
Proceedings of the 31st International Conference on Computational Linguistics, pages 8699–8713
January 19–24, 2025. ©2025 Association for Computational Linguistics

8699

FedCSR: A Federated Framework for Multi-Platform Cross-Domain
Sequential Recommendation with Dual Contrastive Learning

Dongyi Zheng1,2, Hongyu Zhang3, Jianyang Zhai1,2, Zhong Lin3,
Lingzhi Wang3, Jiyuan Feng1,3, Xiangke Liao2,1, Yonghong Tian 4,1,

Nong Xiao2,1, Qing Liao3,1*

1Pengcheng Laboratory, 2Sun Yat-sen University,
3Harbin Institute of Technology (Shenzhen), 4Peking University

zhengdy23@mail2.sysu.edu.cn, {orion-orion, 24b951017, fengjy}@stu.hit.edu.cn

zhaijy01@pcl.ac.cn, lzwang1120@gmail.com, {xkliao, nongxiao}@nudt.edu.cn

yhtian@pku.edu.cn, liaoqing@hit.edu.cn

Abstract

Cross-domain sequential recommendation
(CSR) has garnered significant attention. Cur-
rent federated frameworks for CSR leverage
information across multiple domains but of-
ten rely on user alignment, which increases
communication costs and privacy risks. In
this work, we propose FedCSR, a novel feder-
ated cross-domain sequential recommendation
framework that eliminates the need for user
alignment between platforms. FedCSR fully
utilizes cross-domain knowledge to address the
key challenges related to data heterogeneity
both inter- and intra-platform. To tackle the
heterogeneity of data patterns between plat-
forms, we introduce Model Contrastive Learn-
ing (MCL) to reduce the gap between local
and global models. Additionally, we design Se-
quence Contrastive Learning (SCL) to address
the heterogeneity of user preferences across
different domains within a platform by employ-
ing tailored sequence augmentation techniques.
Extensive experiments conducted on multiple
real-world datasets demonstrate that FedCSR
achieves superior performance compared to ex-
isting baseline methods1.

1 Introduction

Cross-domain sequential recommendation (CSR)
has attracted wide attention in various online plat-
forms (Liu et al., 2023b; Lu et al., 2023; Song et al.,
2024; Li et al., 2024; Zhai et al., 2023). By lever-
aging information from multiple domains, CSR
enhances recommendation, providing users with a
richer discovery experience. To enable collabora-
tion across platforms while ensuring data security,
federated learning (Zhang et al., 2024c; Yu et al.,
2024; Cong et al., 2023; Guo et al., 2024b; Liu
et al., 2024) has been applied to CSR, allowing

*Corresponding author.
1We release our code and configuration files at https:

//github.com/zdy769243418/FedCSR-v1

multiple platforms to work together without shar-
ing raw data.

In this work, we tackle the problem of feder-
ated cross-domain sequential recommendation, en-
abling different platforms to collaboratively train a
robust CSR model without sharing raw data. Un-
like previous methods (Zhang et al., 2024a; Liu
et al., 2023a; Guo et al., 2024a), which require
user alignment across platforms to establish con-
nections between domains, resulting in increased
communication costs and privacy concerns, our
approach focuses on fully utilizing intra-platform
cross-domain knowledge and eliminates the need
for user alignment between platforms.

However, incorporating cross-domain knowl-
edge between platforms without user alignment
presents a significant challenge due to the hetero-
geneity of data across platforms, which means that
the data patterns, such as recommendation item
distribution and user preferences, can differ greatly
between platforms. For instance, an e-commerce
company operating globally may have multiple
platforms with distinct data characteristics due to
cultural differences. This sequence pattern hetero-
geneity will lead to an obvious drift between each
platform’s local model and the aggregated global
model. As training progresses, this drift intensifies,
making it difficult for the global model to perform
well across all platforms. Furthermore, even within
a single platform, users often display distinct pref-
erences across various domains, which leads to
heterogeneity in sequence representations. This
issue becomes more pronounced when certain do-
mains have sparse data, further complicating the
modeling of user preferences and reducing the ef-
fectiveness of cross-domain knowledge transfer.

To address these challenges, we introduce a
novel framework called FedCSR, which incorpo-
rates dual contrastive learning for local training on
platforms, eliminating the need for additional user
alignment engineering across platforms. Specifi-

https://github.com/zdy769243418/FedCSR-v1
https://github.com/zdy769243418/FedCSR-v1
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cally, to mitigate the sequence pattern heterogene-
ity between platforms, we develop Model Con-
trastive Learning (MCL) to reduce the information
gap between local and global models. Addition-
ally, to tackle the issue of intra-platform sequence
representation heterogeneity across domains, we
design Sequence Contrastive Learning (SCL). In
SCL, we first implement a tailored cross-domain se-
quence augmentation method that employs replace
and reorder operations to enhance the diversity and
balance of inter-domain sequences. We then en-
courage the original and augmented user sequence
representations to predict each other, maximizing
their agreement and improving the overall quality
of the sequential representations.

Furthermore, we conduct extensive experiments
on multiple datasets to demonstrate the superior-
ity of our FedCSR framework. We analyze algo-
rithm complexity, communication efficiency, and
perform ablation studies to further evaluate its ef-
fectiveness. Additional experiments from various
perspectives provide deeper insights into the frame-
work’s performance and its applicability to CSR.

In brief, our contributions are summarized as:
• We propose FedCSR, a novel federated multi-

platform cross-domain sequential recommenda-
tion framework, enabling platforms with multiple
domains to collaboratively train an effective CSR
model without requiring user alignment between
platforms.

• We design MCL and SCL mechanisms to ad-
dress the inter- and intra-platform data pattern
heterogeneity, respectively, improving the quality
and robustness of data representation modeling
across different platforms and domains.

• Extensive experiments on multiple real-world
datasets demonstrate that FedCSR consistently
outperforms baseline methods.

