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Abstract
Continual Few-shot Relation Extraction
(CFRE) aims to continually learn new relations
from limited labeled data while preserving
knowledge about previously learned relations.
Facing the inherent issue of catastrophic forget-
ting, previous approaches predominantly rely
on memory replay strategies. However, they
often overlook task interference in continual
learning and the varying memory requirements
for different relations. To address these
shortcomings, we propose a novel framework,
DPC-FT, which features: 1) a lightweight
relation encoder for each task to mitigate
negative knowledge transfer across tasks; 2)
a dynamic prototype module to allocate less
memory for easier relations and more memory
for harder relations. Additionally, we introduce
the None-Of-The-Above (NOTA) detection
in CFRE and propose a threshold criterion
to identify relations that have never been
learned. Extensive experiments demonstrate
the effectiveness and efficiency of our method
in CFRE, making our approach more practical
and comprehensive for real-world scenarios.

1 Introduction

Relation Extraction (RE) aims to identify the se-
mantic relation between two annotated entities in
a text (Wang et al., 2023). Conventional RE meth-
ods (Zeng et al., 2014; Zhou et al., 2016; Zhang
et al., 2018) typically rely on a fixed set of pre-
defined relations and fixed training on a static
dataset. However, this approach limits the ability to
handle emergent relations outside the pre-defined
set. A naive solution is to retrain the model with
both historical and new relations, which results in
increased computational and storage demands.

In response to the emergent relations in real ap-
plications, (Wang et al., 2019) propose the concept
of Continual Relation Extraction (CRE), which at-
tempts to continuously integrate newly introduced
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relations without degrading performance on previ-
ous ones. Considering the shortage of labeled data
for relations, a more challenging task, Continual
Few-shot Relation Extraction (CFRE), is proposed
(Qin and Joty, 2022) to acquire relational knowl-
edge only from a handful of labeled samples. As a
typical continual learning process, CRE suffers the
inherent catastrophic forgetting problem (Rebuffi
et al., 2017), i.e., forgetting earlier relational knowl-
edge. This is because the RE model requires to be
trained on a sequence of tasks, where the relation
distribution of each task progressively changes.

To overcome the forgetting issue, recent litera-
ture predominantly rely on memory-based methods
and has established a two-stage training paradigm.
Specifically, when a new task emerges, the RE
model is first adapted to the new relations and then
fine-tuned using a fixed number of memory sam-
ples for the current relations along with memory
samples of historic relations (Han et al., 2020; Cui
et al., 2021).

However, these memory-based CRE and CFRE
methods assume that each task in the sequence is
independent and the learning difficulty of each re-
lation within a task remains consistent. In practice,
these assumptions are often violated. On one hand,
differences in relation distributions may cause neg-
ative knowledge transfer from past tasks to the
current one. On the other hand, the intrinsic im-
balance in learned relations means that allocating
uniform memory size to all relations impedes the
revisitation of those poorly remembered.

To address the two overlooked issues above,
we propose a dynamic-prototype contrastive fine-
tuning method, namely DPC-FT. Specifically, we
use Low-Rank Adaptation (LoRA) (Hu et al.,
2021) to fine-tune lightweight parameters per task
and select the appropriate encoder for the test text.
At the same time, we designed a dynamic prototype
module to allocate memory based on the semantic
complexity of each relation, where we assign less
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Figure 1: Examples of NOTA relation.

memory to easy relations and more memory to hard
ones. The method not only aligns with the brain’s
natural ability to process different batches of knowl-
edge in separate regions (Luppi et al., 2022) but
also enabling to sufficiently revisit poorly learned
relations.

Moreover, we also find that in real scenarios, it
is quite common to encounter unstructured data
that does not correspond to any of the learned re-
lations, i.e., None-Of-The-Above (NOTA) relation.
As shown in Fig. 1, for instance, we set up two
sentences to illustrate the concept of NOTA data.
The sentence "Cyberball was released for the Nin-
tendo Entertainment System in 1992 by Jaleco."
represents an unseen relation for the model, while
the latter one contains no relational semantics at
all. Although NOTA is commonly addressed as an
additional class in traditional RE tasks, detecting
NOTA can be challenging in continual learning due
to the limited memory space, which cannot fully
encompass the complex semantic space of NOTA
relations. Our study introduces the NOTA detec-
tion task into CRE for the first time and proposes a
threshold criterion to address it. Specifically, dur-
ing testing, we comprehensively scored the test
texts and effectively filtered out the NOTA data.

Contributions. In this paper, we make the fol-
lowing contributions:

• We propose a model with lightweight LoRA
to disentangle tasks for targeted encoding, and
designed a dynamic prototype module to al-
locate the number of prototypes based on the
semantic complexity of each relation.

