
Proceedings of the 31st International Conference on Computational Linguistics, pages 886–896
January 19–24, 2025. ©2025 Association for Computational Linguistics

886

LLMTreeRec: Unleashing the Power of Large Language Models for
Cold-Start Recommendations

Wenlin Zhang1, Chuhan Wu2, Xiangyang Li2, Yuhao Wang1, Kuicai Dong3

Yichao Wang2, Xinyi Dai2, Xiangyu Zhao1∗, Huifeng Guo2, Ruiming Tang2*

1City University of Hong Kong, Hong Kong, China
2Noah’s Ark Lab, China 3Noah’s Ark Lab, Singapore

{wl.z, yhwang25-c}@my.cityu.edu.hk, xianzhao@cityu.edu.hk
{wuchuhan1, lixiangyang34, dong.kuicai, wangyichao5

daixinyi5, huifeng.guo, tangruiming}@huawei.com

Abstract
The lack of training data gives rise to the system
cold-start problem in recommendation systems,
making them struggle to provide effective rec-
ommendations. To address this problem, Large
Language Models(LLMs) can model recom-
mendation tasks as language analysis tasks and
provide zero-shot results based on their vast
open-world knowledge. However, the large
scale of the item corpus poses a challenge to
LLMs, leading to substantial token consump-
tion that makes it impractical to deploy in real-
world recommendation systems. To tackle this
challenge, we introduce a tree-based LLM rec-
ommendation framework LLMTreeRec, which
structures all items into an item tree to im-
prove the efficiency of LLM’s item retrieval.
LLMTreeRec achieves state-of-the-art perfor-
mance under the system cold-start setting in
two widely used datasets, which is even com-
petitive with conventional deep recommenda-
tion systems that use substantial training data.
Furthermore, LLMTreeRec outperforms the
baseline model in the A/B test on Huawei in-
dustrial system. Consequently, LLMTreeRec
demonstrates its effectiveness as an industry-
friendly solution that has been successfully de-
ployed online. Our code is available at: 1

1 Introduction

Recommendation systems collect user behavioral
data(e.g., clicks, likes, pages viewed, and etc) to
understand the preferences, historical choices, and
characteristics of users and items (Bobadilla et al.,
2013), then provide personalized recommendation
results. Conventional recommendation systems
require substantial user-item interaction data to
capture collaborative information. However, real-
world recommendation systems often face the cold-
start challenge, where the lack of user-item inter-
actions or insufficient training data leads to the

*Corresponding Authors
1https://github.com/Applied-Machine-Learning-Lab/

LLMTreeRec

recommendation system being unable to provide
personalized recommendations. Specifically, the
cold-start challenge can be categorized into (1)
User cold-start: Recommending for new users with
limited history (Huang et al., 2022; Pandey and Ra-
jpoot, 2016), (2) Item cold-start: Recommending
new items with limited user interactions (Pan et al.,
2019; Vartak et al., 2017), (3) User-item cold-start:
Recommending for new users and new items (San-
ner et al., 2023; Li et al., 2019), and (4) System
cold-start: Recommending under the assumption
that no training set is available (Hou et al., 2024).
Most of the existing works assume the training set
is available, and mainly focus on either user cold-
start or item cold-start problems. In this paper, we
focus on the system cold-start problem(i.e., provide
recommendation results without any training set).

The recent emergence of Large Language Mod-
els (LLMs), such as ChatGPT (Brown et al., 2020)
and Claude (Bai et al., 2022), has demonstrated ro-
bustness and generalization to excel in a broad spec-
trum of Natural Language Processing (NLP) tasks.
The inherent potential of LLMs positions them as
natural zero-shot solvers, which are capable of ad-
dressing cold-start recommendation challenges. In
recent research by Sanner et al. (2023), they col-
lected a small dataset of item-based and language-
based user preference data, based on which they
validated that LLMs with only language-based pref-
erence show competitive performance with collab-
orative filter models under near cold-start settings.
However, challenge 1 arises: LLMs lack the con-
tent understanding of candidate items. Based on
the knowledge from pre-training corpora, LLMs
may have a simple understanding of items, but
there is still a gap between the general knowledge
of LLMs and the domain-specific knowledge re-
quired in recommendation scenarios. To enable
LLMs to incorporate the content information of
items for recommendation without any training set
available, it is necessary to input it into LLMs in

https://github.com/Applied-Machine-Learning-Lab/LLMTreeRec
https://github.com/Applied-Machine-Learning-Lab/LLMTreeRec

887

Textual User
Behavior Data

Sorted User
Interests Category

Subcategory Recall items

Concatenate
Item Sublist

Mixed Item List

User Profile Modeling

A user's click items are:
<Item List>. Summarize the
interested items topic
categories, from the most
important to the least
important.