2 Related Work

Cross-Domain Recommendation. The cross-
domain recommendation (Zheng et al., 2022; Li
et al., 2020a) refers to the process of leveraging
knowledge from multiple distinct domains to im-
prove recommendation accuracy. It involves trans-
ferring insights or preferences from one domain
(e.g., movies) to generate better recommendations
in another domain (e.g., books). With advance-
ments in transfer learning, several methods (Man
et al., 2017; Zhu et al., 2022, 2021) utilize two sep-
arate neural networks and a transfer module to map

user representations between domains. Addition-
ally, other approaches (Zhu et al., 2019; Hu et al.,
2018; Xie et al., 2022) focus on identifying shared
information across domains by sharing parts of the
network architecture.

Cross-Domain Sequential Recommendation.
The cross-domain sequential recommendation cap-
tures the temporal order of user behaviors to
improve recommendations. Earlier works (Ma
et al., 2019; Sun et al., 2021) introduced paral-
lel information-sharing networks to encode cross-
domain behavior sequences. Subsequent methods
(Guo et al., 2021; Cao et al., 2022a; Ma et al.,
2022) utilized graph-based approaches to establish
sequential connections between items across do-
mains. For instance, Zhang et al. (2023a) proposed
a graph convolutional network to capture collabora-
tive filtering signals from both domains. Recently,
techniques such as reinforcement learning (Guo
et al., 2022), triple learning (Ma et al., 2024), and
mixed-interest networks (Lin et al., 2024; Liu et al.,
2023c; Xu et al., 2024) have been applied to en-
hance cross-domain representation.

Federated Cross-Domain Sequential Recom-
mendation. To address privacy concerns in cross-
domain recommendation, several methods (Cai
et al., 2022; Zheng et al., 2023; Wang et al., 2021;
Zhang et al., 2024b) have been proposed, using
techniques like differential privacy (Chen et al.,
2023) and generative adversarial networks (Liao
et al., 2023) for secure data transfer. Besides, to
incorporate sequential information, Zhang et al.
(2024a) and Liu et al. (2023a) have been proposed
for federated cross-domain sequential recommen-
dation. Guo et al. (2024a) further utilizes prompt
learning to enhance cross-domain representation.

Despite these advances, challenges like user
alignment, which complicates implementation and
poses privacy risks, and the limited use of single-
domain data persist. Our method eliminates user
alignment and fully utilizes multi-domain data, en-
hancing scalability and practicality.

3 Methodology

In this section, we introduce the overall framework
of FedCSR, as illustrated in Figure 1.

3.1 Problem Formulation

Federated Training. We consider a central
server and K local platforms. All platforms share
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Figure 1: Overview of FedCSR. Each platform leverages its local cross-domain dataset to learn sequential represen-
tations and compute SCL, MCL, and prediction loss. The local model is optimized through multi-task learning,
while the server aggregates the local models through weighted updates to form the latest global model.

the same CSR model structure, denoted as w. In
each communication round t, the central server dis-
tributes the global model wt to all platforms. Each
platform k then receives the global model wt and
trains it using its local private dataset Dk, resulting
in a locally trained model denoted as wt

k.

Cross-Domain Sequential Recommendation.
Each platform k holds a private cross-domain se-
quence dataset Dk, which contains m domains
d1, d2, ..., dm. Each domain di includes an item
set Vdi , and the combined item set for all domains
is represented as V∗. The item feature dimension is
n. Each user in Dk has m+1 interaction sequences
sd1 , sd2 , ..., sdm , s∗. Here, s∗ represents the cross-
domain sequence, which is formed by merging the
individual sequences sd1 , sd2 , ..., sdm in chronolog-
ical order. The CSR model leverages these m+ 1
sequences for each user to generate more accurate
recommendations within each domain di.

3.2 Base Representation Encoder

Graph neural networks combined with self-
attention have proven effective in capturing
both inter-sequence item relationships and intra-

sequence order patterns in user sequences (Cao
et al., 2022a; Zhang et al., 2023a; Guo et al., 2021).
We use an attentional graph neural network, re-
ferred to as GAEncoder, to extract sequential rep-
resentations for each domain. Each GAEncoder
consists of an item embedding layer, a graph neural
network, and a self-attention layer.

For each domain di, we construct a binary item-
item matrix Adi ∈ R|Vdi |∗|Vdi | based on the tem-
poral order of item occurrences in the sequences.
If item i appears before item j, then Adi

ij = 1; oth-
erwise Adi

ij = 0. We also generate a cross-domain
item-item matrix A∗ ∈ R|V∗|∗|V∗| from the com-
bined cross-domain sequences. For a sequence
s ∈ sd1 , sd2 , . . . , sdm , s∗ and its associated item-
item matrix A, the encoding process is:

H = GAEncoder(Embedding(s),A) (1)

where H ∈ R|s|∗n denotes the representations at
different timestamps, |s| represents the sequence
length and n is the feature dimension.

As each user has m single-domain sequences,
along with a cross-domain sequence, we employ
m+ 1 encoders to encode them separately, yield-
ing {Hd1 ,Hd2 , ...,H∗}. Then, we aggregate and
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average all timestamp representations to obtain
the sequential representation for each domain di:
rdi = Avg(Hdi +H∗). For simplicity, the entire
sequential representation learning process is:

rdi = f(sdi , s∗|w), (2)

where rdi ∈ R1∗n represents the sequential repre-
sentation for domain di and f denotes the complete
representation learning function for CSR model w.

3.3 Model Contrastive Learning
To address sequence pattern heterogeneity among
platforms, we propose Model Contrastive Learning
(MCL). MCL creates contrastive signals between
local and global user representations to mitigate
model drift between platforms and central server.

For each domain, MCL treats the domain’s local
and global user representations as positive samples.
Since irrelevant domain information can trigger
negative transfer issues (Cao et al., 2022b, 2023),
MCL treats other domain’s global sequential rep-
resentations as negative samples. This helps dis-
entangle user representations across domains and
improves the representation quality for each do-
main. We describe the MCL process as follows.

Firstly, let’s consider platform k conducting lo-
cal training. It receives the global model wt from
the server and initializes its local model as wt

k. For
each domain di, given one user’s sequences sdi

and s∗, we extract the sequential representation rdil
from the updating local model wt

k. Additionally,
we obtain the sequential representation rdig from
the global model wt.

rdi
l = f(sdi , s∗|wt

k), r
di
g = f(sdi , s∗|wt) (3)

where rdil ∈ R1∗n and rdig ∈ R1∗n respectively
represent the local and global sequential represen-
tations for domain di.