• We pioneer the NOTA setting in the CRE field,
proposing a threshold criterion that combines
both angle and distance, providing a more
comprehensive comparison of the similarity.

• Extensive experiments on FewRel and TA-
CRED verify our models excellent perfor-
mance on learned relations and strong results
in identifying NOTA relations.

2 Related Work

Currently, memory-based methods have demon-
strated higher effectiveness in CRE by storing rep-
resentative data from previous tasks. However, re-
cent CRE models, such as CML (Wu et al., 2021),
RP-CRE (Cui et al., 2021), CRECL (Hu et al.,
2022), CRL (Zhao et al., 2022), and KIP (Zhang
et al., 2022), primarily focused on improving mem-
ory replay and activation, little investigation has
been conducted on model training or memory sam-
ple selection. When the number of new tasks scales
up, the approaches of refining only the memory
replay stage tend to cause bias due to the high sim-
ilarity and excessive number of memory samples,
making it difficult to distinguish among them.

Due to the data sparsity inherent in few-shot sce-
narios and the challenge of obtaining high-quality
data for each relation, CFRE tasks often suffer from
overfitting and difficulties in semantic extraction.
(Qin and Joty, 2022) first proposed applying few-
shot settings in CRE tasks. SCKD (Wang et al.,
2023) and ConPL (Chen et al., 2023) introduced
methods demonstrating the feasibility of knowl-
edge distillation and augmentation. However, they
did not address filtering unseen relations. CPL (Ma
et al., 2024) used ChatGPT for memory augmenta-
tion, but this approach heavily relies on ChatGPT
and still involves storing many samples without
refined management. PLE (Li et al., 2022) was
proposed to tackle continual few-shot learning by
training a specific prefix parameter for each task,
effectively disentangling tasks and reducing mu-
tual interference. It provides a new approach for
continual few-shot learning tasks.

Parameter-Efficient Fine-Tuning (PEFT) tech-
niques aim to adapt models to specific tasks by
minimizing modifications to the pre-trained mod-
els. (Houlsby et al., 2019) pioneered PEFT re-
search by designing an Adapter structure. Subse-
quently, methods such as Prefix Tuning (Li and
Liang, 2021), LoRA (Hu et al., 2021), and BitFit
(Zaken et al., 2021) were introduced, reducing over-
fitting risk while maintaining model generalization
capabilities, and minimizing computational costs
and memory requirements, making them particu-
larly suitable for CFRE tasks.

Based on previous memory-based methods, our
work leverages task disentanglement and PEFT
techniques to address CFRE tasks, and designs a
dynamic prototype method considering the seman-
tic complexity differences across relations.
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3 Methodology

In this section, we first formalize the task and then
details the implementation of our proposed model.

3.1 Task Formalization

In the setting of N-way K-shot, the model needs to
continually learn a series of tasks {T1, T2, . . . , Tn}.
Each task Tk includes its own train, test and val-
idate datasets, Dtrain

k , Dtest
k and Dval

k , along with
corresponding relations Rk. The dataset Dtrain

k con-
sists of N relations, with each relation containing
K instances, thus forming Dtrain

k = {(xi, yi)}N×K
i=1 .

Each sample (xi, yi) comprises a sentence xi with a
pair of entities (eh, et) and a relation label yi ∈ Rk.
In our experiments, we set K to 10. The test dataset
Dtest

k contains N relations, with each relation hav-
ing 20 texts. Additionally, Dval

k includes an extra
set of "no relation" types to evaluate the model’s
filtering performance on NOTA samples.

Different from previous memory-based meth-
ods, we do not need a memory bank to save the
raw memory samples of each task. Instead, we
propose a dynamic prototype module to memorize
prototype representations corresponding to the re-
lations in Rk. The prototype repository contains
all learned relations since the start of training and
is dynamically updated. The model’s performance
is assessed using the cumulative validation sets of
all tasks observed up to the current one, denoted
by Dval

k =
⋃k

i=1Dval
i . This comprehensive evalua-

tion requires the model to accurately recognize and
classify relations across all texts it has been trained
on.

3.2 The Overall of the Model

For the current task Tk, the model’s training and
testing process for the given few-shot labeled data
includes the following steps:

Model Training: For each task Tk, we em-
ploy LoRA (Hu et al., 2021) as the lightweight
fine-tuning method with low-rank matrices, signifi-
cantly reducing parameter adjustment costs. Dur-
ing training, we store each task’s fine-tuned param-
eter state to create task-specific encoder.