Item Tree Search

Rank top <k> subcategories about
<Category Name> based on the user's
interest. Output template:
{1. Subcategory1, 2. Subcategory2, ...}
Provided list: <Subcategory List>.

Recall From Leaf Node

Rank top <k> items about
<Category Name> based on the
user's interest without any
explanation. The output template
is: {1. Item1, 2. Item2, ...} Here is
the provided list: <Item List>.

<Ranked Topic List> <Ranked Subcategory List> <Ranked Item List>

Figure 1: The overview of LLMTreeRec: LLM-centered tree-based recommendation framework.

text form. Hou et al. (2024) arranged items into
a sequence form, using LLMs to rank small-scale
items, and verified that LLMs can achieve com-
petitive zero-shot ranking capabilities in system
cold-start settings. However, challenge 2 arises:
LLMs cannot simultaneously process all items in
natural language form due to the input length lim-
itation. As the scale of candidate items increases,
the sequential input of item information will signif-
icantly increase the token requirement of the LLMs
and interfere with the LLM’s inference. Moreover,
the massive item scale in recommendation system
makes it infeasible to directly input all items into
the LLM in natural language form.

To address the aforementioned challenges, we
propose LLMTreeRec, a novel LLM-based frame-
work that leverages large-scale item information
for recommendations under the system cold-start
setting. Specifically, we generate user preferences
in natural language based on the user’s interaction
history and then leverage LLMs to recall items
from a large-scale corpus. To enable LLMs to han-
dle large-scale item corpus, we have developed an
innovative tree-based recall strategy. This involves
constructing a tree that organizes items based on se-
mantic attributes such as categories, subcategories,
and keywords, creating a manageable hierarchy
from an extensive list of items. Each leaf node in
this tree encompasses a manageable subset of the
complete item inventory, enabling efficient traver-

sal from the root to the appropriate leaf nodes.
Hence, we can recall items from the selected leaf
nodes only. This approach sharply contrasts with
traditional methods that require searching through
the entire item list, resulting in a significant opti-
mization of the recall process.

In summary, we highlight our contributions in
three-fold:

• We propose LLMTreeRec, a novel LLM-centered
tree-based recommendation framework that lever-
ages user preferences and item information in
natural language form, which can perform recom-
mendations under the system cold-start setting.

• We design a novel hierarchical item tree struc-
ture that can organize large-scale items into
smaller, manageable segments contained within
leaf nodes. The item tree can reduce the number
of LLM input tokens required by 85%, making it
industry-friendly.

• LLMTreeRec achieves state-of-the-art perfor-
mance under the system cold-start setting on
two benchmark datasets, with its performance
even competitive with conventional deep recom-
mender models trained on substantial data. Fur-
thermore, LLMTreeRec outperforms the baseline
in A/B test on the Huawei system, and has been
successfully deployed online.

888

1. All items start from root node

2. Create subnodes based on category

Root node

Child node

Leaf node

History
Channel

AnimationBoxed Sets

Musicals & Arts

History
ChannelAnimationBoxed Sets

Musicals & Arts

All Items

Boxed Sets Animation History
Channel

Computer
Animation

Clay
Animation

Documentary Classics

Musicals
& Arts Shootout

Ballet &
Dance

Classical MusicalsIndependently
Distributed

Opera

3. Create leaf nodes and add items

Item 1

Item 2

Item 3

Category: Boxed Sets-Musicals & Arts-Opera

Category: Animation-Clay Animation

Category: History Channel-Shootout

Opera

Clay
Animation

Shootout

4. Add all candidate items on tree and obtain the final item tree

Figure 2: The procedure of item tree construction.

2 Proposed Framework

In this section, we elaborate in detail on our pro-
posed LLMTreeRec that can utilize large-scale
item corpus information under the system cold-start
setting. The overall framework of LLMTreeRec is
depicted in Figure 1.