Subsequently, to enhance contrastive learning’s
ability to distinguish different representations,
we define a projector to project them to a low-
dimensional space. Due to feature dimension com-
pression, features in the low-dimensional space
are more representative and robust. Moreover, the
distance between features can better reflect the cor-
relation between real sequences. We employ a
nonlinear layer as the projector, denoted as φ(·).

zdi
l = φ(rdi

l ),zdi
g = φ(rdi

g ) (4)

where zdi
l ∈ R1∗|n

2
| and zdi

g ∈ R1∗|n
2
| are the local

and global sequential representations in the low-
dimensional space for domain di.

Next, in order to enable the local model to cap-
ture the broader sequence patterns from a global
view and generalize well to unseen data, we reduce
the information gap of (zdi

l , zdi
g ) for each domain

d. The information gap function ig(·) is defined as:

ig(a, b) = −exp(sim(a, b)/τ), (5)

where sim(·) measures the cosine similarity, and τ
denotes a temperature. If a and b are similar, the
information gap between them will be small.

Finally, similar to NT-Xent (Sohn, 2016) loss,
we define our model contrastive loss as:

LMCL =

m∑
i=1

log
ig(zdi

l ,zdi
g )

g(zdi
l ,zdi

g ) +
∑

j g(z
di
l ,z

dj
g )

(6)

where j ∈ {x|1 ≤ x ≤ m,x ̸= i}. During the
local training, we consider (zdi

l , zdi
g ) as positive

pair. These positive pairs are drawn near each other
to encourage the local model to reduce the infor-
mation gap to the global model. Additionally, we
treat all (zdi

l , z
dj
g ) as negative pairs. These negative

pairs are intentionally drawn away during the local
training to encourage the local model to distinguish
between representations from different domains.

3.4 Sequence Contrastive Learning
In this subsection, we introduce Sequence Con-
trastive Learning (SCL) to tackle domain-specific
sequence bias. SCL employs a novel cross-domain
sequence augmentation technique to boost diversity
and balance in inter-domain sequences, and then
aligns original and augmented representations to
enhance their agreement and overall quality.

Cross-Domain Sequence Augmentation. At
this stage, we utilize the replace and reorder op-
erations to augment the user sequences.

Since the cross-domain sequence is more infor-
mative than single-domain sequences, we first op-
erate cross-domain sequence s∗ to obtain the aug-
mented s̃∗. Then, we utilize s̃∗ to obtain the corre-
sponding augmented single-domain sequence s̃di

for each domain di.
Firstly, we represent the cross-domain sequence

as s∗ = [v1, v2, ..., vl, vl+1, vl+2, ..., v2l]. Based
on its length, we evenly split it into two subse-
quences. One subsequence is denoted as s∗x =
[v1, v2, ..., vl], and the other subsequence is de-
noted as s∗y = [vl+1, vl+2..., v2l].

Then, for the augmentation of s∗x, we randomly
select some items in s∗x with a ratio α. For each
item in selected items, it is replaced by an item
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sampled from another domain. The augmented
sequence of s∗x is denote as:

s̃∗x = {ṽ1, ṽ2, ..., ṽl} (7)

where each item ṽi in s̃∗x can be expressed as:

ṽi =

{
vi, if vi /∈ {s∗x|α}
sample(Vdj ), if Ii ∈ {s∗x ∩ Vdi}

(8)

Next, for the augmentation of s∗y, we select the
latest interaction items with a ratio α. We randomly
reorder the selected items to obtain the augmented
sequence of s∗y:

s̃∗y =
[
vl+1, vl+2, . . . , ṽ|l·(1+α)|, . . . , ṽ2l

]
(9)

The augmented cross-domain sequence of s∗ is
formed by combining s̃∗x and s̃∗y, expressed as:

s̃∗ =
[
ṽ1, . . . , ṽl, vl+1, . . . , ṽ|l·(1+α)|, . . . , ṽ2l

]
(10)

Finally, we derive the corresponding augmented
single-domain sequences {s̃d1 , s̃d2 , ..., s̃dm} from
s̃∗. For domain di, each item in s̃di can be ex-
pressed as follows:

s̃di = {vi | vi ∈ s̃∗, if vi belongs to Vdi} (11)

We use both replacement and reordering to aug-
ment sequences. Replacement boosts item count
in sparse domains, while reordering disrupts re-
cent item order to enhance sequence diversity and
balance across domains, thereby enhancing the di-
versity and proportionality of sequences between
domains.

Sequence Contrastive Signal Construction. In
this stage, we construct a symmetric contrastive
objective in each domain to draw near the similar-
ity between the original and augmented sequential
representations, thereby improving the quality of
sequential representation.

We first feed the augmented sequences
{s̃di , s̃d2 , ..., s̃dm , s̃∗} into the local representation
encoders to obtain the augmented sequential repre-
sentation for each domain di.

r̃di
l = f(s̃di , s̃∗|wt

k) (12)

where r̃dil ∈ R1∗n is the augmented sequential
representation for domain di and wt

k is the local
updating CSR model of platform k.

In order to break the full symmetry in the model
and avoid the model learning a simple identity map-
ping, thus collapsing to a simple solution, we in-
troduce a nonlinear transformation layer. Different

from the bottleneck structure (Chen and He, 2021),
we define the transformation layer as a broadened
structure. The definition of the nonlinear transfor-
mation layer is as follows:

pdi
l = t(rdi

l ), p̃di
l = t(r̃di

l ) (13)

where t is a two-layer nonlinear network with a
broadened structure of n → 2n → n. pdi

l ∈ R1∗n

and p̃di
l ∈ R1∗n are the transformed sequential

representations of domain di.
Next, we employ an nonlinear layer as a matcher,

denoted as g(·) for each domain di to transform the
representation of one view to the other view.

qdi
l = g(pdi

l ), q̃di
l = g(p̃di

l ) (14)

where qdil and q̃dil are the mapped features.
Finally, we define the symmetric contrastive

loss function by mutual prediction to draw near
{qdil , p̃di

l } and {q̃di ,pdi
l }, so as to maximize the

consistency of the original and augmented sequen-
tial representations, as follows:

LSCL =

m∑
i=1

sim(qdi
l , stopgrad(p̃di

l ))

+sim(q̃di
l , stopgrad(pdi

l ))

(15)

where sim(·) is the negative cosine similarity, the
stop-gradient operation means vector in stopgrad(·)
is treated as constant, and it does not generate gra-
dient information.

