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Abstract
Multiparty dialogue question answering (QA)
within machine reading comprehension (MRC)
presents significant challenges due to the com-
plex interplay of information across multiple
speakers and the need for advanced logical
reasoning. While existing models often fo-
cus on separating dialogue information based
on speakers and utterances, they rarely ad-
dress the crucial aspect of logical inference,
leading to suboptimal performance in under-
standing and answering questions. To bridge
this gap, we introduce the Logical Inference
Memory Network (LIMN), a novel architec-
ture designed for extractive QA in multiparty
dialogues. LIMN incorporates a unique in-
ference module pretrained on plain text QA
datasets (like SQuAD 2.0), enabling it to trans-
fer robust logical reasoning abilities to the dia-
logue domain. This module generates represen-
tations that are specifically attuned to logical
inference, which are then integrated into the
dialogue context. Furthermore, we propose
a key-utterance-based interaction mechanism
that dynamically focuses on the most relevant
utterances within the dialogue, enhancing the
model’s ability to pinpoint answers. To ensure
robust performance, LIMN employs a multitask
learning strategy that jointly optimizes for an-
swer extraction, answerability prediction, key-
utterance identification, and masked speaker
prediction. Extensive experiments on the Mol-
weni and FriendsQA benchmarks, encompass-
ing 25,000 and 10,000 questions respectively,
demonstrate that LIMN achieves state-of-the-
art results, affirming the effectiveness of in-
corporating logical inference in multiparty dia-
logue QA.

1 Introduction

Multiparty dialogue-based machine reading com-
prehension (MRC) is a crucial area of research

* These authors contributed equally to this work.
†Corresponding author.

in natural language processing (NLP), aiming to
enable machines to understand and reason about
conversations involving multiple participants. The
ability to effectively process such dialogues has
significant implications for various downstream ap-
plications, including extractive question answering
(QA) (Li and Zhao, 2021b; Liu et al., 2021b; Ma
et al., 2023a). Multiparty dialogue QA, in particu-
lar, focuses on identifying and extracting the most
relevant answers from a sequence of utterances con-
tributed by different speakers (Li et al., 2020a; Liu
et al., 2021b).

Compared to simpler forms of MRC, such as
plain article comprehension (e.g., reading compre-
hension on Wikipedia articles, as addressed by the
SQuAD dataset (Rajpurkar et al., 2018a)) and two-
party dialogue QA (e.g., conversations between
two individuals), multiparty dialogue QA presents
unique challenges. These challenges stem from two
primary factors: 1) The complex information flow
inherent in conversations with multiple speakers,
necessitating models to capture intricate discourse
relations and speaker-specific information (Li et al.,
2021). 2) The need for sophisticated logical reason-
ing to identify answers that might not be explicitly
stated but rather inferred from the dialogue context.

To tackle these challenges, various deep learning
approaches have been proposed for multiparty dia-
logue QA. Many of these methods focus on struc-
turing dialogues as relational graphs to model the
interactions between utterances (Liu et al., 2020).
For example, (Li et al., 2021) and (Ma et al., 2023a)
introduce discourse dependency links to capture
information flow by constructing heterogeneous
graph networks. Other studies explore the use of
multi-head attention (MHA) mechanisms to model
fine-grained relations between speakers and utter-
ances or across different time points in the dialogue
(Liu et al., 2021a; Li et al., 2022a). Additionally,
research has shown that incorporating auxiliary
sub-tasks, such as speaker and key-utterance pre-
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diction, can enhance performance by enabling the
model to learn more nuanced representations (Li
and Zhao, 2021a). External knowledge, including
discourse, syntax, commonsense, and knowledge
graphs, has also been leveraged to improve dia-
logue understanding (Shuster et al., 2021; Zhang
et al., 2021).

Despite these advancements, existing meth-
ods, which predominantly rely on fine-tuning
transformer-based pre-trained language models
(PLMs) (Vaswani et al., 2017), often fall short in
capturing the complex logical inference relations
crucial for accurate question answering in multi-
party dialogues. While PLMs excel at transferring
general language knowledge from vast text corpora,
they struggle to adapt to the specific demands of
dialogue-based QA, where the distribution of data
differs significantly from that of plain article QA.
This discrepancy often results in weaker logical
inference capabilities in dialogue QA compared
to plain article QA. Although the conversational
nature of dialogues introduces complexities not
found in plain articles, the underlying narrative
logic still follows a sequential progression simi-
lar to that found in natural language. Therefore, a
critical challenge in multiparty dialogue QA is to
enhance the model’s ability to perform sequential
and QA-based logical inference.

To address this critical need, we propose a
novel Logical Inference Memory Network (LIMN)
specifically designed for extractive QA in mul-
tiparty dialogues. Unlike previous approaches,
LIMN incorporates an inference memory encoder
that is pretrained on a plain article QA dataset
(SQuAD 2.0) and then frozen. This allows LIMN
to leverage the strong logical reasoning capabil-
ities developed during pretraining and transfer
them to the dialogue domain. The inference mem-
ory encoder generates representations that capture
the sequential and logical relationships necessary
for accurate QA, effectively acting as an external
memory of logical inference knowledge. Further-
more, we introduce a key-utterance-based interac-
tion mechanism that dynamically focuses on cru-
cial utterances, facilitating deeper information ex-
change within the dialogue.

The main contributions of this paper are summa-
rized as follows:

(1) We introduce LIMN, a novel architecture
for multiparty dialogue QA that explicitly models
logical inference relations by incorporating an in-
ference memory encoder pretrained on plain article

QA corpora. This encoder captures and retains se-
quential and logical inference patterns, providing a
significant advantage over previous models.

(2) We propose a key-utterance-based interac-
tion mechanism that enhances information flow by
strategically focusing on and integrating informa-
tion from the most relevant utterances identified
within the dialogue.

(3) We demonstrate through extensive experi-
ments on the Molweni and FriendsQA datasets that
LIMN outperforms existing state-of-the-art models,
highlighting the effectiveness of our approach in
improving logical inference for multiparty dialogue
QA.