2.1 Item Tree Construction

Under the system cold-start setting, LLMs lack
understanding of item information and require tex-
tual information inputs into the LLM. However,
the large scale of the recommendation item corpus
makes it difficult to input extensive item informa-
tion into the LLM. To address these challenges,
we propose the use of a hierarchical tree structure
to organize items into leaf nodes. This approach
facilitates LLMs to efficiently handle a large num-
ber of items. Figure 2 illustrates the construction
procedure for an item tree. Before outlining the
construction of the item tree, we will introduce
the formulated definitions for both the semantic
information of an item i and an item tree T . The
semantic information of an item i can be repre-
sented as [s1, s2, · · · , ski], where s1, · · · , ski indi-
cate semantic information in various levels (e.g.,
categories, subcategories, keywords, and other rel-
evant details if needed), with granularity ranging
from s1 to ski in a coarse-to-fine manner. Here,
ki represents the total number of semantic compo-
nents of item i. The item tree structure T organizes
candidate items while each node in T corresponds
to a subset of the item set. Specifically, the root
node root of the tree (depicted in red color) corre-

sponds to a set encompassing all candidate items.
Starting from the root node, items are partitioned
into different child nodes nodec (depicted in yellow
color) based on their hierarchical semantic infor-
mation. Each node on the tree corresponds to a
set containing items with the same semantic prefix
[s1, · · · , sj] where j ≤ k. The leaf nodes nodel
(depicted in green color) of the tree correspond
to the smallest subsets into which each individual
item i can be categorized. After constructing the
item tree, each specific item can be retrieved at its
corresponding leaf node.

2.2 LLM-Centered Tree-based
Recommendation Framework

Based on item tree, we propose a novel LLM-
centered tree-based recommendation framework
(LLMTreeRec). To make LLMs comprehend
user preferences and utilize item information
of large-scale corpus, we design a chain-of-
recommendation process, which enables the LLMs
to retrieve information based on an item tree, re-
ferring to Section 2.2.1. Moreover, we elaborate
on our effective retrieval strategy on item tree that
enables LLMTreeRec to recall related items among
large-scale item sets in Section 2.2.2

2.2.1 Chain-of-Recommendation Strategy
With the aid of the item tree T , we design a chain-
of-recommendation strategy to integrate it with our
recommendation process seamlessly. LLMTreeRec
provides an effective way for LLMs to handle large-
scale item sets under the system cold-start setting.
The recommendation chain in LLMTreeRec is exe-

889

cuted in a single session, following the steps out-
lined below:

User Profile Modeling. Due to the privacy con-
cerns about the user profile, we use the user’s in-
teraction history H = [i1, · · · , inu] for each user
u as LLM input for user profile modeling. Conse-
quently, the user profile modeling function can be
defined as:

I = UserProfileModeling(H), (1)

where I is the inferred interest.
User profile modeling and subsequent tasks are

completed within the same session. As a result,
LLMs are able to capture user preferences by lever-
aging the context history of user interactions stored
in H and the inferred interest I . This enables LLMs
to successfully execute subsequent tasks in accor-
dance with the user’s preferences.

Item Tree Search. LLMTreeRec traverses the
item tree from the root node to its child nodes. The
search stops when the leaf node is reached. Each
step deduces and ranks the top categories based on
user interaction history and interest. More details
are discussed in Section 2.2.2. Formally, the item
tree search function can be defined as

childnodes = ItemTreeSearch(H, I, node), (2)

where childnodes denotes the child node list se-
lected by LLM. LLM searches the child node list
of node, infers based on the semantic information
of child nodes, user interaction history H , and in-
terests I to give a ranked list of child nodes.

LLMs iteratively perform item tree searches un-
til reaching leaf nodes nodel.

Recall from Leaf Node. Every leaf node corre-
sponds to a small subset of items that cannot be fur-
ther divided based on semantic information. Hence,
the text describing all items in the subset can be
easily fed into LLMTreeRec. Then, LLMTreeRec
will recall top items by considering user interaction
history and interest.

Formally the function is defined as

items = RecallFromLeafNode(H, I, subset, k),
(3)

where items denotes the ranked recall items, item
subset subset is obtained from the corresponding
leaf node nodel, and k denotes the recall number
from subset. The prompt template of Chain-of-
Recommendation is illustrated in Figure 1.

Algorithm 1: LLMTreeRec
Input: User-item interaction history H
Output: Recommended item list L
Initialize: L = [], S = Stack()

1 Inferred interests:
I = UserProfileModeling(H)

2 S.push(root)
3 while |L| < n do
4 node = S.top()
5 S.pop()
6 if node is leaf node then
7 Get item subset from node:

items =
RecallFromLeafNode(H, I, subset, k)

8 L.add(items)

9 else
10 childnodes =

ItemTreeSearch(H, I, node)
11 for node in childnodes.reverse() do
12 S.push(node)
13 end
14 end
15 end

2.2.2 Search Strategy
The purpose of our search strategy is to balance
between the diversity and relevance of retrieved
items. To achieve fast retrieval to the target leaf
node, we apply Depth-first Search (DFS) on our
item tree. In particular, throughout each step of the
search, only the top-ranked nodes will be selected
for further DFS search, allowing LLMTreeRec to
bypass less relevant nodes. Upon reaching a leaf
node, LLMTreeRec will recall the top k items from
the item subset of this leaf node. The search ends
if either (i) all leaf nodes are traversed, or (ii) the
desired number of n items has been recalled. The
parameter k effectively serves a lever to modulate
the diversity of recalled items. Opting for a smaller
k increases the recommendation diversity, but at
the cost of increased search time. Conversely, a
larger k tends to reduce diversity while expedit-
ing the search process. The detailed pipeline of
UniLLMRec is demonstrated in Algorithm 1.