3.5 Federated Training
The overall federated learning algorithm is shown
in Appendix A.3, and its training process consists
of the platform update and server aggregation stage.

Platform Update. Given user behavior se-
quences {sd1 , sd2 , ..., sdm , s∗}, the training of CSR
is to predict the next item vdij+1 for domain d based
on the interactions before timestamp j.

We define three prediction functions as single-
domain (sd), unified-domain (ud) and cross-
domain (cd) to calculate the prediction probability
of next-item in each domain di.

Pdi
sd(v

di
j+1|s

di) = softmax(hdi
j W di)

Pdi
ud(v

di
j+1|s

∗) = softmax(h∗
jW

di)

Pdi
cd(v

di
j+1|s

di , s∗) = softmax(hdi
j W di + h∗

jW
di)

(16)

where the hd
j ∈ R1×n and h∗

j ∈ R1×n are the se-
quential representations at timestep j in the learned
Hdi and H∗. W di ∈ Rn×|Vdi | is the parameter
matrix for prediction layer of domain di.
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We use the negative log-likelihood loss function
and summarize the prediction function:

LPre = −
m∑
i=1

logPdi
sd + logPdi

ud + logPdi
cd (17)

Then, we combine the LPre, LMCL and LSCL

to train the local CSR model by a multi-task learn-
ing manner. The total loss is defined as:

LTotal = λ1LPre + λ2LMCL + λ3LSCL (18)

where λ1, λ2, λ3 is the harmonic factor.

Server Aggregation. The global model wt+1 is
updated with the weighted sum of all received local
models. The aggregation process is as follows:

wt+1 =

K∑
k=1

|Dk|
|D| w

t+1
k (19)

where |Dk| is the total number of users for platform
k and |D| is total number users of all platforms.

4 Experimental Setup

Datasets. To simulate federated CSR scenarios,
we employ six public datasets from Amazon2,
which are commonly used in cross-domain rec-
ommendation (Lu et al., 2023; Cao et al., 2022a).
Following (Cao et al., 2022a), we first use ratings
with n-core filtering to retain users at least 10 inter-
actions in both domains. Then, we construct three
cross-domain datasets, "Food-Kitchen", "Movie-
Book" and "Entertainment-Education". Cross-
domain sequences have at least 3 items per domain.
Each dataset has a training set and a testing set.
The training set is non-uniformly partitioned into
10 segments to ensure the heterogeneity across plat-
forms. Each segment is then allocated to a distinct
platform, ensuring that the user sets among the
platforms are non-overlapping, and moreover, the
item popularity distributions and average sequence
lengths are also distinct. The testing set, stored on
the server, is only accessible for evaluating the per-
formance of the global CSR model. The statistics
for the two CSR scenarios are in Table 1.

Domain #Users #Items #Train/Valid/Test Avg.Len Sparsity

Food
16,579

29,207
34,117 / 8,173 / 8,406 9.91 99.953%

Kitchen 34,886

Movie
15,352

36,845
58,515 / 7,644 / 7,708 11.98 99.943%

Book 63,937

Table 1: Statistics of two CSR scenarios.

2https://jmcauley.ucsd.edu/data/amazon/

Compared Baselines and Implementation. We
compare our proposed method with various base-
lines from three categories, including sequential
recommendation (TiSASRec (Li et al., 2020a),
CLSR (Zheng et al., 2022)), cross-domain rec-
ommendation (CoNet (Hu et al., 2018), CCDR
(Xie et al., 2022)) and cross domain recommenda-
tion (π-Net (Ma et al., 2019), PSJNet (Sun et al.,
2021), MIFN (Ma et al., 2022), C2DSR (Cao et al.,
2022a)). The details of their implementation and
how we adapt them to the FL setting are listed in
Appendix A.1.

Evaluation Metrics. We adopt MRR, NDCG@k,
and HR@k (k=5, 10) to evaluate recommendation
performance. Additionally, we report the perfor-
mance for each domain in the cross-domain setting
to assess how well the model generalizes across
different domains.

Algorithm Complexity and Communication Ef-
ficiency. We conducted an analysis of the time
complexity and communication efficiency of Fed-
CSR. The results indicate that FedCSR boasts
low time complexity and high communication effi-
ciency, which effectively supports its expansion in
aspects such as platforms, domains, and users. Con-
sequently, FedCSR holds great promise for practi-
cal applications in actual scenarios. More detailed
analysis can be found in Appendix A.4 and A.5.

5 Experimental Results

5.1 Main Comparison Results

We report the recommendation performance on the
"Food-Kitchen" and "Movie-Book" cross-domain
test set in Table 2. The full version with more
cross-domain scenarios is discussed in Appendix
B.1. From Table 2, we have the following observa-
tions. (1) Our proposed method FedCSR generally
outperforms all baselines across multiple metrics
in the listed two cross-domain scenarios. (2) Con-
trastive learning-based models, such as CLSR and
CCDR, outperform TiSASRec in single-domain
sequential recommendation and CoNet in cross-
domain recommendation, respectively. However,
cross-domain recommendation (e.g., CCDR) still
lags behind single-domain sequential models (e.g.,
CLSR) due to the importance of employing se-
quence characteristics. (3) Cross-domain sequen-
tial models like MIFN, and C2DSR show strong
performance, emphasizing the value of incorporat-
ing cross-domain sequential information.

https://jmcauley.ucsd.edu/data/amazon/


8705

Methods
Food-domain Kitchen-domain Movie-domain Book-domain

MRR NDCG@5 HR@5 MRR NDCG@5 HR@5 MRR NDCG@5 HR@5 MRR NDCG@5 HR@5

FedTiSASRec 4.27 3.60 5.71 2.79 2.07 3.19 4.35 3.39 5.50 2.41 2.00 2.99
FedCLSR 5.88 5.36 6.51 2.82 2.12 3.26 4.46 3.49 4.47 2.26 2.05 2.83