2 Methodology

Figure 1 provides an overview of the proposed
LIMN model, which is specifically designed to en-
hance extractive question answering in multiparty
dialogues. LIMN consists of three primary compo-
nents: a PLM-based encoder, a dialogue decouple
network, and a multitask learning strategy. 1) Ini-
tially, the model takes questions and dialogue ut-
terances, along with their associated speaker char-
acteristics, and combines them into a sequential
format. These are then encoded using a PLM-
based encoder, such as BERT or ELECTRA. 2)
To capture fine-grained information crucial for QA,
a dialogue decouple network is employed. This
network consists of an inference memory encoder
and a speaker and utterance decouple encoder. The
inference memory encoder is first pretrained on
plain article QA datasets from SQuAD 2.0 (Ra-
jpurkar et al., 2018b) to learn general patterns of
logical inference. After pretraining, it is frozen
to preserve this acquired knowledge and generate
logical inference-aware representations for down-
stream multiparty dialogue QA tasks. The speaker
and utterance decouple encoder, on the other hand,
focuses on disentangling speaker-specific informa-
tion and identifying key utterances within the dia-
logue. 3) Finally, a multitask learning strategy is
implemented to optimize the model for various as-
pects of multiparty dialogue MRC and QA, includ-
ing the primary task of span-level answer extrac-
tion and auxiliary sub-tasks like answerability clas-
sification, key-utterance prediction, and masked
speaker prediction. The algorithm can be found in
Appendix E.
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Figure 1: Overview of the LIMN model for multiparty dialogue QA. The model comprises (a) PLM-based encoder,
(b) dialogue decouple network, and (c) multitask learning strategy. The PLM encodes dialogue utterances along
with speaker information. The dialogue decouple network then processes these encodings through its inference
memory and speaker-utterance decouple encoders. Finally, multitask strategies are applied to facilitate effective QA
inference.

2.1 Task formulation
The multiparty dialogue QA task can be formally
defined as follows: give a dialogue D with N ut-
terances and M related questions Q, the objective
is to identify the precise answer span A for each
question. If a question is unanswerable given the
dialogue context, the answer is designated as empty.
Each utterance Un within the dialogue is composed
of the speaker’s name Sn and a sequence of Dn

words. Similarly, each question-answer pair (Qm,
Am) consists of a sequence of words.

2.2 Pretrained Language Model-based
Encoder

Leveraging the success of fine-tuning PLMs for
various NLP tasks, we adopt a PLM (such as BERT
or ELECTRA) as the core context encoder for mod-
eling both the dialogue and the questions. Given
a dialogue context D and a corresponding ques-
tion Qm, the input sequence x with L tokens is
constructed as follows:

x = {[CLS]U1[SEP1] · · ·UN [SEPN ]Qi[SEPQ]}
(1)

where [CLS] and [SEPN ], n ∈ {1 : N ;Q}
are special tokens for classification and separat-
ing utterances and questions. To convert discrete
tokens (or words) into dense vectors for deep learn-
ing model optimization, embedding technology is
utilized for generating word embeddings, denoted
as E ∈ R with dimensionality of d. Furthermore,
to capture contextual dialogue representations H ,
PLM encodes E with stacked NPLM transformer
layers associating well pretrained checkpoints, for-
mulated as: H = PLM(E). Note that the input
and output of the transformer layer are equipped
with the same dimensionality of d for consistency.

2.3 Information Decouple

2.3.1 Inference memory encoder

To enhance the model’s ability to understand and
analyze dialogues, particularly for logical infer-
ence, we introduce an inference memory encoder.
This encoder is designed to transform the con-
textual representations H from the PLM into
inference-aware representations HI . The key idea
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is to pretrain this encoder on a large plain text QA
dataset (SQuAD 2.0) and then freeze its weights.
This allows the encoder to learn general patterns of
logical inference from a simpler domain and retain
this knowledge when applied to more complex mul-
tiparty dialogues. The structure of the inference
memory encoder mirrors that of a transformer layer
with NIME layers.

During the pretraining phase (continuous learn-
ing), plain text QA articles and questions are first
processed by the PLM encoder to obtain H . The
inference memory encoder then transforms H into
inference-aware representations: HI = IME(H).
The encoder is trained to ensure that it captures
inference-relevant information for both articles and
dialogues. Crucially, during the fine-tuning phase
on multiparty dialogue QA tasks, the weights of
the inference memory encoder are frozen. This
ensures that the QA inference capabilities learned
from SQuAD are preserved and effectively trans-
ferred to the dialogue domain.

2.3.2 Speaker and Utterance Decouple
Encoder

Multiparty dialogues often involve complex interac-
tions between speakers with varying characteristics
and contributions. To address this, we introduce
a speaker and utterance decouple encoder. This
component consists of a masked speaker prediction
block and a key-utterance prediction block, both
designed to enhance the model’s understanding of
speaker-specific nuances and the identification of
crucial utterances.

The masked speaker prediction block aims to
refine the utterance representations HUn within
the contextual representations H by incorporat-
ing speaker-specific information. During training,
a candidate utterance Umask is selected, and its
speaker Smask is treated as unknown (masked). A
self-supervised task is then performed to determine
whether Umask originates from the same speaker as
other utterances in the context. Speaker-aware rep-
resentations HS are generated using a multi-headed
attention (MHA) module with NsMHA layers:

HS = sMHA(Hdetached, Hdetached, Hdetached) (2)

where Hdetached represents a detached version of
H (gradients are not propagated back through this
path), preventing the speaker prediction task from
directly influencing the initial contextual represen-
tations.

The key-utterance prediction block focuses on
transforming the dialogue context representations
H into key-utterance-aware representations HK .
Importantly, unlike other specialized representa-
tions that are often generated from separate mod-
ules, HK is derived directly from the original
H through backpropagation, guided by the key-
utterance prediction task. This approach facilitates
the creation of representations that are simultane-
ously aware of inference and speaker information.