3 Experiment

We investigate three research questions(RQ):
(1) How does the performance of zero-shot
LLMTreeRec competitive to traditional models
trained on different fractions of the training set?

890

Dataset Training set Test set Candidates

MIND 51,283 500 1217
Amazon 70,728 500 6176

Table 1: The statistic detail of dataset.

(2) How much does LLMTreeRec reduce the to-
ken requirements for LLM handling large-scale
items? (3) How do the hyper-parameter and
prompt design impact the recommendation result
of LLMTreeRec?

We will first introduce the experiment setting in
Section 3.1, then display the performance compar-
ison experiment in Section 3.2, demonstrate the
token consumption analysis in Section 3.3, show
experiments about hyper-parameter and prompt de-
sign in Section 3.4 and Section 3.5, and finally
provide case study in Section 3.6.

3.1 Experiment Setting

3.1.1 Datasets

In the experiments, we utilized two benchmark
datasets including the MIND dataset (Wu et al.,
2020) and Amazon Review dataset (He and
McAuley, 2016) in the category of Movies and
TV. Since handling the extensive item subsets from
some leaf nodes posed challenges for direct input
into the language model using a single prompt tem-
plate, we constrained each subset in leaf node to a
maximum of 50 items. Positive items were grouped
into their respective subsets, and negative sampling
was applied to each leaf node until reaching a size
of 50. This process resulted in a candidate set of
1217 items for MIND and 6176 items for Amazon.

To ensure fair comparisons in our experiments,
the length of user-item interaction sequences is
truncated to 50, and all methods exclusively uti-
lized the item titles as features. We randomly select
500 samples as testing set for both two dataset and
list the statistics in Table 1.

3.1.2 Evaluation Metrics

We focus on evaluating the performance of the
proposed framework and baseline in recall and
re-ranking tasks. For each model, we primarily
consider its Recall metric and the Normalized Dis-
counted Cumulative Gain (NDCG) in the top-k
recall task.

3.1.3 Baselines
LLMTreeRec are compared with Popularity-
based recommendation, FM (Rendle, 2010),
DeepFM (Guo et al., 2017), NRMS (Wu et al.,
2019), SASRec (Kang and McAuley, 2018), and
LLM-Ranker (Hou et al., 2024).

3.1.4 Implementation Details
LLMTreeRec leverages gpt-3.5-turbo2 and gpt-4-
1106-preview3 as the backbone LLM. Due to bud-
get constraints, experiments on the LLMTreeRec
method with GPT-4 as the backbone focus on the
comparison of recall and NDCG metrics, which is
elaborated in Section 3.2.

The constructed item tree structure shows differ-
ence in MIND and Amazon. The item tree depth
in MIND dataset is 2, with all leaf nodes merely
located in the second layer. There are 17 and 276
nodes in the first and second layers respectively.
As for the Amazon dataset, items without titles
or semantic information are discarded during item
tree construction. Subsequently, the constructed
tree has a depth of 4, and the leaf nodes may be
located in all layers. The node numbers from the
first layer to the fourth layer are 78, 298, 126, and
19, respectively. In the item tree search stage, we
set the recall subnode number as 10. Meanwhile, in
the experiments, the parameter k in the recall stage
serves to limit the number of selected leaf nodes
and is set to 5.

For popularity-based models, we select the most
popular 20 items as a recommendation list. For
LLM-Ranker, gpt-3.5-turbo is used as the backbone
model. Since LLM-Ranker cannot direct handle
large-scale items, we randomly sample 100 items
as the candidate item set for LLM-Ranker. For con-
ventional models, the FM, DeepFM, NRMS, and
SASRec models all adopt a two-tower structure,
utilizing the Adam optimizer with learning rate of
0.001. FM uses TF-IDF (Term Frequency-Inverse
Document Frequency) (Salton and Buckley, 1988)
of item titles as features, while in DeepFM, NRMS,
and SASRec, item word embeddings are employed
as features. We use a negative sampling ratio of 1
across all models. In the MIND dataset, all mod-
els only use the item title as the input feature. In
the Amazon dataset, they use the item description
as the input feature. Finally, we increase the 10%

2https://platform.openai.com/docs/models/
gpt-3-5

3https://platform.openai.com/docs/models/
gpt-4-1106-preview

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-4-1106-preview
https://platform.openai.com/docs/models/gpt-4-1106-preview

891

training set size for each model until the model per-
formance is equivalent to LLMTreeRec. Thus, we
can evaluate the performance between the capabili-
ties under system cold-start setting and supervised
conventional recommendation models.