FedCoNet 2.95 2.53 4.24 2.48 1.79 2.59 2.95 2.30 3.96 1.47 0.98 1.27
FedCCDR 3.35 2.97 6.13 2.60 1.99 2.85 3.48 2.76 4.39 1.82 1.36 1.98

Fedπ-Net 6.40 6.12 8.51 2.83 2.14 3.35 4.59 3.53 5.53 1.99 1.52 2.11
FedPSJNet 6.88 6.75 8.75 3.45 2.87 4.41 4.83 3.72 5.88 2.57 1.93 2.80
FedMIFN 7.04 6.24 8.53 4.00 3.07 4.70 5.07 3.95 6.12 2.80 2.20 3.05

FedC2DSR 6.98 6.80 9.18 3.63 3.14 4.64 4.08 3.28 4.76 1.86 1.50 2.11
FedCSR 9.15 9.07 12.21 4.93 4.44 6.35 6.73 5.84 8.81 2.74 2.32 3.10

Table 2: Federated experimental results (in %) for the “Food-Kitchen” and “Movie-Book” scenarios. The best
(second best) results are in bold (underlined). The reported scores are the average of 5 runs.

Ablation of MLC and SCL. We conduct an ab-
lation study on the Food-Kitchen and Movie-Book
datasets to assess the impact of the proposed con-
trastive learning methods, MCL and SCL. We re-
port the results in Table 3 and 4. We can find that:
(1) Both SCL and MCL improve recommendation
performance, which may due to their ability to en-
hance representation learning. (2) The performance
gains from SCL and MCL are consistent across
different datasets and domains, demonstrating the
robustness of the proposed mechanisms.

Ablation of Prediction Targets. As introduced
in Section 3.5, we utilize three prediction targets:
single-domain, unified-domain, and cross-domain.
To further investigate their effectiveness, we con-
ducted an ablation study comparing the perfor-
mance of FedCSR (the full model with all three pre-
diction targets) against its variants without unified-
domain and single-domain predictions, abbreviated
as "w/o unified" and "w/o single", respectively. The
results, shown in Figure 2, reveal that: (1) Remov-
ing either unified- or single-domain predictions re-
sults in a decline in recommendation performance,
demonstrating the positive contribution of both.
(2) The model without unified-domain prediction
shows a more significant performance drop across
all metrics compared to the model without single-
domain prediction, indicating that unified-domain
prediction provides more valuable information and
underscoring the importance of developing cross-
domain algorithms.

5.2 Further Analysis

Convergence Analysis. Figure 3 shows the trend
of MRR scores over communication rounds in the
Food-Kitchen scenario. We observe that adding
MCL and SCL (i.e., the FedCSR method) does

(a) Food Domain (b) Kitchen Domain

Figure 2: The impact of single and unified domain pre-
dictions of FedCSR.

Component Food-domain Kitchen-domain
SCL MCL MRR HR@10 NDCG@10 MRR HR@10 NDCG@10

% % 6.48 10.90 7.02 3.57 6.35 3.69
✓ % 8.48 13.53 9.09 4.77 8.45 5.06
✓ ✓ 9.15 15.42 10.11 4.93 9.19 5.36

Table 3: Ablation study on Food-Kitchen scenario.

not increase the number of communication rounds
required compared to the method without these
mechanisms. FedCSR converges within approx-
imately 25 rounds. Additionally, the inclusion
of MCL and SCL consistently improves perfor-
mance as the number of communication rounds
increases, demonstrating the superiority of the Fed-
CSR method.

FedCSR vs Individual Training. We further in-
vestigate whether FedCSR achieves better recom-
mendation performance compared to individual
training. We compare the performance of FedCSR
and individual training through experiments in the
Food-Kitchen scenario. In the individual training
approach, platforms independently train CSR mod-
els, denoted as “Individual”, while in FedCSR, all
platforms collaboratively train a centralized CSR
model. The results, summarized in Figure 4, show
that FedCSR outperforms all individual platforms,
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Component Movie-domain Book-domain
SCL MCL MRR HR@10 NDCG@10 MRR HR@10 NDCG@10

% % 3.94 6.02 3.41 1.82 2.81 1.79
✓ % 5.31 11.02 5.21 2.33 3.89 2.42
✓ ✓ 6.73 12.71 7.12 2.74 4.32 2.72

Table 4: Ablation study on Movie-Book scenario.
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Figure 3: MRR (Left: Food, Right: Kitchen) over com-
munication rounds in the Food-Kitchen scenario.

demonstrating the superiority of collaborative train-
ing and the effectiveness of the proposed dual con-
trastive learning mechanisms. A more detailed
discussion can be found in Appendix B.2.

Hyper-Parameter Discussion. The hyperpa-
rameter α, introduced in Section 3.4, controls the
degree of data augmentation applied to input se-
quences, balancing augmented data with original
information for recommendation tasks. To evaluate
its impact, we conducted a hyperparameter experi-
ment, with results shown in Table 5. As α increases
from 0.1 to 0.3 in the Food and Kitchen domains,
performance improves, but further increases to 0.5
and 0.7 result in declines, which may due to ex-
cessive augmentation introducing noise. The best
performance is achieved with α set to 0.3.

Case Study. We present a selected example from
the test set to demonstrate that our method pro-
vides more accurate item recommendations than
the baselines. Figure 5 shows the ranked predic-
tion lists, from highest to lowest probability, for
FedCLSR, FedC2DSR, and FedCSR. Our method,
FedCSR, successfully ranks the ground truth item
at the top. This may be because it effectively cap-
tures the “Adventure” genre from the historical se-
quence (row (a)) across both domains (Movie and
Book). Additionally, by observing the top 6 items
predicted by FedCSR, we notice that “Adventure”
is the most common genre. This indicates that Fed-
CSR effectively captures genre information from
the “Movie” domain, without being restricted to
the “Book” domain, where the historical sequence
primarily reflects the “History” genre.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 FedCSR0

2

4

6

8

M
R

R
 (%

)

Food-domain MRR Kitchen-domain MRR

Figure 4: Comparison between FedCSR and individual
training in the Food-Kitchen scenario. p# refers to the
individual training on platform #.