2.4 Multitask Learning Strategy

Recognizing the complexity of information flow
in multiparty dialogues, we employ a multitask
learning strategy to leverage robust representations
and improve overall performance. This strategy
involves a primary QA task (span-level answer ex-
traction) and three auxiliary sub-tasks: answerable
prediction, key-utterance prediction, and masked
speaker prediction. Each sub-task contributes to
refining specific aspects of the dialogue representa-
tions.

2.4.1 Span-level Answer Extraction Task
The core of our model is the span-level answer
extraction task, which is essential for identifying
the correct answer to a given question. This task
is performed during both the pretraining (contin-
uous learning) and fine-tuning phases. In the pre-
training phase, the model learns to identify answer
spans within the inference-aware representations
HI . Two trainable vectors, vstart and vend, are
used to compute the probabilities of each token
being the start or end of the answer span:

Pstart =softmax(vTstartHI)

Pend =softmax(vTendHI)
(3)

where Pstart and Pend denote probabilities of to-
kens being the start and end of the answer, respec-
tively. The loss for this task is calculated using
cross-entropy:

ξspuadspan = −(logPstart[ystart] + logPend[yend])
(4)

where ystart and yend are the ground truth start
and end positions. Optimizing ξsquadspan during pre-
training ensures that the model learns to capture
logical inference relationships, providing valuable
checkpoints for downstream dialogue QA tasks.

During fine-tuning on multiparty dialogues, the
model is initialized with the weights obtained from
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the pretraining phase on SQuAD. To further en-
hance the model’s ability to handle complex inter-
actions, we introduce a key-utterance-based inter-
action mechanism. This mechanism models the
interplay between the inference-aware (HI ), key-
utterance-aware (HK), and speaker-aware (HS)
representations to generate more robust dialogue
representations Henhanced. The interaction process
involves a heuristic matching strategy:

HD = Fusion(HK , HS)

Hd = [HK ;HS ;HK −HS ;HK ·HS ]
(5)

Here, Fusion represents a concatenation operation
followed by a linear transformation. Hd combines
HK and HS through concatenation, element-wise
difference, and element-wise product to capture
different aspects of their interaction.

To integrate the inference-aware representa-
tions HI into the dialogue representations HD,
another fusion operation is performed: HF =
Fusion(HD, HI). HF is then decomposed into
representations corresponding to the dialogue
context (HC

F ), the question (HQ
F ), and answer-

candidate tokens (HA
F ). To model the interactions

between these components, we employ a Dynamic
Multi-head Attention (DUMA) module:

HA = DUMA(HC
F , HA

F )

= Fusion(mean(H
′C
F ),mean(H

′A
F ))

H
′C
F = MHA(HC

F , HA
F , H

A
F )

H
′A
F = MHA(HA

F , H
C
F , HC

F )

(6)

The DUMA module uses multi-head attention
to model the interactions between the context
and answer-candidate representations and vice-
versa. Finally, the enhanced dialogue represen-
tation Henhanced is obtained by: Henhanced =
Fusion(HF , repeat(HA)).

2.4.2 Answerable Prediction
Determining whether a question is answerable
based on the provided dialogue is crucial for ro-
bust QA. We incorporate an answerable prediction
module that utilizes the key-utterance-aware rep-
resentations HK . Specifically, HK is divided into
utterance (HC

K) and question (HQ
K) components,

with total lengths LQ + LC = L. An interaction
between these components is modeled using the
DUMA module to derive answer-aware representa-
tions HA

K :

HA
K = DUMA(HC

K , HQ
K) (7)

Answerability is then predicted using a multi-
layer perceptron (MLP) classifier with a sigmoid
activation function, which assesses the relevance
of the question to the dialogue context. The binary
cross-entropy loss is used to measure the accuracy
of these predictions, denoted as ξanswerable.

2.4.3 Key-utterance Prediction
Identifying the key utterance(s) containing the ex-
act answer is essential in extractive QA. The model
updates the dialogue context representations H to
key-utterance-aware representations HK using a
pseudo-self-supervised approach. Each utterance
representation H[SEPn] is concatenated with the
answer-aware representation HA

K . A binary clas-
sifier then determines whether the corresponding
utterance Un is a key utterance. The binary cross-
entropy loss is used to calculate the key-utterance
prediction loss ξutterance for all N utterances.

2.4.4 Masked Speaker Prediction
This sub-task focuses on enhancing the speaker-
aware representations. It involves pairing a masked
utterance Umask with other unmasked utterances
Uunmask. The model then determines whether
both utterances are from the same speaker. This is
achieved using a binary classifier that operates on
the concatenated representations HS [SEPunmask]
and HS [SEPmask]. The cross-entropy loss
ξspeaker is computed for all N − 1 utterance pairs.

2.4.5 Multitask Objective
To optimize the model for all aspects of multiparty
dialogue QA, we combine the objectives of the
individual tasks into a single multitask objective:

ξ = ξspan+ξanswerable+ξutterance+ξspeaker (8)

This combined objective allows the model to learn
jointly from all tasks, leading to improved perfor-
mance and more robust representations.

3 Experiments

3.1 Datasets

SQuAD 2.0 (Rajpurkar et al., 2018b), based on
Wikipedia and combining answerable and unan-
swerable questions, is used for learning . It fea-
tures 130k samples from 442 articles, including
43k negative samples, and a development set with
11k samples (Rajpurkar et al., 2018a). Compara-
tive studies involve the Molweni and FriendsQA
datasets (Yang and Choi, 2019). The Molweni
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dataset is based on Ubuntu forum conversations
and contains discourse relations in multi-party dis-
cussions (Li et al., 2020b). FriendsQA, based on
the TV show Friends, has 1,222 dialogues with
10,610 questions (Yang and Choi, 2019).

3.2 Baselines and Metrics
We use two PLMs as baselines, includ-
ing BERTlarge (Devlin et al., 2019) and
ELECTRAlarge (Clark et al., 2020). We compare
LIMN with SUP (Li and Zhao, 2021b), SUP+MI
(Zhu et al., 2022), SUP+BiDeN (Li et al., 2022a),
MaskAttn+Graph (Ma et al., 2023b) and SOTA
model (CADA (Li et al., 2023)). The baseline
introductions are in Appendix A.