3.2 Performance Comparison (RQ1)
The overall performance of LLMTreeRec and base-
lines are shown in Table 2. Specifically, the pro-
posed LLMTreeRec framework is compared with
the methods in two categories:
• The first is the method under the system cold-

start setting. The popularity-based method, ham-
pered by the absence of user-specific informa-
tion, demonstrated an exceedingly low recall
of items. LLM-Ranker outperforms popularity-
based methods in both Recall and NDCG metrics,
yet it lags behind LLMTreeRec (GPT-3.5) and
LLMTreeRec (GPT-4). LLMTreeRec is capa-
ble of selecting the candidate set based on user
interests and item trees, resulting in a refined
candidate set compared to LLM-Ranker, thereby
leading to improved performance.

• The others are the conventional recommendation
models with training sets. Our main focus lies in
evaluating how the performance of LLMTreeRec
is competitive with conventional recommenda-
tion models with varying amounts of training
data. Table 2 reports the results of conventional
recommender systems with 20% training set.
In summary, both LLMTreeRec (GPT-3.5) and

LLMTreeRec (GPT-4), which do not require train-
ing, achieve competitive performance compared
with conventional recommendation models that
require training. Additionally, the LLMTreeRec
(GPT-4) method significantly outperforms the
LLMTreeRec (GPT-3.5) approach.

3.3 Token Requirement Analysis (RQ2)
LLMTreeRec recalls items from subsets based on
the item tree, which effectively reduces the model’s
token requirement in the recall stage. We conduct
a statistical analysis on the size of the candidate
item set and the average token length for each item.
After sampling, the MIND dataset comprises 1,217
items, while the Amazon dataset has 6,167 items,
with an average token length of 14 and 10, respec-
tively. The total tokens needed to input all items
into the LLM exceeds ten thousand. LLMTreeRec
effectively reduces the token requirement by item
tree-based search. Figure 5 illustrates average to-
ken consumption in each framework stage. Regard-

3 4 5 6 7
k

0.01

0.02

0.03

Re
ca

ll

0.00

0.01

0.02

0.03

ND
CG

MIND Recall@20
Amazon Recall@20
MIND NDCG@20
Amazon NDCG@20

Figure 3: The impact of k on recall performance.

Recall@20 NDCG@20
Perspectives

0.00

0.01

0.02

0.03

0.04

Pe
rfo

rm
an

ce

Interest
Relevance
Action
Recommendation

Figure 4: The impact of various perspective prompt
design on recall performance.

ing input consumption, Stage 3 (Recall From Leaf
Node) of LLMTreeRec inputs the item IDs of all
the retrieved leaf nodes into the LLM, resulting in
high token requirements, accounting for over 50%
of the total. As for output consumption, since Stage
3 only recalls a limited number of items, all three
stages have relatively low token consumption. In
summary, the item tree-based search consumes min-
imal tokens, making LLMTreeRec a cost-efficient
retrieval method.

3.4 Hyper-parameter Analysis (RQ3)

The recall number k in leaf nodes is the only hyper-
parameter in LLMTreeRec. We conducted a study
on the impact of k on the recall task, and illustrate
the results in Figure 3. As the value of k increases,
the number of items recalled by our model from dif-
ferent leaf nodes steadily rises. We observe a phe-
nomenon where both recall rate and NDCG initially
rise and then decline with the increasing k. Clearly,
with the continuous increment of k, the number of
items recalled from each node also increases, in-
dicating that the model tends to recommend items
from subsets that are of higher interest to the user.
When k decreases, the model recalls items from
more leaf nodes, resulting in higher diversity in
the retrieved results. In summary, the parameter
k plays a crucial role in the model by influencing
the trade-off between diversity and the quantity of
recalled items under different categories.