α
Food-domain Kitchen-domain

MRR HR@10 NDCG@10 MRR HR@10 NDCG@10

0.1 8.82 14.85 9.71 4.76 8.51 5.04
0.3 9.15 15.42 10.11 4.93 9.19 5.36
0.5 8.68 15.17 9.67 4.77 8.82 5.12
0.7 8.56 14.45 9.32 4.69 8.61 5.01

Table 5: Performance (%) of FedCSR in Food-Kitchen
scenario over hyper-parameter α.

6 Conclusion

We introduce FedCSR, a novel federated multi-
platform cross-domain sequential recommendation
framework that enhances recommendation accu-
racy while addressing data heterogeneity and pri-
vacy. By bypassing the need for user alignment,
FedCSR reduces communication overhead and
preserves privacy. Our dual contrastive learning
mechanisms, MCL and SCL, effectively tackle
inter-platform and intra-platform data pattern het-
erogeneity. Experiments on real-world datasets
show that FedCSR consistently outperforms exist-
ing methods, proving its effectiveness and scalabil-
ity in collaborative recommendation systems.

Limitations

Despite the promising results of FedCSR, there are
two limitations to consider. (1) While FedCSR
demonstrates strong performance on the evaluated
datasets, scaling the framework to accommodate
very large datasets with numerous platforms and
domains may introduce computational challenges
that require further optimization. (2) Our current
approach relies on overlapping users within a plat-
form to facilitate inter-domain information transfer.
However, in cases where user overlap is sparse,
the effectiveness of this transfer may be limited.
Future work will focus on addressing this issue
by exploring alternative methods for inter-domain
knowledge sharing.
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Figure 5: Case study. The red box marks the ground
truth, corresponding to the book A Wizard Abroad (Fan-
tasy, Adventure). ■ represents the domain, and • repre-
sents the style for each item.

Ethical Considerations

In this work, we prioritize data privacy and respon-
sible research practices. All datasets used are open-
sourced and anonymized, ensuring a low risk of
leaking personally identifiable information. We
carefully selected these datasets to comply with
ethical standards for data privacy and protection.

Furthermore, the design and application of
our FedCSR framework are guided by privacy-
preserving principles. By leveraging federated
learning, we avoid sharing raw user data across
platforms, which helps mitigate the risks of data
leakage and unauthorized access. Federated learn-
ing facilitates collaborative model training while
keeping sensitive data decentralized and secure,
aligning with global privacy regulations such as
GDPR.
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A Detailed Implementation

A.1 Compared Baselines

In this subsection, we introduce three categories of
baselines and their critical operations for adapta-
tion. To be fair, we will compare the performance
of these baselines under federated learning envi-
ronment (Lyu et al., 2023; Guo et al., 2023; Zhang
et al., 2023b). Specifically, we use the widely used
FedProx(Li et al., 2020b) to make baselines better
adapt to the non-i.i.d. data distributions.

Sequential recommendation baselines:

• TiSASRec(Li et al., 2020a) combines the ad-
vantages of absolute position and relative time
interval coding for self-attention.

• CLSR(Zheng et al., 2022) is proposed to dis-
entangle long and short interests with a con-
trastive learning method.

Cross-Domain Recommendation baselines:

• CoNet(Hu et al., 2018) first models behaviors
of two domains and then transfers information
by a cross-network.

• CCDR(Xie et al., 2022) designs the intra-
domain and inter-domain contrastive learning
tasks for representation learning.

Cross-Domain Sequential Recommendation
baselines:

• π-Net(Ma et al., 2019) devises a novel gat-
ing recurrent module to model and transfer
knowledge across different domains.

• PSJNet(Sun et al., 2021) introduces a parallel
split-join scheme to transfer the different user
intentions across domains.

• MIFN(Ma et al., 2022) proposes constructing
a knowledge graph to guide the connection
between items from other domains to transfer
information across domains.

• C2DSR(Cao et al., 2022a) constructs a con-
trastive learning loss to supervise the learning
of cross-domain representations.

A.2 Our Method’s Implementation and
Setting

We set the same federated learning parameters for
FedCSR and all baseline methods for fair com-
parisons. Specifically, we set 10 platforms, 100
training rounds, 3 local epochs in each round, early
stopping with the patience of 20.

For the CSR model, we set the following model
parameters: embedding size and mimi-batch size
are set to 256, the dropout rate is selected from
to {0.1, 0.2, 0.3}, the learning rate is selected
from {0.001, 0.0005, 0.0001}, the harmonic fac-
tors λ1, λ2, λ3 are fixed at {0.5, 1.5, 0.5}. The data
augmentation ratio α is selected from {0.1, 0.3,
0.5, 0.7}, and Adam optimizer is used to update
the model parameters. We set the temperature pa-
rameter τ to 0.5. For other baselines, we adopt
the FedProx as the base federated algorithm and
configure all other hyperparameters based on the
suggestions provided in their original papers. We
employ three evaluation metrics to assess the per-
formance of the recommendation methods: Mean
Reciprocal Rank (MRR), Normalized Discounted
Cumulative Gain (NDCG), and Hit Rate (HR).

A.3 The Algorithm of FedCSR
In the FedCSR setting, the CSR model is denoted
as w. Platform k updates its local model wk using
the local private dataset Dk. During local train-
ing, we employ sequence augmentation and two
contrastive learning objectives to improve the rep-
resentation quality of users in every domain. The
global CSR model of the central server is repre-
sented as w, which is obtained by aggregating all
the individual wk. By iteratively repeating local
training and aggreagation, the global model grad-
ually improves and captures insights from diverse
platforms datasets while preserving the privacy of
each platform’s raw data.

Due to privacy concerns, only model parameters
can be transmitted between the server and plat-
forms. The user’s sequence data is stored locally
on the platform, and the server cannot access each
platform’s dataset. Moreover, there is no data shar-
ing or exchange among platforms. Hence, our goal
is to utilize the datasets from all platforms to train
a more robust CSR model for each platform com-
pared to models trained solely on their individual
datasets.