Consistent with SQuAD 2.0 (Rajpurkar et al.,
2018b), both the exact match (EM) and macro-
averaged F1-score were applied as the evaluation
metrics.

3.3 Hyperparameter Fine-tuning and
Implementation Details

In the experiments, key hyperparameters impacting
results include the learning rate, NIME (number
of MHA layers in the speaker prediction module),
and NIME (number of transformer block layers
in the inference memory encoder). Initial tests
determined the optimal learning rate and NsMHA

through grid search, then fixed them to evaluate
NIME’s influence, setting NIME at 3 for consis-
tency.

We utilized BERT and ELECTRA large versions
as backbones, setting initial learning rates to 0.0001
with a warm-up ratio of 0.1. For Molweni, batch
sizes and learning rates were adjusted based on the
backbone: BERT used a batch size of 8 and a learn-
ing rate of 4e-5, while ELECTRA used 12 and 2e-5.
In FriendsQA, batch sizes were set to 4, with learn-
ing rates of 6e-6 for ELECTRA and 4e-6 for BERT.
The maximum number of utterances was capped at
10 for Molweni and 20 for FriendsQA. The training
cost discussion could be found in Appendix C.

3.4 Comparative Results
To evaluate the effectiveness of the proposed Logi-
cal Inference Memory Network (LIMN), we con-
ducted comparative experiments using two robust
Pretrained Language Models (PLMs): BERT-large
and ELECTRA-large. These experiments were per-
formed on the Molweni and FriendsQA datasets,
with the results during the fine-tuning phase pre-
sented in Table 1.

Model
Molweni FriendsQA

EM F1 EM F1

BERTlarge (baseline) 50.5 65.1 46.0 63.1
SUP (2021) 49.2 64.0 46.9 63.9
SUP+MI (2022) 51.1 64.7 - -
MaskAttn+Graph (2023) 49.7 64.4 47.0 63.0
CADA (2023, SOTA) 52.9 67.6 47.4 65.6
LIMN† (ours) 53.1 68.1 50.1 67.2

ELECTRAlarge (baseline) 56.8 70.6 52.8 70.1
SUP (2021) 58.0 72.9 55.8 72.3
SUP+MI (2022) 58.7 73.1 57.1 73.0
CADA (2023, SOTA) 59.8 73.6 59.2 76.7
LIMN† (ours) 60.2 74.5 60.5 77.6

Table 1: Comparative results on both Molweni and
FriendsQA. Numbers marked with † denoted that the
improvements were statistically significant (t-test with
p-value < 0.05) comparing with the corresponding mod-
els. Numbers in bold denoted that the results achieved
the best performance.

Our findings reveal that question-answering
(QA) tasks in multiparty dialogues are significantly
more challenging than those in plain text scenar-
ios. Traditional methods that model dialogues at
the speaker and utterance levels using Speaker and
Utterance Prediction (SUP) demonstrate some suc-
cess. More advanced techniques, such as speaker
mask attention and heterogeneous graph networks
based on discourse and speaker relations, further
improve performance. However, these methods of-
ten rely on additional data annotation, increasing
the complexity of implementation.

In contrast, the proposed LIMN model achieved
state-of-the-art results on both benchmark datasets,
irrespective of the underlying PLM (BERT-large or
the more advanced ELECTRA-large). This consis-
tent performance underscores the generalizability
and robustness of our approach. The superior per-
formance of LIMN can be attributed to three key
factors: 1) Effective decoupling of speaker and key-
utterance information within the dialogue through
SUP sub-tasks. 2) Introduction of plain article QA
datasets as external knowledge, which enables the
model to learn and retain QA-related knowledge,
thereby bolstering its logical inference capabilities
for dialogue QA tasks. 3) A key-utterance-based
information interaction strategy that effectively in-
tegrates the representations decoupled by multiple
auxiliary sub-tasks, focusing on deep information
interactions among dialogue contexts, questions,
and key utterances.
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3.5 Ablation Study
To verify the influence of introducing external QA
knowledge, we remove both the inference memory
encoder and external knowledge injection. To ver-
ify the influence of the inference memory encoder,
we removed it but still used the external plain text
QA dataset for continuous learning. In addition, we
also verified the impact of the key-utterance-based
interaction strategy and the freeze operation of the
inference memory encoder.

As illustrated in Table 2, the experimental re-
sults show that each part has a significant impact
on the performance of the proposed model. The in-
troduction of plain text QA knowledge to enhance
the inference ability of the model is effective. In
addition, the use of an inference memory encoder
and freeze operation allows the model to learn and
memorize this inference ability better. The interac-
tion strategy based on key-utterance also improves
the performance of the model.

Model
Molweni FriendsQA

EM F1 EM F1

LIMN(ELECTRA) 60.2 74.5 60.5 77.6
w/o External Knowledge Injection 58.4 73.0 56.8 72.9
w/o Inference Memory Encoder 59.3 73.4 60.1 75.2
w/o Key-utterance-based Interaction 59.2 73.7 59.5 74.6
w/o Freeze Operation 58.5 74.0 59.7 75.4

Table 2: Ablation experiment results.

3.6 Influence of Speaker and Utterance
Numbers

LIMN CACD baseline
EM F1 EM F1 EM F1

Number of speakers
2 ∼ 3 65.1 78.3 57.1 73.2 58.3 72.9
4 ∼ 5 58.1 76.8 57.2 74.3 55.1 73.9
6 ∼ 7 57.6 73.2 54.4 72.2 48.2 67.8
≥ 8 58.6 70.1 53.2 63.2 45.2 63.2

Number of utterances
1 ∼ 10 68.3 83.1 67.1 82.3 62.3 80.1

11 ∼ 20 67.8 79.8 58.3 74.5 58.1 74.1
21 ∼ 30 53.1 68.7 52.8 66.1 50.2 64.6
31 ∼ 40 48.7 64.7 48.2 63.2 43.2 57.6
≥ 41 59.7 69.2 52.1 61.2 44.1 56.2

Table 3: Performance of LIMN (ELECTRA) on Friend-
sQA under different numbers of utterances and speakers.