892

Model
MIND Amazon

Recall@20 NDCG@20 Recall@20 NDCG@20

Trained

FM 0.0125 0.0016 0.0020 0.0013
DeepFM 0.0367 0.0037 0.0060 0.0009
NRMS 0.0525 0.0306 0.0660 0.0105

SASRec 0.0124 0.0059 0.0800 0.0162

Zero-shot

Pop 0.0012 0.0004 0.0002 0.0001
LLM-Ranker 0.0213 0.0201 0.0040 0.0040

LLMTreeRec (GPT-3.5) 0.0296 0.0359 0.0120 0.0047
LLMTreeRec (GPT-4) 0.0509 0.0619 0.0964 0.0741

Table 2: Performance Comparison on two benchmark datasets. The conventional recommender systems including
FM, DeepFM, NRMS, and SASRec are trained by 20% training set.

3.5 Prompt Study (RQ3)

We craft prompt templates from four different per-
spectives including interest, relevance, action, and
recommendation tailored to the news recommen-
dation as in Prompt4NR (Zhang and Wang, 2023).
The prompts designed from various perspectives
are detailed in Table 3 where the blue variant
prompts are changed based on perspective. The
performance of models under these four types of
prompt settings is shown in Figure 4 from which
we can see that prompt design significantly impacts
the model performance. Using a relevance-based
prompt yielded a recall rate of only 1.24% and
an NDCG of 0.0183. By contrast, models using
prompts of action and recommendation achieve
approximately 2% recall rate. Besides, the best
performance is observed under the interest-based
prompt design, where the recall rate and NDCG
were twice that of the relevance prompt model.

These results underscore the significance of
prompt design on non-fine-tuned LLMs in recom-
mendation tasks. The interest-based prompt design
can effectively leverage the LLM’s ability to un-
cover user interests, thereby enhancing the person-
alization and precision of recommendations.

3.6 Case Study

LLMTreeRec (GPT-3.5) or LLMTreeRec (GPT-4)
can smoothly complete the entire pipeline proce-
dure in most cases. However, both have a few bad
cases in the experiment: (1) Even if the output for-
mat is clarified in the prompt template, but LLM
does not strictly follow the instructions to output
the item, resulting in the item not being indexed
correctly. (2) The challenge of hallucinations. In
the user profile modeling stage, LLM summarizes

MIND Input
MIND Output

Amazon Input
Amazon Output0

500
1000
1500
2000
2500
3000

To
ke

n
Co

ns
um

pt
io

n Stage 1
Stage 2
Stage 3
Total

Figure 5: Consumption of tokens for each stage.

user interests and provide representative examples
of interest-related items. However, there is a hallu-
cination risk where these examples might be erro-
neously included during the recall from leaf node.

4 Industrial Online Performance

We compare LLMTreeRec with the baseline model
in online Huawei recommender systems to perform
seven day A/B test. This scenario belongs to in-
fomercial recommendations, where 1188 unique
items are recalled from the library and eventu-
ally displayed in the user’s terminal. The com-
pared results on 662 sessions are reported in Ta-
ble 4. LLMTreeRec (backbone Huawei LLM) has
achieved a substantial improvement in NDCG@10,
reaching 0.725 compared to the baseline’s 0.577,
resulting in a significant gain of 25.64%. The on-
line A/B test results have validated the superior
performance of LLMTreeRec. It provides an ef-
ficient solution for handling large-scale items in
LLM under the system cold-start setting.

893

Perspective User Profile Modeling Item Tree Search Recall from Leaf Node

Prompt
template

A user’s click items are:
<Item List>. <Perspective-
Variable Prompt>, from the
most important to the least
important.

Rank the top
<k>subcategories about
<Category Name>based
on <Perspective-Variable
Prompt> from the following
candidates without any
explanation. The output
template is: {1. Subcate-
gory1, 2. Subcategory2, ...}
Here is the provided list:
<Subcategory List>.

Rank the top <k>items
about <Semantic Informa-
tion>based on <Perspective-
Variable Prompt> from
the candidates about
<Topic>without any explana-
tion. The output template is:
{1. Item1, 2. Item2, ...} Here
is the provided list: <Item
list>.

interest Summarize the interested
items topic categories

the user’s interest the user’s interest

relevance Summarize the news topic
categories related to users

the relevance related to the
user

the relevance related to the
user

action Summarize the news topic
that the user are likely to
click on

the probability that the user
is likely to click

the probability that the user
is likely to click

recommen-
dation

Summarize the news topic
worth recommending to the
user

the degree of recommenda-
tion to the user

the degree of recommenda-
tion to the user

Table 3: Prompt design from 4 various perspectives.

Baseline LLMTreeRec Improvement

0.577 0.725 25.64%

Table 4: Performance comparison in Huawei recommen-
dation system.