Dynamic Prototype Module: For each relation,
we obtain its prototype representation through dy-
namic aggregation. We define an initial radius r0
and a fluctuation radius rc. In the embedding space,
highly concentrated relations are averaged to ob-
tain one embedding as a typical memory prototype.
Conversely, for less concentrated types, the clus-

ter centers are dynamically updated based on their
shifts to obtain a more comprehensive prototype
representation.

Relation Classification: For test texts with
NOTA and known relations, we use our thresh-
old criterion for classification. This module cal-
culates the similarity scores between the test texts
and prototype embeddings, considering both an-
gle and distance factors, to complete relationship
classification and filter out NOTA texts.

Next, we will provide a detailed explanation of
each stage.

3.3 Relation Extraction Model

Encoder Following (Zhao et al., 2023), we use
an entity marker-based encoder E(·) for learning
representations. Given an instance x concerning
entity pair (eh, et), four entity markers are placed
around (eh, et) to denote the start and end posi-
tions:

{· · · , [E1], eh, [/E1], · · · , [E2], et, [/E2], · · · }.
(1)

Then, we feed the token sequence into a base
version of BERT model to get the hidden vectors of
[E1] and [E2], denoted as h1 and h2 ∈ Rd. Finally,
we get the instance-level representation as:

h = LayerNorm(W1[h1;h2] + b1), (2)

where W ∈ Rd×2d and b ∈ Rd are learnable pa-
rameters, and [;] is the concatenation operation.

Classifier After obtaining the output of Encoder
E(·), the classifier figures out the relation probabil-
ity of x:

p(y|x) = softmax(W2h + b2), (3)

where W2 ∈ RN×d and b2 ∈ RN are learnable
parameters, and N is the number of relations in the
current task.

Parameter-efficient fine-tuning To reduce the
training overhead, we apply LoRA to the BERT
encoder by freezing its original weight matrix
W ∈ Rd×k and incorporating trainable low-rank
matrices P ∈ Rd×r and Q ∈ Rr×k to update the
self-attention layers. This allows efficient fine-
tuning on the current task without training all pa-
rameters. The weight update mechanism is as fol-
lows:

W′ = W + α · PQ, (4)



8766

Datasets

i1
x

2i
x

ij
x

Encoder with LoRA

2
L

i
L

1
Encoder

2
Encoder

i
Encoder

1
H h

e t
e

2
H h

e t
e

i
H h

e
t
e

Pooled_out

Dynamic Prototype Module

Test

Memory

Pooled_out

Predict

Relation

NOTA

Relation

Train & Memory Stage Relation Classification Stage

C
la

s
s
ifie

r
C

la
s
s
ifie

r

Score with 

Angle & Distance

Score with 

Angle & Distance
       

       

① ①

②

②

③

③

④

1
L

Figure 2: Our model’s overall architecture is shown above. It includes: 1⃝ our lightweight multi-task encoding
process; 2⃝ dynamic acquisition of relation memory prototypes through the encoder’s embeddings, with the resulting
prototypes stored in the memory pool; 3⃝ the process where the test text and memory prototypes are input into the
threshold criterion for similarity scoring; 4⃝ filtering and classification to produce the final results.

where α acts as a scaling factor that modulates the
impact of the update. We set the rank r to 16, where
r ≪ min(d, k).

For each task Tk with N ×K training instances,
we individually learn and store a distinct set of Pk

and Qk
1. To optimize the parameters, we utilize

the cross-entropy loss function as our primary loss
function, defined as:

L1 = −
N×K∑
i=1

log p(yi|xi), (5)

where xi is the i-th training instance in task Tk, and
yi ∈ Rk is the ground truth of xi.

3.4 Dynamic Prototype Module

Dynamic prototype acquisition The dynamic
partitioning of embeddings is based on the Eu-
clidean distance between a newly arrived embed-
ding and existing prototype centers. For a target
relation r in task Tk, we have a set of instance
embeddings, denoted as {hr

1, · · · ,hr
K}. The dy-

namic process is illustrated in Algorithm 1. In
Algorithm 1, b is the number of embeddings in the
current cluster, ρ is the pre-defined cluster radius,
and δ is an optional extension to the radius. This
extension is utilized when dmin is slightly larger
than ρ but still within an acceptable range (ρ+ δ).
After dynamic clustering, we can obtain a set of
centroids for each relation Cr = {c1, · · · , cm},
which represents the relational prototypes.

1In the pre-trained Bert-large model, there are 343,882,836
parameters in total, while we fine-tuned only 8,693,802, mak-
ing up just 2.53% of the total.