We further investigated the influence of dialogue
complexity, as measured by the number of speak-
ers and utterances, on model performance using
the Molweni and FriendsQA datasets. The per-
formance variations of the LIMN model across
different dialogue sizes are detailed in Table 3.

We specifically selected the FriendsQA dataset
for these experiments due to its greater complexity
compared to Molweni, characterized by a higher
number of interlocutors and longer discourse. The
FriendsQA dataset also exhibits a wider range of di-
alogue sizes. Table 3 reveals that the performance
of all models, including LIMN, was affected to
varying degrees by the increasing number of speak-
ers and utterances. However, LIMN and the CACD
model, both of which decouple dialogues at the
speaker and utterance levels, were less susceptible
to these variations than the baseline model. No-
tably, LIMN, which leverages external knowledge
for learning inference relations, exhibited superior
performance across most dialogue size ranges. This
advantage was particularly pronounced in more
complex dialogues, attributable to its enhanced in-
ference capabilities and the key-utterance-based
information interaction mechanism.

3.7 Case Study: Model Performance Analysis

Example 1 (from Molweni Datasets) Example 2 (from Molweni Datasets)
· · · · · ·
BlueEagle: i already pasted the two non-
commented lines in that file.

slerder: thanks. is dpkg for installing things.

Techsupport: permission denied lol cant save the
file.

ziroday: yep , apt is a frontend to dpkg

BlueEagle: that’s because it’s owned by root ziroday: can you please do sudo apt-get install
install pastebinitand then do cat FILEPATH paste-
binit

Techsupport: with the user that i’m looged in as ziroday: you installed the nvidia driver.
BlueEagle: but you already know that , don’t you
?

BlueEagle: but you already know that , don’t you
?

· · · · · ·
Question: Why can not it save the file ? Question: What is the first step of ziroday’s ad-

vice ?
Answer: because it’s owned by root ? Answer: do sudo apt-get install install pastebinit

?
ELECTRA(baseline): permission denied ELECTRA(baseline): installed the nvidia driver
SUP: permission denied lol SUP: do sudo apt-get install install pastebinit and

then do cat FILEPATH pastebinit
LIMN(ELECTRA): because it’s owned by root LIMN(ELECTRA): do sudo apt-get install in-

stall pastebinit
Example 3 (from FriendsQA Datasets) Example 4 (from FriendsQA Datasets)
· · · · · ·
Monica Geller: And well , we probably should
n’t see each other anymore . I ’m sorry .

Monica Geller: You were the next caller five
hours ago . You must be going crazy .

Peter Becker: Okay , yeah . I mean ... If that ’s ,
if that ’s really what you want , okay .

Peter Becker: Nah . I kept myself busy .

Monica Geller: Okay , bye . Monica Geller: Okay , bye .
#Note#: ( She kisses him on the cheek, and he
kisses her back on the mouth . )

#Note#: ( Both Rachel and Monica walk into their
bedrooms , stop , and come back into the living
room with confused looks on their faces . )

Peter Becker: I ’m sorry things did n’t work out Peter Becker: Oh , okay , yeah . I put your stuff
in her room, and her stuff in your room .

· · · · · ·
Question: How does Monica kiss Peter ? Question: Where did Phoebe not put Rachel and

Monica ’s things ?
Answer: on the cheek ? Answer: their bedrooms
ELECTRA(baseline): on the cheek , and he
kisses her back on the mouth

ELECTRA(baseline): i put your stuff in her
room , and her stuff in your room

SUP: on the mouth SUP: in her room , and her stuff in your room
LIMN(ELECTRA): on the cheek LIMN(ELECTRA): their bedrooms

Table 4: Examples from Molweni and FriendsQA,
where the red font indicates the answer and the blue
font indicates the wrong prediction.

We analyzed four examples from Molweni and
FriendsQA datasets to demonstrate the LIMN
model’s effectiveness from Table 4.

Example 1 (Why-type question from Mol-
weni): The baseline and SUP models identified a
superficial reason for a file save failure. In contrast,
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LIMN accurately pinpointed the root ownership
as the underlying cause, showcasing its superior
logical inference.

Example 2 (What-type question from Mol-
weni): The baseline model’s prediction deviated
significantly. While the SUP model correctly found
the key utterance, it failed to precisely address the
question’s specifics. LIMN, however, provided an
exact answer match.

Example 3 (How-type question from Friend-
sQA): All models identified the key utterance, but
the baseline model struggled with the referential
relationship between Monica and Peter. The SUP
model misunderstood this relationship, whereas
LIMN accurately matched “Monica” with “she”
and “Peter” with “he”, leading to the correct an-
swer.

Example 4 (Where-type question from Friend-
sQA): Both baseline and SUP models misinter-
preted the question’s negation and produced op-
posite results. LIMN correctly comprehended the
question and provided the exact answer.

3.8 Comparison of Performance for Different
Types of Problems

In order to explore the performance of the model
on different types of questions, we can divide
the questions into the following categories for
experimentation: Simple Fact-based Questions,
Inference-based Questions, Cross-speaker Refer-
ence Inference-based Questions, Cross-speaker
Reference Questions, and Negative Questions.

The purpose of the experiment is to compare
the performance of the full model with that of the
model with IME removed on different types of
questions to verify the advantages of the Logical
Reasoning perceptual representation on complex
reasoning problems.

Question Type
LIMN (full Model) w/o IME
EM F1 EM F1

Fact-based Questions 68.4 80.1 65.2 77.3
Inference-based Questions 58.3 72.9 52.8 68.2
Cross-speaker Questions 60.5 75.4 56.1 70.3
Negative Questions 55.2 69.7 50.4 66.1

Table 5: Performance Comparison of Different Types
of Problems: Complete vs. Removed IME Models on
Different Problem Types.