5 Related Work

5.1 Cold-Start Recommendation

The cold-start problem is a common challenge
in recommender systems. The existing research
mostly focused on addressing the user cold-
start (Huang et al., 2022; Pandey and Rajpoot,
2016) and item cold-start problems (Pan et al.,
2019; Vartak et al., 2017): the models learn from
the user-item interaction history and perform rec-
ommendations for new users or new items. To
tackle this problem, many existing works have en-
hanced the embedding quality of users and items by
incorporating side information (Wang et al., 2019;
Yin et al., 2017) or using pre-training models (Li
et al., 2019; Hao et al., 2021). Different from the
user/item cold-start problem, the system cold-start
problem arises when recommender systems have
no prior recommendation knowledge about users
and items. LLMs can leverage their general knowl-
edge and have achieved promising zero-shot perfor-
mance on various natural language tasks, suggest-
ing their potential to address the system cold-start
problem (Zhang et al., 2021; Hou et al., 2024; Ding
et al., 2021). However, LLMs struggle to handle

large-scale item corpora due to the high computa-
tional cost involved during the ranking task.

5.2 Large Language Model for
Recommendation

In recent years, large language models (LLMs)
have shown their great potential and strong capa-
bility in handling different tasks like information
retrieval (Jia et al., 2024; Xu et al., 2024a), medi-
cal prediction (Liu et al., 2024c; Xu et al., 2024c),
knowledge graph completion (Xu et al., 2024b),
knowledge distilation (Wang et al., 2024a), and
computer vision (Yang et al., 2023). Although the
existing works (Liang et al., 2023; Li et al., 2022;
Liu et al., 2023c,b, 2024a; Wang et al., 2023b;
Zhang et al., 2024b) have made significant improve-
ments to recommendation systems, the integration
of LLMs with recommendation systems (Wang
et al., 2024b; Liu et al.; Zhang et al., 2024a; Liu
et al., 2024b) can greatly enhance their perfor-
mance. In the recommendation community, exist-
ing methods (Lin et al., 2024) incorporating LLMs
can be categorized into two groups. On the one
hand, some works directly generate the recommen-
dation result of item ID (Geng et al., 2022; Cui
et al., 2022; Hua et al., 2023). For example, P5
(Geng et al., 2022) reformulates recommendation
tasks to natural language processing tasks utilizing
personalized prompts and conducts conditional text
generation. Hua et al. examine various item IDs
based on P5 (Hua et al., 2023). Although LLMs’
strong language understanding ability can promote

894

the exploitation of text features in recommendation,
LLMs that merely utilize the item embedding un-
derexploit the collaborative information. Item ID
alignment with conventional recommender systems
has received widespread attention recently. For ex-
ample, CTRL and FLIP (Li et al., 2023; Wang et al.,
2023a) encode the information of user-item pair
by two embedding towers including a semantical
model that encodes the textual feature and a col-
laborative model that processes the same sample in
tabular form. Subsequently, the embeddings from
two embedding towers are aligned via contrastive
learning.

To enable LLMs to acquire recommendation
knowledge in system cold-start settings, some ap-
proaches (Fu et al., 2024; Liu et al., 2023a; Hou
et al., 2024) adopt a straightforward strategy of
inputting the candidate set directly into the LLM.
Moreover, in-context learning can provide several
samples as the recommendation knowledge refer-
ence (Liu et al., 2023a). However, these methods
face the challenge of high computational cost when
dealing with large-scale item information.

6 Conclusion

We propose LLMTreeRec, an LLM-centered tree-
based recommendation framework to tackle the
system cold-start challenge. To deal with large-
scale item sets, we design a novel strategy to struc-
ture all items into a hierarchical tree structure, i.e.,
item tree. Based on the item tree, LLM effectively
refines the candidate item set by utilizing this hi-
erarchical structure for search. Extensive exper-
iments on MIND and Amazon datasets indicate
that LLMTreeRec can achieve competitive perfor-
mance compared to conventional recommendation
models under the system cold-start setting. Further-
more, LLMTreeRec is industry-friendly and easy
to deploy on industrial recommender systems.

Acknowledgements

This research was partially supported by Huawei
(Huawei Innovation Research Program), Research
Impact Fund (No.R1015-23), APRC - CityU New
Research Initiatives (No.9610565, Start-up Grant
for New Faculty of CityU), CityU - HKIDS Early
Career Research Grant (No.9360163), Hong Kong
ITC Innovation and Technology Fund Midstream
Research Programme for Universities Project
(No.ITS/034/22MS), Hong Kong Environmental
and Conservation Fund (No. 88/2022), and SIRG -

CityU Strategic Interdisciplinary Research Grant
(No.7020046).