Algorithm 1: Dynamic prototype acquisition.
Input: {hr

1, · · · , hr
K}

1 Initialize the centroid set as Cr = ∅;
2 Initialize the number of clusters m = 0;
3 foreach hr

i , i ∈ [1, . . . ,K] do
4 if i == 1 then
5 Obtain the m-th centroid cm = hr

1;
6 Cr = Cr ∪ {cm} ;

7 else
8 foreach cj ∈ Cr do
9 dij = ∥hi − cj∥;

10 dmin, j
∗ = minj(dij);

11 if dmin ≤ ρ then
12 cj∗ = 1

b+1
(b · cj∗ + hr

i );

13 else if ρ < dmin ≤ ρ+ δ then
14 cj∗ = cj∗ , ρ = dmin;

15 else
16 m = m+ 1, cm = hr

i ;
17 Cr = Cr ∪ {cm} ;

18 return The centroid set Cr;

In this way, we dynamically adjust the embed-
ding representations of training texts based on their
spatial clustering, allowing for multi-center proto-
types for complex semantic relations and single-
center prototypes for simpler ones.

Prototype contrastive learning In this phase,
we designed a contrastive loss function to improve
clustering by better distinguishing different rela-
tions. In this phase, we employ a contrastive ap-
proach to design a similarity calculation loss that
better evaluates the classification performance of
new inputs. When a new training embedding ar-
rives, we calculate its euclidean distance to all pro-
totypes, classifying it by assigning the nearest pro-
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totype as the positive example and others as nega-
tive. If it forms a new prototype center, it becomes
its own positive example. The loss is computed as
follows:

L2 = 1− mean(σ(simpos)− σ(simneg)), (6)

where σ(·) denotes the sigmoid function, simpos
represents the cosine similarity of prototypes for
same-class pairs, and simneg for different-class
pairs.

During training, we use a joint loss which is
defined as:

L = L1 + L2, (7)

where L1 focuses on optimizing relation predic-
tion while L2 aims to enhance relation distinction
within the embedding space.

3.5 Relation Inference

In the inference phase, we introduced a scoring
mechanism to address bias in high-dimensional
spaces, noting that relying solely on distance can
cause inaccuracies. Our method balances cosine
similarity and Euclidean distance, considering both
distance and angle in the scoring function. Given
a test sample q, we input it into n lightweight re-
lation encoders to generate its n possible relation
representations {q1, · · · ,qn}. For a target relation
r belonging to task Tk, we retrieve qk and com-
pare it with prototypes {c1, · · · , cm}. The scoring
function is defined as:

srki = w1 ·
qk · ci

∥qk∥∥ci∥
+ w2 ·

1

1 + ∥qk − ci∥
, (8)

where w1 and w2 are set to a ratio of 3:7, represent-
ing the weights used to balance cosine similarity
and distance similarity. The radio is chosen based
on the optimal ratio determined through our experi-
ments. Finally, the relation with the highest score
for the test sample is selected as the predicted label:

r∗ = arg max
r∈

⋃n
k=1 Rk

{srki}. (9)

Since we set the number of NOTA texts to be
10% of the validation set, we established our thresh-
old at the lowest 12% of the similarity scores com-
puted by the model from the validation set texts,
allowing a slight margin. This accounts for cases
where texts from the same class may exhibit signif-
icant semantic differences, causing classification
challenges.

4 Experiments

4.1 Datasets
Our experiments were conducted on two widely
used datasets.

FewRel It is a benchmark for relation extraction
originally designed for few-shot learning, compris-
ing 70,000 instances across 100 relations, and an-
notated by crowd workers to ensure reliability (Han
et al., 2018). In our work, we follow prior re-
search (Ma et al., 2024) and use a subset of 80
relations for the task.

TACRED It is a comprehensive benchmark for
relation extraction, including 42 relations (a special
‘no relation’) and containing 106,264 samples from
newswire and web documents (Zhang et al., 2017).
Unlike FewRel, TACRED features an unbalanced
distribution of relations, which better simulates
real-world scenarios. Unlike previous methods,
our approach uniquely integrates the ‘no relation’
category during the inference phase for None-Of-
The-Above (NOTA) detection.

Previous works divided the relations in the
dataset into 8 or 10 groups to simulate contin-
ual learning scenarios. Experimental results indi-
cated that classification performance significantly
declined as the number of tasks increased. Thus,
we opted to randomly divide the datasets into 10
groups and select 10 texts per relation as training
data, which is more challenging than pre-clustering
semantically similar relations for each task (Wang
et al., 2019; Han et al., 2020). Unlike earlier few-
shot CRE methods that use a larger number of
samples initially and impose strict few-shot con-
straints on later tasks (Qin and Joty, 2022; Wang
et al., 2023), our strategy applies few-shot settings
consistently across all tasks, thereby increasing the
challenge.