In Simple Factual Problems, the full model
showed a small improvement on both EM and F1,
indicating that IME is still helpful for simple prob-
lems, but the advantage is not significant. In Rea-

soning Problems, the complete model shows signif-
icant improvement in the performance on reasoning
problems, especially the F1 score is improved by
4.7 percentage points, indicating that IME has a sig-
nificant enhancement effect on reasoning ability. In
Multi-party referencing problems, the full model
performs better on complex problems involving
multi-party conversations, suggesting that IME can
help capture the flow of information between differ-
ent speakers. In Negative problems, the full model
also has a strong advantage in negation problems,
with an improvement of nearly 5 percentage points
in EM, suggesting that the Logical Reasoning Per-
ceptual Representation helps to deal with complex
linguistic structures such as negation.

The experimental results from Table 5 show that
IME provides significant enhancement for com-
plex problems such as inference problems, multi-
ple reference problems and negation problems. For
simple factual problems, although IME provides
some enhancement, its contribution is more evi-
dent in problems that require complex reasoning
and cross-speaker information association. This
validates the effectiveness of introducing IME and
external knowledge injection for complex reason-
ing problems.

3.9 Impact of External Knowledge Infusion

In order to analyze the impact of external knowl-
edge injection (SQuAD 2.0) on QA inference for
multi-party conversations, we designed to pre-train
the model using different types of external knowl-
edge and compare their performances in multi-
party conversation tasks. The experiments can be
categorized into three groups: no external knowl-
edge (No External Knowledge), flat text knowl-
edge that is not relevant to multi-party dialogues
(SQuAD 2.0), and knowledge that is relevant to the
dialogues (social media dialogue data).

External Knowledge Type
Molweni FriendsQA

EM F1 EM F1

No External Knowledge 58.4 73.0 56.8 72.9
SQuAD 2.0 (Plain Text QA) 60.2 74.5 60.5 77.6
Dialogue-related Data 59.8 74.1 59.7 76.4

Table 6: Performance impact of external knowledge
injection: comparing the impact of different external
knowledge types on multi-party dialogue QA.

The model without external knowledge performs
significantly worse, especially with lower F1 scores
on the FriendsQA dataset. This suggests that with-
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out the injection of external knowledge, the model
performs poorly on complex reasoning tasks. The
SQuAD 2.0 dataset provides a significant perfor-
mance improvement, especially on the FriendsQA
dataset, which is complex in its reasoning, with an
increase in F1 scores of almost 5 percentage points.
This shows that even flat text QA data, which is
not dialogue related, can significantly enhance the
model’s inference. Conversation-related data also
provides a performance gain, but slightly less so
than SQuAD 2.0. While conversation-related data
may be better at capturing the structure of con-
versations, SQuAD 2.0 provides richer training in
logical reasoning, and is therefore slightly better at
reasoning.

The experimental results from Table 6 show that
external knowledge is crucial to the improvement
of the model’s reasoning ability. Even flat text
QA data unrelated to conversations (SQuAD 2.0)
significantly improves the performance of multi-
party dialogue QA, especially on tasks involving
complex reasoning. Conversation-related external
data is helpful in improving the understanding of
conversation structure, but is slightly weaker than
SQuAD 2.0 in logical reasoning; therefore, a ju-
dicious choice of external knowledge sources can
effectively enhance the model’s reasoning ability.

3.10 Comparison of Different Reasoning
Mechanisms

In order to verify the effectiveness of Inference
Memory Encoder (IME) relative to other common
inference mechanisms (e.g., Graph Neural Net-
works, Attention-based mechanisms), we designed
comparative experiments to compare the perfor-
mance of different inference mechanisms on multi-
party dialogue QA tasks. Common comparative
reasoning mechanisms include Graph Neural Net-
work (GNN), Attention-based Reasoning and In-
ference Memory Encoder (IME). The experiment
aims to compare the performance of these mech-
anisms on the Molweni and FriendsQA datasets
in order to validate the advantages of IME when
dealing with complex reasoning tasks.

Attention-based reasoning mechanism, which
performed relatively well on both datasets but
slightly underperformed the F1 score on the more
complex FriendsQA dataset, suggesting that this
approach is slightly less effective at handling com-
plex reasoning in multi-party conversations. The
GNN, on the other hand, performs better in dealing
with relationships between different speakers in a

Reasoning Mechanism
Molweni FriendsQA

EM F1 EM F1

Attention-based 58.5 73.2 57.4 74.0
GNN 59.1 73.8 58.2 74.6
IME (ours) 60.2 74.5 60.5 77.6

Table 7: A Comparison of Different Reasoning Mecha-
nisms: the Performance of IME, GNN, and Attention-
Based Reasoning Mechanisms in Multi-Party Dialogue
QA Tasks.

conversation, and in particular slightly outperforms
the attention-based inference mechanism on Friend-
sQA, showing its ability to capture speaker rela-
tionships in graph structures. IME outperforms the
other two inference mechanisms on both datasets,
especially on the more complex FriendsQA dataset,
where the improvement in F1 score is more signif-
icant. This suggests that IME is more capable of
capturing complex reasoning relationships and the
logical structure of multi-party conversations.

Experimental results from Table 7 show that
the Inference Memory Encoder (IME) has signif-
icant advantages over graph neural networks and
attention-based inference mechanisms in the multi-
party dialogue QA task. the IME is better able to
capture logical reasoning cues in multi-party dia-
logues and can utilize external knowledge injection
to enhance the reasoning ability. As a result, IMEs
show greater versatility and effectiveness in scenar-
ios that require complex reasoning.

4 Conclusions

This paper introduces LIMN, a model enhancing
QA tasks in multiparty dialogues by using QA-
related latent memory and key-utterance-based in-
teractions. It decouples dialogue at speaker and
utterance levels, achieving state-of-the-art results
on Molweni and FriendsQA datasets. Future work
will focus on refining external knowledge for im-
proved QA inference.