A.4 Algorithm complexity
The time complexity analysis is as follows. Ini-
tially, for a given sequence of data, the primary
contributor to the time complexity of its feature
encoding is the self-attention mechanism, result-
ing in a complexity of O(n × l2), where we as-
sume the length of each sequence is l and n repre-
sents the feature dimension. Next, in the SCL of
FedCSR, each user possesses m + 1 sequences
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Algorithm 1: FedCSR
Input: The platform k has local private dataset Dk;

|D| is the total samples of all platforms; B are
the local minibatch sets of Dk, E is the
number of local epochs, and η is the learning
rate.

Output: The optimal model parameter w.

1 Server executes:
2 initialize w0;
3 for each round t = 1,2,... do
4 K ← (set of platforms)
5 for platform k ∈ K in parallel do do
6 wt+1

k = Platform_Update(k,wt)
7 end
8 wt+1 =

∑K
k=1

|Dk|
|D| w

t+1
k ▷ Eq.(19)

9 end
10 Platform_Update(k,w): // Run on platform k
11 save w as wg

12 B ← (split Dk into batches of set)
13 for each local epoch from 1 to E do

// sequence augmentation
14 draw one augmentation function t ∼ T
15 for all batch b ∈ B do
16 b̃ = t(b) ▷ Eq.11
17 end
18 B̃ = set of all b̃

// local train

19 for batch b, b̃ ∈ B, B̃ do
20 w ← w − η∇wLTotal(w,wg, b, b̃) ▷

Eq.(18)
21 end
22 end
23 return w to server

{sd1 , sd2 , ..., sdm , s∗} and m + 1 corresponding
augmented sequences {s̃di , s̃d2 , ..., s̃dm , s̃∗}. En-
coding the features for such a user incurs a time
complexity of O(n × l2 × 2 × (lm + lm)) =
O(4lm), where both the length of s∗ and s̃∗ is
lm. In MCL of FedCSR, the global model com-
puting time complexity is O(n × l2 × 1 × (lm +
lm)) = O(n × l2 × 2lm). Therefore, the total
time complexity of local training is O(n × l2 ×
4lm) + O(n × l2 × 2lm) = O(n × 6ml3). Sub-
sequently, considering a platform k that comprises
|Dk| users, the time complexity for that platform is
O(|Dk| × n× l2 × 6lm) = O(|Dk| × n× 6ml3).
During federated training, owing to parallel pro-
cessing among platforms, the total time complexity
is O(T × K × E × |Dk| × n × 6ml3), where T
and E represent the number of training iterations
and epochs, respectively. Notably, the number of
platforms K can be omitted due to parallelization.
Finally, in our work, T , E, and n remain fixed as
small hyperparameters throughout the training pro-
cess. Additionally, l is both bounded by the maxi-
mum sequence length within all domains, which is

also a fixed value. Consequently, the total time
complexity of federated training scales linearly
with the number of users per platform (i.e., |Dk|)
and the number of domains i.e.,m.

A.5 Communication efficiency

In the FedCSR framework, the communication load
between the server and platforms plays a signifi-
cant factor. This load primarily stems from the
transmission requirements of the global item em-
bedding matrices from m different domains. In a
64-bit floating-point computing environment, the
data volume for a single communication can be
calculated as (

∑m
i=1 |Vdi | × n× 64)/8, where the∑m

i=1 |Vdi | are the total items for all domains. For
example, even when the total item numbers of all
domains reaches 100K, and the feature dimension
n is set to 32, the data volume required for a single
communication is only 24.41MB. Considering that
our work focuses on recommendation platforms
with good data transmission capabilities, and the
entire training process requires only approximately
25 rounds of communication to achieve conver-
gence, such communication load does not pose a
significant communication pressure on the entire
system.

B Further Experimental Results

B.1 Full Main Results

Tables 6, 7, and 8 show the performance of the
compared methods in the CSR scenarios "Food-
Kitchen", "Movie-Book" and "Entertainment-
Education". The best (second best) results are in
bold (underlined).

From the experimental results, several key ob-
servations can be made. Firstly, among the single-
domain recommendation baselines, CLSR outper-
forms TiSASRec, validating the benefit of con-
trastive learning for better sequential representa-
tion learning. Secondly, for the cross-domain base-
lines, CCDR performs better than CoNet, indicat-
ing the promising advantages of contrastive learn-
ing in cross-domain recommendation. However,
cross-domain recommendation lags behind single-
domain sequential recommendation, highlighting
the need for fully mining user behavior sequence in-
formation. Thirdly, cross-domain sequential base-
lines such as π-Net, PSJNet, MIFN, and C2DSR
surpass single-domain sequential and cross-domain
recommendation baselines, demonstrating the ben-
efit of cross-domain sequential information for en-
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hancing recommendation performance. Finally,
compared with all baselines, FedCSR achieves the
best performance in many indicators in three cross-
domain scenarios.

B.2 Further Analysis

Full Results of Comparison Between FedCSR
and Individual Training. We have three criti-
cal observations based on the experimental results:
(1) FedCSR surpassed individual training, as evi-
dent in Table 9. It consistently outperformed mod-
els trained individually by each data owner. This
highlights FedCSR’s ability to leverage collective
platform knowledge for enhanced overall model
performance. (2) Data sparsity significantly im-
pacts model accuracy. As previously set, platform
2 has the most significant proportion of training
samples, achieved the highest scores among indi-
vidual models in both domains. platform 7 has the
least training data and the worst recommendation
performance.

platform Food-domain Kitchen-domain
MRR HR@10 NDCG@10 MRR HR@10 NDCG@10

1 1.13 2.17 0.72 0.79 2.25 0.89
2 7.74 13.07 8.39 4.47 7.76 4.65
3 7.28 11.33 7.52 3.76 6.73 3.85
4 5.99 9.96 6.39 1.73 4.12 1.80
5 2.81 5.79 2.99 2.37 3.17 1.96
6 0.99 1.85 0.79 1.61 1.23 1.24
7 0.24 0.42 0.19 0.35 0.26 0.21
8 4.95 7.69 5.11 2.03 3.75 1.92
9 4.58 8.77 5.15 2.21 3.51 2.03

10 4.28 8.07 4.53 2.88 6.17 3.09
FedCSR 9.15 15.42 10.11 4.93 9.19 5.36

Table 9: The results of FedCSR, individual and central-
ized training on Food-Kitchen dataset.

