mamba-based model.

using a common NVIDIA A100 GPU. Token gener-
ation throughput (tokens per millisecond, Tok./ms)
was used to compare the processing speeds of each
method. During speed measurements, batch sizes
were adjusted to maximize throughput while re-
maining within feasible execution limits for each
method. This adjustment ensures fair comparison
by allowing each method to utilize its full poten-
tial, accounting for differences in computational
characteristics and hardware efficiency. Memory
efficiency was compared using the total GPU mem-
ory usage during speed measurements, divided by
the batch size (MiB/Seq.).

Following previous studies (Maddox et al., 2020;
Curth et al., 2023), rather than relying solely on pa-
rameter counts as a measure of model complexity,
we evaluate each method’s vanilla architecture on
standard hardware in terms of raw computational
performance, without employing model quantiza-
tion or introducing additional inductive biases.
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We compare the proposed method with sev-
eral baseline methods from previous research in
terms of processing efficiency. Transformer++ is
a Transformer-based model with rotary encoding
for positional embeddings and gated linear units.
Mamba is a state-of-the-art method using SSMs
that selectively store important information in hid-
den states depending on the input. In addition, we
include early DNN architectures based on convo-
lutional approaches, such as H3 (Fu et al., 2023),
RWKV (Peng et al., 2023), and GLA (Yang et al.,
2023), as comparison targets.

4.3 Evaluation on Commonsense Reasoning

The results of comparing the accuracy of each
method in commonsense reasoning language mod-
eling tasks are shown in Table 3. The results of
comparing the accuracy, processing speed, and
memory usage across methods are shown in Fig-
ure 3. From Table 3, integrating the Flashback
mechanism into Transformer++ and Mamba re-
duced the number of attention and SSM blocks,
respectively, while maintaining reasoning accu-
racy (see Section 4.5.3). Meanwhile, Figure 3
shows that integrating the Flashback mechanism
into 1.3B-parameter Transformer++ and using slid-
ing window attention resulted in more than a four-
fold speed improvement and a 77% memory usage
reduction. For RNN-based methods, incorporat-
ing the Flashback mechanism into 1.3B-parameter
Mamba led to a 16% speed improvement and a 38%
memory usage reduction. Based on these results,
the Flashback mechanism is effective as a mem-
ory mechanism for next-token prediction, thereby
addressing Challenges 1–3.

4.4 Evaluation on Long-Sequence Input Data

We compared the next-token prediction accuracy,
processing speed, and memory usage for long-
sequence input data from The Pile across the base-
line and proposed methods. The results are shown
in Table 4. From the table, we observe that ac-
curacy remained within a stable range relative to
input sequence length before and after integrat-
ing the Flashback mechanism into Transformer++
and Mamba. Further, the computational cost in-
crease with longer sequences remained within the
expected range for subquadratic models, as seen in
previous research. Therefore, the proposed method
retains robustness even when the input data exceed
the learned sequence length (2K tokens).
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Figure 3: Comparison of the accuracy–performance
tradeoffs between the baseline and proposed methods.
The accuracy denotes the average performance on com-
monsense reasoning tasks, similar to that shown in Ta-
ble 3.

4.5 Ablation Study

4.5.1 Robustness to Hidden State Update
Errors

We evaluated the impact of adding noise follow-
ing the standard normal distribution to the input
of blocks during both training and testing. The
results are shown in Table 5. Mamba’s hidden
states depend on all past inputs at each time step,
meaning they are affected by noise introduced to
past inputs. With the integration of the Flashback
mechanism, this dependency is reduced, resulting
in improved robustness to noise in the hidden states,
as described in Challenges 1 and 2 in Section 1.

4.5.2 Analysis of Hidden State Dependency on
Past Inputs

We visualized the frequency histograms of the rel-
ative past time indices referenced by the hidden
states of each Flashback mechanism in the Mamba-
360M model across different training steps (Fig-
ure 4). From the figure, we observe that as the
model processes more tokens, the distribution of
referenced relative time indices becomes progres-
sively narrower. This suggests that the Flashback
mechanism selectively retains information over
time.
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Method w/ Flashback Param. Pile LAMBADA HellaSwag PIQA ARC-E/-C WinoGrande Average
Ppl. ↓ Acc. ↑ Acc. Norm. ↑ Acc. ↑ Acc./Acc. Norm. ↑ Acc. ↑ Acc. ↑

H3

360M

10.60 23.58 30.62 63.11 45.20/23.29 50.28 39.35
RWKV v5 9.79 — — — — — —

GLA 9.12 — — — — — —
BASED 8.65 38.13 33.17 64.58 46.97/24.40 50.59 42.97

Mamba 8.64 39.12 33.87 64.69 47.85/24.57 50.43 43.42
✓ 8.60 40.36 33.75 64.58 48.36/22.35 51.38 43.46

Transformer++ 8.39 38.81 33.61 64.69 46.63/24.32 51.54 43.27
✓ 8.38 40.89 34.13 64.64 47.43/25.26 50.28 43.77

Mamba
1.3B

7.48 46.85 39.36 67.57 51.89/26.11 51.46 47.21
✓ 7.43 46.17 39.46 67.08 52.10/26.54 52.80 47.35

Transformer++ 7.26 48.22 39.08 67.63 51.09/26.11 52.17 47.38
✓ 7.19 50.13 41.60 67.74 52.86/26.28 49.96 48.09

Table 3: Comparison of accuracy on The Pile and the commonsense reasoning tasks used in (Gu and Dao, 2023).