Limitations

Computational Resource Requirements: We have
acknowledged the high computational demands,
which may impact accessibility for smaller research
teams.
Dependency on External Knowledge Quality: The
model’s inference performance is influenced by
the quality of external knowledge injection, and
reliance on datasets such as SQuAD may limit its
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robustness to diverse dialogue contexts.
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work that models both self- and inter-speaker de-
pendencies to capture the nuances of dialogue
context. Li et al. (Li et al., 2021) proposed a
discourse-aware dialogue graph (DADgraph) that
incorporates dependency links and discourse rela-
tions to model inter-utterance relationships. Ma
et al. (Ma et al., 2023a) and Zhou et al. (Zhou
et al., 2024) developed an enhanced speaker-aware
model that leverages two graph networks to cap-
ture both annotated and unannotated discourse re-
lations, further incorporating a decoupling module
based on masking-based multi-head attention to
isolate speaker-specific characteristics. Distinct
from these approaches, Liu et al. (Liu et al., 2021b)
introduced a graph reasoning network (GRN) that
utilizes next utterance prediction (NUP) and utter-
ance order prediction (UOP) as pretraining tasks
to improve performance on dialogue response se-
lection. This model then employs an utterance
dependency graph (UDG) to capture dependencies
and facilitate reasoning by propagating information
along utterance paths.

The second direction extends the standard MHA
mechanism to focus on specific aspects of dialogue
crucial for comprehension. Liu et al. (Liu et al.,
2021a) proposed a mask-based decoupling fusing
network (MDFN) that separates dialogue context
based on speaker and utterance levels by incorpo-
rating inter-speaker and intra-speaker masks into
the MHA. Li et al. (Li et al., 2022b) introduced
the Bidirectional Information Decoupling Network
(BiDeN), which adapts the back-and-forth read-
ing strategy (Sun et al., 2019) to model temporal
characteristics in dialogues. BiDeN analyzes the
dialogue context from three perspectives: future-
to-current, current-to-current, and past-to-current,
using a masking-based MHA mechanism.

Given the inherent complexity and potential for
noisy information in multiparty dialogues due to
multiple speakers and utterances, Li et al. (Li
and Zhao, 2021b) introduced self- and pseudo-self-
supervised sub-tasks for speaker and key-utterance
prediction (SUP). These auxiliary tasks aim to
model the complex information flow by recogniz-
ing that not all utterances contribute equally to an-
swering a specific question.

C Training Cost Discussion

Below, we include specific results regarding train-
ing times, GPU utilization, and memory require-
ments associated with our model’s key components:

We trained on two NVIDIA A100 GPUs (40GB
memory). The model was pre-trained and fine-
tuned using Mixed Precision to reduce memory us-
age and increase speed. Our pre-training phase took
a total of 24 hours to complete, including 10 epochs,
each of which took about 2.4 hours, and used about
35GB of memory. The fine-tuning phase takes 8
hours and 7 hours to complete on each dataset with
5 epochs respectively, and the memory usage is
controlled to be around 25GB due to the module
freezing operation, which reduces the memory bur-
den and computation overhead. By freezing the
pre-trained Inference Memory Encoder, we reduce
the computation of parameter update and optimize
the use of GPU resources. In the multitasking set-
ting, the time per batch is about 0.5 seconds, and
the total time spent is about 7 hours with 50,000
batches. By reducing the number of update mod-
ules, we reduced the computational overhead by
about 20% in the multitasking learning phase. As
a result, our model took a total of 46 hours to com-
plete in the full training process. With specific
module freezing and the use of mixed precision,
the model can be reproduced in an efficient en-
vironment, ensuring reasonable training time and
resource requirements.

D Generalization Ability Test

In order to test the generalization ability of the
model on different datasets, we designed exper-
iments using two major datasets, Molweni and
FriendsQA, for training, and then tested the per-
formance of the model on other datasets such as
Ubuntu Dialogue Corpus and DailyDialogue. This
helps to verify that the IME has good generaliza-
tion performance. The experiments will compare
the performance of the full model (using IME) with
the model without IME on different datasets to see
its generalization ability.

Training Dataset
Ubuntu Dialogue Corpus DailyDialogue
EM F1 EM F1

Molweni + IME 55.2 68.9 62.5 74.3
Molweni (w/o IME) 52.1 66.3 59.4 70.8
FriendsQA + IME 57.8 71.2 64.7 76.1
FriendsQA (w/o IME) 54.5 68.4 61.8 72.9

Table 8: Generalizability test: performance of models
trained on Molweni and FriendsQA datasets on Ubuntu
Dialogue Corpus and DailyDialogue datasets.

Performance on the Molweni training dataset is
dominated by the fact that the model significantly
outperforms the model without IME on Ubuntu
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Dialogue Corpus and DailyDialogue when IME
is used, especially on the DailyDialogue dataset,
where the F1 score improves by close to 4 percent-
age points. The performance on the FriendsQA
training dataset is better for the model using IME
on both test datasets, especially on the Ubuntu
Dialogue Corpus dataset with complex dialogue
contexts, where the F1 score improves by nearly
3 percentage points, indicating that IME is better
adapted to complex reasoning across datasets. The
model without IME is slightly less capable of gener-
alization, and performs significantly worse than the
model with IME, especially on tasks that require
stronger reasoning.

The experimental results from Table 8 show that
the generalization ability of the model using IME
on different datasets is significantly better than
that of the model without IME. This suggests that
IME enhances the model’s reasoning ability when
dealing with unseen datasets, especially in tasks
with complex dialogue and reasoning requirements.
Overall, IME provides stronger generalization ca-
pabilities, allowing the model to maintain high per-
formance in different scenarios.

E Algorithm

Algorithm 1 Logical Inference Memory Network
(LIMN) for Multiparty Dialogue QA
Require: Dialogue D = {U1, U2, ..., UN}, where

each utterance Un has speaker Sn and words
Dn.

Require: Question Q.
1: H ← PLMEncoder(D,Q) {See Algorithm 2}
2: HI , HS , HK ←

DialogueDecoupleNetwork(H) {See Al-
gorithm 3}

3: span, answerable, key_utterance, speaker, ξ ←
MultitaskLearningStrategy(H,HI , HS , HK , D,Q)
{See Algorithm 4}

4: return span, answerable, key_utterance, speaker, ξ

Algorithm 2 PLM-based Encoder
Require: Dialogue D = {U1, U2, ..., UN}, where

each utterance Un has speaker Sn and words
Dn.