Hidden Layer Dimension Analysis of the trans-
formation in SCL. To determine the influence of
the hidden layer dimension of the transformation
t(·) in SCL on recommendation performance, we
conduct an experiment in the food-kitchen scenario.
In this experiment, we sequentially set the hidden
layer dimensions to 1/4, 1/2, 1, 2, and 4 times the
dimension of the output layer. The experimental
results are shown in Fig 6.

Our experimental results show that setting the
hidden layer dimension to twice the output layer
leads to a slight improvement in all metrics in both
domains. This is different from SimSaim (Chen
and He, 2021), which suggests a bottleneck struc-
ture. We found that a larger hidden layer dimen-
sion helps to learn more complex representations,
leading to stable improvement in our method. It’s

important to consider other factors when determin-
ing the optimal hidden layer dimension, such as
dataset characteristics and model architecture.

(a) Food performance (b) Kitchen performance

Figure 6: The results (in %) of different hidden layer
dimensions on the Food-Kitchen scenario.

Experimental Environment. All methods are
replicated based on the PyTorch framework
(1.8.1+cu11) and experimented on Tesla V100 and
Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz.
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Methods
Food-domain recommendation Kitchen-domain recommendation

MRR
NDCG HR

MRR
NDCG HR

@5 @10 @1 @5 @10 @5 @10 @1 @5 @10

FedTiSASRec 4.27 3.60 4.60 1.62 5.71 8.79 2.79 2.07 2.85 0.99 3.19 5.64
FedCLSR 5.88 5.36 6.49 2.95 6.51 10.52 2.82 2.12 2.86 1.10 3.26 5.71

FedCoNet 2.95 2.53 3.18 0.88 4.24 6.28 2.48 1.79 2.48 1.01 2.59 4.76
FedCCDR 3.35 2.97 3.96 1.20 6.13 7.75 2.60 1.99 2.53 1.06 2.85 5.12

Fedπ-Net 6.4 6.12 7.14 3.52 8.51 11.66 2.83 2.14 2.89 0.97 3.35 5.64
FedPSJNet 6.88 6.75 7.29 3.63 8.75 11.83 3.45 2.87 3.33 1.45 4.41 6.25
FedMIFN 7.04 6.24 7.00 3.75 8.53 10.91 4.00 3.07 3.73 1.38 4.70 6.75
FedC2DSR 6.98 6.80 7.47 4.27 9.18 11.31 3.63 3.14 3.82 1.62 4.64 6.72
FedCSR 9.15 9.07 10.11 5.65 12.21 15.42 4.93 4.44 5.36 2.41 6.35 9.19

Table 6: Federated experimental results (in %) on the “Food-Kitchen” scenario. The best (second best) results are
in bold (underlined). The reported scores are the average of 5 runs.

Methods
Movie-domain recommendation Book-domain recommendation

MRR
NDCG HR

MRR
NDCG HR

@5 @10 @1 @5 @10 @5 @10 @1 @5 @10

FedTiSASRec 4.35 3.39 4.51 1.40 5.50 9.00 2.41 2.00 2.48 1.10 2.99 4.50
FedCLSR 4.46 3.49 4.76 1.49 4.47 8.77 2.46 2.05 2.51 1.16 2.83 4.32

FedCoNet 2.95 2.30 2.99 0.57 3.96 6.09 1.47 0.98 1.21 0.71 1.27 2.01
FedCCDR 3.48 2.76 3.67 0.98 4.39 7.41 1.82 1.36 1.73 0.86 1.98 2.90

Fedπ-Net 4.59 3.53 5.00 1.55 5.53 10.03 1.99 1.52 1.94 0.93 2.11 3.39
FedPSJNet 4.83 3.72 5.14 1.66 5.88 10.17 2.57 1.93 2.36 1.19 2.80 3.98
FedMIFN 5.07 3.95 5.28 1.82 6.12 10.23 2.80 2.20 2.63 1.33 3.05 4.29
FedC2DSR 4.08 3.28 3.99 1.82 4.76 6.97 1.86 1.50 1.75 0.90 2.11 2.91
FedCSR 6.73 5.84 7.12 3.54 8.81 12.71 2.74 2.32 2.72 1.62 3.10 4.32

Table 7: Federated experimental results (in %) on the “Movie-Book” scenario. The best (second best) results are in
bold (underlined). The reported scores are the average of 5 runs.

Methods
Entertainment-domain recommendation Education-domain recommendation

MRR
NDCG HR

MRR
NDCG HR

@5 @10 @1 @5 @10 @5 @10 @1 @5 @10

FedTiSASRec 29.16 30.06 34.42 16.81 42.60 56.02 38.93 40.28 44.35 26.53 52.67 65.21
FedCLSR 32.49 35.99 38.40 23.22 47.51 59.65 40.44 42.79 49.17 29.68 54.36 68.45

FedCoNet 18.11 17.70 22.83 6.73 28.28 44.10 25.38 26.63 31.42 11.56 40.62 55.03
FedCCDR 23.42 24.30 27.56 10.14 34.19 48.03 30.38 33.90 37.56 18.27 45.15 59.36

Fedπ-Net 40.92 42.98 46.61 27.14 57.29 68.49 46.43 48.20 51.35 34.71 60.12 69.78
FedPSJNet 41.78 43.96 48.08 27.99 57.43 68.76 47.97 50.04 52.16 35.79 60.72 72.46
FedMIFN 43.89 46.10 49.84 29.92 60.62 72.15 49.04 51.08 54.00 36.45 63.76 72.76
FedC2DSR 43.88 45.70 49.34 30.93 58.98 70.25 52.28 54.79 57.68 39.95 68.00 76.87
FedCSR 47.34 49.21 52.85 34.39 62.51 73.63 55.65 58.05 60.54 44.03 70.24 77.89

Table 8: Federated experimental results (in %) on the “Entertainment-Education” scenario. The best (second best)
results are in bold (underlined). The reported scores are the average of 5 runs.
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