Method w/ Flashback Param. Sequence length
2K 8K 16K

Mamba
360M

8.64 8.30 8.26
✓ 8.60 8.24 8.20

Transformer++ 8.39 8.38 8.40
✓ 8.38 8.12 8.05

(a) Perplexity ↓ on The Pile dataset.

Method w/ Flashback Param. Sequence length
2K 8K 16K

Mamba
360M

85.7 88.0 88.5
✓ 107 109 109

Transformer++ 37.8 22.1 14.1
✓ 49.4 49.6 48.3

(b) Throughput ↑ (Tok./ms).

Method w/ Flashback Param. Sequence length
2K 8K 16K

Mamba
360M

4.9 4.9 4.9
✓ 3.0 3.0 3.0

Transformer++ 198 792 1584
✓ 37.3 37.4 37.4

(c) Memory usage ↓ (MiB/Seq.).

Table 4: Comparison of the baseline and proposed meth-
ods in terms of accuracy, speed, and memory usage for
long-sequence input data.

4.5.3 Design of Flashback DNN Architecture

We compared commonsense reasoning accuracy
as the proportion of the blocks of the Flashback
mechanism relative to the total number of blocks
in 360M-parameter Mamba varied. The results are
shown in Table 6. From the table, we observe that
the optimal performance occurs when the number
of blocks of the Flashback mechanism and Mamba
are balanced at a 1:1 ratio, reflecting a tradeoff
between accuracy and processing efficiency.

To prevent the norm of hidden states from in-
creasing as the sequence length grows, we normal-
ized hidden states at each time step (using Norm(·)
in Equation (9)). Results showing performance
degradation when these this improvement is re-
moved are presented in Table 7. This improvement
contributes to the overall performance enhance-
ment of the Flashback mechanism.

Method Param. w/ Noise w/ Flashback Acc. (%) ↑Train. Test.

Mamba 360M

43.42
✓ 43.46

✓ 29.76
✓ ✓ 30.60

✓ ✓ 32.84
✓ ✓ ✓ 33.51

Table 5: Robustness when adding noise to the inputs
of blocks. Acc. denotes the average performance on
commonsense reasoning tasks, similar to that shown in
Table 3.
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Figure 4: Frequency histogram of the relative time in-
dices referenced by the Flashback mechanism in the
final block of the Mamba 360M-based model across
different training steps.

4.5.4 Limitations
As shown in Table 8, integrating the Flashback
mechanism into Transformer++ and Mamba in-
creases the number of parameters. Thus, although
the proposed method improves the tradeoffs be-
tween inference accuracy, processing speed, and
memory usage, there is a potential risk of overfit-
ting or reduced generalizability due to the parame-
ter increase.

5 Conclusion

We tackled three challenges of previous research on
MCNNs: (1) memory degradation, (2) inaccurate
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# Mamba blocks 42 (vanilla Mamba) 28 21
# Flashback blocks 0 14 21

Accuracy (%) ↑ 42.98 43.50 43.46

Table 6: Accuracy of the Mamba 360M-based Flashback
architecture with 42 different numbers of blocks. The
accuracy denotes the average performance on common-
sense reasoning tasks, similar to that shown in Table 3.

Method Param. w/ Hidden state Sequence length
normalization 2K 8K 16K

Mamba 360M 8.67 8.91 10.69
w/ Flashback ✓ 8.60 8.24 8.20

Table 7: Reduction in perplexity on the Pile dataset for
long-sequence input data achieved through hidden state
normalization.

Method w/ Flashback Param. Throughput Acc. ↑Tok./ms ↑

Mamba 1.3B 36.8 47.21
✓ 1.5B 42.7 47.35

Transformer++ 1.3B 0.38 47.38
✓ 2.2B 1.57 48.09

Table 8: Impact of introducing the Flashback mecha-
nism on parameter count and performance. Acc. denotes
the average performance on commonsense reasoning
tasks, similar to that shown in Table 3.

gradient backpropagation, and (3) compatibility
with next-token prediction. Specifically, we intro-
duced a Flashback property to address (1–2) at a
fundamental level and proposed a mechanism that
satisfies this property—Flashback mechanism. To
address (3), we integrated the Flashback mecha-
nism into Transformers and Mamba in a manner
compatible with next-token prediction and demon-
strated the effectiveness of the Flashback property
through improvements in the tradeoffs between rea-
soning accuracy, processing speed, and memory
usage in experiments. Future work will focus on
validating the effectiveness of the proposed method
as a memory mechanism for LLMs using larger
datasets and architectures.
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