Require: Question Q.
1: x← {[CLS], U1, [SEP1], ..., [SEPN ], Q, [SEPQ]}

{Concatenate dialogue and question with
special tokens}

2: E ← TokenEmbeddings(x) {Convert tokens
to embeddings using a predefined vocabulary}

3: H ← PLM(E) {Encode with Pretrained Lan-
guage Model (e.g., BERT, ELECTRA). H has
dimensions (sequence_length, hidden_size)}

4: return H {Contextual representations}

Algorithm 3 Dialogue Decouple Network
Require: Contextual representations H from the

PLM-based Encoder.
1: {Inference Memory Encoder (Pretrained

and Frozen)}
2: HI ← IME(H) {Encode with Inference

Memory Encoder. H_I has dimensions (se-
quence_length, hidden_size)}

3: {Masked Speaker Prediction Block}
4: Umask ← SelectMaskedUtterance(D) {Se-

lect a candidate utterance and mask its speaker}

5: Perform masked speaker prediction task using
Umask and H (Implementation details omitted
for brevity but involve comparing Umask with
other utterances to determine if they have the
same speaker)

6: HS ← sMHA(Hdetached, Hdetached, Hdetached)
{Generate speaker-aware representations using
multi-head attention. H_S has dimensions (se-
quence_length, hidden_size)}

7: {Key-Utterance Prediction Block}
8: Perform key-utterance prediction task using D,

Q and H (Implementation details omitted for
brevity but involve identifying utterances most
relevant to answering the question)

9: HK ← GenerateKeyUtteranceRep(H) {Gen-
erate key-utterance-aware representations from
H via backpropagation. H_K has dimensions
(sequence_length, hidden_size)}

10: return HI , HS , HK
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Algorithm 4 Multitask Learning Strategy
Require: Contextual representations H , inference-aware rep-

resentations HI , speaker-aware representations HS , key-
utterance-aware representations HK , Dialogue D, Ques-
tion Q

1: {Key-Utterance-based Interaction Mechanism}
2: HD ← Fusion(HK , HS) {Concatenate and linearly

transform. H_D has dimensions (sequence_length, fu-
sion_dim)}

3: Hd ← [HK ;HS ;HK − HS ;HK · HS ] {Concatenate,
element-wise subtract, and element-wise multiply. H_d
has dimensions (sequence_length, 4*hidden_size)}

4: HF ← Fusion(HD, HI) {Concatenate and linearly
transform. H_F has dimensions (sequence_length, fu-
sion_dim)}

5: Decompose HF into HC
F (context), HQ

F (question), HA
F

(answer candidates) {Each of H_FC , H_FQ, H_FA

has dimensions corresponding to their respective parts
of the sequence}

6: HA ← DUMA(HC
F , HA

F ) {Dynamic Multi-head Atten-
tion. See detailed pseudocode below (Algorithm 5). H_A
has dimensions (1, fusion_dim)}

7: Henhanced ← Fusion(HF , repeat(HA)) {Concatenate
H_F with repeated H_A. H_enhanced has dimensions
(sequence_length, 2*fusion_dim)}

8: {Span-level Answer Extraction}
9: Pstart ← softmax(vTstartHenhanced) {v_start is a trainable

vector. P_start has dimension (sequence_length)}
10: Pend ← softmax(vTendHenhanced) {v_end is a trainable vec-

tor. P_end has dimension (sequence_length)}
11: span ← (argmax(Pstart), argmax(Pend)) {Predicted start

and end indices}
12: ξspan ← −(logPstart[ystart] + logPend[yend]) {Cross-

entropy loss, where y_start and y_end are the ground
truth indices}

13: {Answerable Prediction}
14: Split HK into HC

K (utterance) and HQ
K (question)

15: HA
K ← DUMA(HC

K , HQ
K) {H_KA has dimension (1,

hidden_size)}
16: answerable ← sigmoid(MLP(HA

K)) {MLP is a multi-
layer perceptron. answerable is a probability between 0
and 1}

17: ξanswerable ← BinaryCrossEntropy(answerable, ground truth)
18: {Key-Utterance Prediction}
19: for n = 1 to N do
20: concat← [H[SEPn];H

A
K ] {Concatenate the represen-

tation of the [SEP] token for the n− th utterance with
H_KA}

21: key_utterancen ← sigmoid(MLP(concat)) {Predict
if utterance U_n is a key utterance}

22: end for
23: key_utterance = [key_utterance1, ..., key_utteranceN ]
24: ξutterance ← BinaryCrossEntropy(key_utterance, ground truths)

{for all utterances}
25: {Masked Speaker Prediction}
26: for each pair of utterances (Ui, Uj) do
27: concat ← [HS [SEPi];HS [SEPj ]] {Concatenate the

representations of the [SEP] tokens for the i-th and j-th
utterances from H_S}

28: speakerij ← sigmoid(MLP(concat)) {Predict if utter-
ances U_i and U_j are from the same speaker}

29: end for
30: speaker = {speakerij for all utterance pairs (Ui, Uj)}
31: ξspeaker ← CrossEntropy(speaker, ground truths) {for all

utterance pairs}
32: {Combined Loss}
33: ξ ← ξspan + ξanswerable + ξutterance + ξspeaker
34: return span, answerable, key_utterance, speaker, ξ

Algorithm 5 Dynamic Multi-head Attention
(DUMA)
Require: Context representations HC

F , Answer
candidate representations HA

F .
1: H

′C
F = MHA(HC

F , HA
F , H

A
F ) {Multi-head at-

tention of context with answer candidates as
key and value. H_F

′C has the same dimension
as H_FC}

2: H
′A
F = MHA(HA

F , H
C
F , HC

F ) {Multi-head at-
tention of answer candidates with context as
key and value. H_F

′A has the same dimension
as H_FA}

3: HA = Fusion(mean(H
′C
F ),mean(H

′A
F ))

{Concatenate and linearly transform the mean
of H_F

′C and H_F
′A. H_A has dimension

(1, fusion_dim)}
4: return HA
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