4.2 Compared Models
We evaluate DPC-FT against seven recent CRE
and CFRE models, including RP-CRE (Cui et al.,
2021), CRL (Zhao et al., 2022), CRECL (Hu
et al., 2022), ERDA (Qin and Joty, 2022), DP-
CRE (Huang et al., 2024), SCKD (Wang et al.,
2023), and ConPL (Chen et al., 2023). Since RP-
CRE, CRL, CRECL, and DP-CRE do not address
few-shot scenarios, and ERDA lacks a strict evalu-
ation setup, we reproduced their results by running
their source code. In terms of NOTA detection, we
compared DPC-FT with LLMs in RQ3.
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Method Task Index
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

8-way 10-shot of FewRel
RP-CRE(Cui et al., 2021) 95.39 82.36 76.23 74.34 73.36 73.69 72.38 71.34 69.52 66.97
CRL(Zhao et al., 2022) 95.12 88.17 85.37 83.52 80.85 78.48 72.46 69.05 68.23 65.86
CRECL(Hu et al., 2022) 96.12 89.82 86.23 83.97 78.03 75.82 71.48 71.32 68.84 68.76
ERDA(Qin and Joty, 2022) 93.25 79.82 72.56 69.88 62.23 58.62 55.22 50.51 49.34 46.98
DP-CRE(Huang et al., 2024) 85.67 83.22 80.96 77.31 76.54 71.93 71.64 70.82 70.14 69.39
SCKD(Wang et al., 2023) 97.79 93.16 92.72 90.36 88.64 86.79 81.68 78.16 73.22 70.68
ConPL(Chen et al., 2023) 98.01 94.23 92.67 91.22 89.94 88.16 86.43 84.68 82.14 80.97
DPC-FT (Ours) 97.89 95.81 93.08 92.37 92.08 88.69 88.63 87.32 87.52 85.96

4-way 10-shot of TACRED
RP-CRE(Cui et al., 2021) 92.95 88.48 82.25 78.23 76.65 72.43 66.34 60.81 60.28 58.84
CRL(Zhao et al., 2022) 90.12 88.89 85.17 82.68 80.43 76.48 72.25 69.43 65.05 56.51
CRECL(Hu et al., 2022) 88.68 82.85 80.43 78.25 73.88 64.79 62.55 60.24 58.54 54.23
ERDA(Qin and Joty, 2022) 84.42 76.85 72.23 64.95 56.28 50.67 43.12 39.95 36.34 34.46
DP-CRE(Huang et al., 2024) 84.68 83.95 80.23 77.82 76.43 76.02 75.74 74.23 72.67 70.72
SCKD(Wang et al., 2023) 93.82 89.35 84.07 83.68 78.53 73.17 71.23 68.52 64.55 63.14
ConPL(Chen et al., 2023) 97.82 94.54 90.32 89.95 85.23 83.76 80.17 79.21 78.98 76.43
DPC-FT (Ours) 98.36 96.97 95.35 90.57 86.79 87.18 81.77 82.32 81.86 80.08

Table 1: Result comparison on FewRel (8-way-10-shot) and TACRED (4-way-10-shot). The reported scores are the
average of 5 training rounds.

4.3 Experimental Settings
Unlike other models that rely on extensive train-
ing data for the initial task followed by few-shot
data for subsequent tasks, DPC-FT limits each task
to 10 pieces of training instances to construct a
10-Shot setting. We adopted a strict evaluation
method (Zhang et al., 2022), decreasing the se-
mantic relevance of relationships within tasks and
increasing task difficulty. Hyper-parameters were
manually tuned. The basic parameter details used
in the experiments can be found in Appendix A.3.
To aid reproducibility, we will share the model’s
source code, detailed hyper-parameter settings, and
processed samples.

4.4 Evaluation
We aim at answering the following research ques-
tions RQs:

• RQ1: What is the performance of DPC-FT
compared to the prior baselines on CFRE
benchmarks?

• RQ2:What is the effect of dynamic clustering
method and the holistic scoring method?

• RQ3: How does the performance of DPC-FT
compare to LLMs on CFRE and the filtering
of NOTA samples?

• RQ4: What are the results of training time
expenditure for our DPC-FT?

4.4.1 RQ1: Overall Performance Comparison

The performance of our model and baselines is
shown in Table 1, with scores averaged over 5 train-
ing rounds. The hyper-parameter configurations
of baselines are the same as those reported in the
original papers. The result of each task is the accu-
racy on the validation data of all observed relations.
Based on the results, we find that:

(1) Our rigorous testing and sampling strategies
have made CFRE tasks more challenging, leading
to a notable decline in relation extraction perfor-
mance for most models, particularly from the 7th
to the 10th tasks. This decline is especially pro-
nounced in the TACRED dataset, even with our
strict sample limitations per relation.

(2) Compared to ConPL, the top-performing
benchmark model, our model shows enhanced ca-
pabilities, particularly in reduced performance de-
cline and steady accuracy gains. For example,
our model’s improvements range from 4.99% to
38.98% on the T10 metric for FewRel and from
3.65% to 45.62% on TACRED, demonstrating su-
perior stability and performance.

(3) Experimental results reveal a significant drop
in classification accuracy with new tasks, likely
due to continuous parameter adjustments and strict
control over training texts and memory samples.

(4) Most models show notably poor performance
in T9 and T10, highlighting extensibility issues in
few-shot CRE models. The influx of new tasks



8769

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

FewRel
DPC-FT 97.89 95.81 93.08 92.37 92.08 88.69 88.63 87.32 87.52 85.96
w/o dra. 92.62 91.53 89.02 88.54 88.47 85.30 85.46 84.37 83.19 81.43
w/o m-c. 93.40 92.02 90.32 89.07 86.72 86.42 85.66 85.66 84.11 82.43
w/o both 89.49 88.15 86.70 85.80 83.67 83.59 83.04 83.03 81.90 80.47
TACRED
DPC-FT 98.36 96.97 95.35 90.57 86.79 87.18 81.77 82.32 81.86 80.08
w/o dra. 95.77 94.29 93.57 89.47 84.00 82.22 77.19 78.08 77.27 74.44
w/o m-c. 96.97 93.33 91.61 90.32 84.98 81.48 77.65 79.24 80.00 78.31
w/o both 95.24 91.67 89.29 86.90 83.33 80.95 78.57 75.00 72.62 70.24

Table 2: Ablation study on cluster modules.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

FewRel
DPC-FT 97.89 95.81 93.08 92.37 92.08 88.69 88.63 87.32 87.52 85.96
w/o cos-sim 93.18 91.48 90.34 89.20 88.64 85.23 84.66 83.52 82.46 81.82
w/o Euc-Dis. 92.61 89.20 88.64 86.36 85.80 83.52 82.95 82.39 81.82 80.68
TACRED
DPC-FT 98.36 96.97 95.35 90.57 86.79 87.18 81.77 82.32 81.86 80.08
w/o cos-sim 94.05 92.86 90.48 85.71 83.33 82.14 78.57 77.38 76.19 75.00
w/o Euc-Dis. 91.67 90.48 88.10 85.71 80.95 79.76 77.38 76.19 75.00 73.81

Table 3: Ablation study on scoring modules.

impacts performance, likely from data confusion
and discrimination challenges in a constrained em-
bedding space. Our model’s dynamic clustering
approach addresses memory sample confusion to a
certain extent, detailed further in RQ2.

(5) The results show that while most models
perform well initially, our model maintains stability
and excels in filtering NOTA samples as new tasks
are added. These capabilities, detailed in RQ3,
highlight our model’s comprehensive performance.

4.4.2 RQ2: The Effect of Dynamic Cluster
and Holistic Scoring in DPC-FT

In this section, we present the ablation results for
the dynamic prototype and holistic scoring mod-
ules, accompanied by a detailed analysis.

We first conduct the ablation study on our dy-
namic prototype module. In "w/o dra.", we disable
the dynamic radius adjustment, forming a new clus-
ter center whenever training samples deviate from
the initial radius. In "w/o m-c.", we directly ignore
samples outside the cluster center without creating
additional centers, averaging only those within the
dynamically adjusted radius to update the proto-
type. In "w/o both", we remove both modules.

From Table 2, we observe that: (1) Disabling

any module reduces average accuracy, underscor-
ing their importance; (2) Removing dynamic radius
adjustment significantly lowers performance, and
replacing both the dynamic radius and multi-center
strategies with K-Means decreases accuracy by up
to 9.84%, validating our proposed clustering ap-
proach; (3) When obtaining relation prototypes,
fully considering semantic complexity and dynami-
cally integrating representations is highly effective.

In the scoring module, our threshold criterion
employs a scoring and selection method that com-
bines Euclidean distance and cosine similarity in
a 7:3 ratio, which has been proven to be the most
effective through extensive testing. We also use
only euclidean distance and cosine similarity for
similarity calculations to test the method’s validity.

Table 3 shows that using a single similarity cal-
culation method lowers the classification accuracy,
likely because both angle and distance are crucial
for tensor similarity. Combining both provides a
more effective similarity calculation for text seman-
tic classification scenarios.

4.4.3 RQ3: DPC-FT vs. General LLMs
Large language models like ChatGPT excel in re-
lation extraction but their effectiveness in CFRE
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Figure 3: Classification accuracy of DPT-FT, GPT-4,
and GPT-4o mini under experimental settings.

tasks is unexplored. This section compares DPC-
FT with GPT-4 and GPT-4o mini under identical
conditions, highlighting DPC-FT’s strong perfor-
mance and offering an objective analysis.

As shown in the Figure 3, the accuracy of the
three models in relation prediction and NOTA data
detection indicates that DPC-FT and GPT-4o mini
exhibit comparable performance, with only a small
gap compared to GPT-4. The experimental data
can be found in Appendix A.3.

However, LLMs like ChatGPT face practical
challenges such as security concerns and deploy-
ment difficulties, which limit their use and commer-
cialization. GPT-4, with its 1.8 trillion parameters,
requires high-end hardware, while GPT-4o mini,
although smaller with 50 billion parameters, still
surpasses the typical 7 billion parameters found
in mobile edge models. In contrast, our DPC-FT
utilizes BERT-large, which has only 340 million
parameters and fine-tunes just 2.53% of parameters.
Additionally, large models inherently benefit from
their higher parameter counts and extensive pre-
training data, which enhances their understanding
of various relation types.

Our proposed DPC-FT achieves classification
accuracy comparable to GPT-4o mini with signif-
icantly fewer parameters—adjusting only 4.9E-5
of GPT-4’s parameter count. And it achieves near
or even superior performance to GPT-4 in NOTA
detection and surpasses GPT-4o mini. Beyond its
impressive task performance and minimal training
costs, DPC-FT also offers local security and flexi-
bility, making it a more robust overall solution.
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Figure 4: Comparison of maximum radius parameters
in dynamic clustering.

4.4.4 RQ4: Analysis of Training Costs and
Parameter Details

In this section, we provide an explanation and anal-
ysis of the details regarding training time and im-
portant hyper-parameters.

We tested various initial and maximum radius
for dynamic prototype module, presenting results
under six conditions. We chose the values of hyper-
parameters with the closest performance for com-
parative visualization, specifically when the initial
radius ro was 1.0 and the maximum radius rmax

was 10 or 15. Ultimately, we selected an initial ra-
dius of 1.0 and a maximum of 10.0, the experiment
can be found in the appendix A.2.

Meanwhile, due to the minimal number of fine-
tuning parameters, each training round takes only
4 seconds, significantly faster than other current
models for the same task. Combined with the over-
all experimental results, our model delivers faster
and more accurate performance.

5 Conclusion

In this paper, we introduce DPC-FT for the few-
shot continual relation extraction task and, for the
first time, propose an accuracy detection mech-
anism specifically for the None-Of-The-Above
(NOTA) setting. To address the issue of catas-
trophic forgetting, we designed a method for select-
ing encoders and introduced a multi-center clus-
tering approach with dynamically updated cluster
radii. This ensures that the stored memory repre-
sentations are more representative and comprehen-
sive. Our experiments on FewRel and TACRED
achieved state-of-the-art results, and extensive ex-
periments further validated the effectiveness of
each module. In future research, we plan to explore
how the concepts of this model can be applied to
solve more few-shot continual classification tasks,
including few-shot multimodal relation extraction
and better utilization of LLMs.
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6 Limitations

This paper has two main limitations: (1) Compared
to existing methods based on memory samples,
DPC-FT may store more sets of encoder parame-
ters. However, since we only fine-tuned a small por-
tion of the parameters (2.53% of BERT), the differ-
ence in resource consumption is minimal compared
to full fine-tuning of other models. (2) Although
our dynamic clustering method reduces the number
of memory samples, some relation types still retain
more than three samples, causing a dispersion of
meaning that needs addressing.
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A More Experimental Details and Results

A.1 Experimental Parameters and Setup
We utilize a single NVIDIA GeForce RTX 4090
GPU with 24 GB memory on a 12th Gen Intel(R)
Core(TM) i7-12700KF CPU @ 3.60GHz to run
all experiments. For the hyperparameter search,
we conduct a grid search to choose the appropriate
values. Hyperparameters are illustrated in Table 4.

Hyperparameters Values
seed 100
batch_size 40
num_train_epochs 100
bert_learning_rate 1e-5
learning_rate 1e-4
BERT_hidden_size 1024
hidden_dropout_prob 0.1
Encoder_output_size 1024
max_seq_length 128
pre_seq_len 80
optimizer AdamW
lr_lora_params 5e-4
lr_non_lora_params 1e-4
LoRA_r 16
LoRA_alpha 32
LoRA_target_modules "query", "value"
LoRA_dropout 0.1
LoRA_bias "none"

Table 4: Hyperparameters setting.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Dataset radius

max_radius

10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15

FewRel
1.5 97.27 96.80 93.88 94.54 92.67 91.84 91.17 90.58 89.48 89.58 88.33 88.31 86.03 84.07 83.83 83.86 82.16 84.07 81.67 80.74
1.0 97.89 97.41 95.81 94.72 93.08 92.70 92.37 90.74 92.08 89.65 88.69 88.70 88.63 86.03 87.32 86.54 87.52 84.54 85.96 82.16
0.5 97.27 96.72 93.58 90.90 91.31 91.79 90.50 90.50 89.72 89.48 87.47 87.05 84.14 83.75 82.18 83.86 81.04 82.18 80.11 79.51

TACRED
1.5 96.97 96.97 93.33 96.00 92.81 93.48 87.98 90.04 84.52 86.82 83.33 84.80 79.76 83.08 78.57 79.81 77.38 78.92 75.60 75.97
1.0 98.36 98.41 96.97 96.94 95.35 94.07 90.57 91.61 86.79 87.10 87.18 85.05 81.77 83.39 82.32 79.21 81.86 79.21 80.08 75.98
0.5 96.97 98.41 94.23 96.00 91.60 92.81 86.90 90.50 83.33 87.57 83.80 83.88 78.57 79.86 78.10 78.77 77.86 78.28 76.19 75.91

Table 5: The selection of clustering radius parameters.

Dataset Method T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

NOTA Acc NOTA Acc NOTA Acc NOTA Acc NOTA Acc NOTA Acc NOTA Acc NOTA Acc NOTA Acc NOTA Acc

FewRel
GPT-4 mini 93.75 99.43 93.75 99.15 91.67 96.21 87.50 94.32 83.75 92.84 82.29 92.23 82.14 89.20 79.68 88.35 75.69 88.57 70.63 88.41
GPT-4 100 100 93.75 99.72 95.83 99.05 93.75 99.01 92.50 98.41 91.67 96.88 89.29 94.07 85.94 93.39 83.33 92.42 76.68 91.76
Ours 100 97.89 96.88 95.81 91.67 93.08 90.63 92.37 88.75 92.08 81.25 88.69 79.46 88.63 80.47 87.32 80.56 87.52 72.92 85.96

Diff_4o mini +6.25 -1.54 +3.13 -3.34 0.00 -3.13 +3.13 -1.95 +5.00 -0.76 -1.04 -3.54 -2.68 -0.57 +0.79 -1.03 +4.87 -1.05 +2.29 -2.45
Diff_4 0.00 -2.11 +3.13 -3.91 -4.16 -5.97 -3.12 -6.64 -3.75 -6.33 -10.42 -8.19 -9.83 -5.44 -5.47 -6.07 -2.77 -4.90 -3.96 -5.80

TACRED
GPT-4 mini 100 98.81 100 94.05 91.67 93.25 81.25 91.96 75.00 89.05 75.00 85.91 64.29 82.31 34.38 83.93 41.67 83.60 52.50 83.57
GPT-4 100 100 87.5 99.40 91.67 99.60 81.25 97.62 75.00 94.52 79.17 91.47 82.14 89.12 81.25 86.48 75.00 87.04 77.50 88.45
Ours 100 98.36 100 96.97 91.67 95.35 75.00 90.57 75.00 86.79 87.50 87.18 82.14 81.77 84.38 82.32 86.11 81.86 85.00 80.08

Diff_4o mini 0.00 -0.45 0.00 +2.92 0.00 +2.10 -6.25 -1.39 0.00 -2.26 +12.50 +1.27 +17.85 -0.54 +50.00 -1.61 +44.44 -1.74 +32.50 -3.49
Diff_4 0.00 -1.64 +12.50 -2.43 0.00 -4.25 -6.25 -7.05 0.00 -7.73 +8.33 -4.29 0.00 -7.35 +3.13 -4.16 +11.11 -5.18 +7.50 -8.37

Table 6: CRE experiment on general LLMs.

A.2 Dynamic Clustering Radius Selection
Experiments

In our proposed dynamic clustering algorithm, we
conducted detailed experiments on the initial radius
ro and the maximum radius rmax to select the most
appropriate initial values. The experimental results
are shown in Table 5.

Based on the experiments, we selected 1.0 as the
initial radius and 10 as the maximum radius.

A.3 Experiments on General LLMs Testing
We conducted CFRE experiments using the same
dataset on both GPT and GPT-4o mini, with the
results presented in Table 6, where we highlight the
performance differences between DPC-FT, GPT-
4o mini, and GPT-4. The results show that our
model achieved excellent performance, particularly
in the accuracy of NOTA sample extraction. Ad-
ditionally, our model’s relationship classification
accuracy is comparable to that of GPT-4o mini
and not far behind GPT-4. Notably, our model re-
quires significantly fewer parameters than GPT-4o
mini, meaning that we achieved strong relation-
ship classification and outstanding NOTA sample
classification with minimal resources.
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