References
Yuntao Bai, Saurav Kadavath, Sandipan Kundu,

Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Jesús Bobadilla, Fernando Ortega, Antonio Hernando,
and Abraham Gutiérrez. 2013. Recommender sys-
tems survey. Knowledge-based systems, 46:109–132.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and
Hongxia Yang. 2022. M6-rec: Generative pretrained
language models are open-ended recommender sys-
tems. arXiv preprint arXiv:2205.08084.

Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and
Hao Wang. 2021. Zero-shot recommender systems.
arXiv preprint arXiv:2105.08318.

Zichuan Fu, Xiangyang Li, Chuhan Wu, Yichao
Wang, Kuicai Dong, Xiangyu Zhao, Mengchen Zhao,
Huifeng Guo, and Ruiming Tang. 2024. A unified
framework for multi-domain ctr prediction via large
language models. ACM Trans. Inf. Syst. Just Ac-
cepted.

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge,
and Yongfeng Zhang. 2022. Recommendation as
language processing (rlp): A unified pretrain, person-
alized prompt & predict paradigm (p5). In RecSys,
pages 299–315.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo
Li, and Xiuqiang He. 2017. Deepfm: a factorization-
machine based neural network for ctr prediction. In
Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence, pages 1725–1731.

Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, and
Hong Chen. 2021. Pre-training graph neural net-
works for cold-start users and items representation.
In Proceedings of the 14th ACM International Con-
ference on Web Search and Data Mining, pages 265–
273.

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3698878
https://doi.org/10.1145/3698878
https://doi.org/10.1145/3698878

895

Ruining He and Julian McAuley. 2016. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In proceedings of
the 25th international conference on world wide web,
pages 507–517.

Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu,
Ruobing Xie, Julian McAuley, and Wayne Xin Zhao.
2024. Large language models are zero-shot rankers
for recommender systems. In European Conference
on Information Retrieval (ECIR ’24), pages 364–381.

Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and
Yongfeng Zhang. 2023. How to index item ids for
recommendation foundation models. arXiv preprint
arXiv:2305.06569.

Xiaowen Huang, Jitao Sang, Jian Yu, and Changsheng
Xu. 2022. Learning to learn a cold-start sequential
recommender. ACM Transactions on Information
Systems (TOIS), 40(2):1–25.

Pengyue Jia, Yiding Liu, Xiangyu Zhao, Xiaopeng Li,
Changying Hao, Shuaiqiang Wang, and Dawei Yin.
2024. MILL: Mutual verification with large language
models for zero-shot query expansion. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 2498–2518, Mexico City,
Mexico. Association for Computational Linguistics.

Wang-Cheng Kang and Julian McAuley. 2018. Self-
attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM),
pages 197–206. IEEE.

Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang
Yang, and Zi Huang. 2019. From zero-shot learning
to cold-start recommendation. In Proceedings of the
AAAI conference on artificial intelligence, volume 33,
pages 4189–4196.

Xiangyang Li, Bo Chen, Lu Hou, and Ruiming Tang.
2023. Ctrl: Connect tabular and language model for
ctr prediction. arXiv preprint arXiv:2306.02841.

Xinhang Li, Zhaopeng Qiu, Xiangyu Zhao, Zihao Wang,
Yong Zhang, Chunxiao Xing, and Xian Wu. 2022.
Gromov-wasserstein guided representation learning
for cross-domain recommendation. In Proceedings
of the 31st ACM International Conference on In-
formation & Knowledge Management, pages 1199–
1208.

Jiahao Liang, Xiangyu Zhao, Muyang Li, Zijian Zhang,
Wanyu Wang, Haochen Liu, and Zitao Liu. 2023.
Mmmlp: Multi-modal multilayer perceptron for se-
quential recommendations. In Proceedings of the
ACM Web Conference 2023, pages 1109–1117.

Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu,
Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu, Xi-
angyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu,
Ruiming Tang, and Weinan Zhang. 2024. How can
recommender systems benefit from large language
models: A survey. Preprint, arXiv:2306.05817.

Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan
Zhang. 2023a. Is chatgpt a good recommender? a
preliminary study. arXiv preprint arXiv:2304.10149.

Langming Liu, Liu Cai, Chi Zhang, Xiangyu Zhao,
Jingtong Gao, Wanyu Wang, Yifu Lv, Wenqi Fan,
Yiqi Wang, Ming He, et al. 2023b. Linrec: Linear
attention mechanism for long-term sequential recom-
mender systems. In Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 289–
299.

Qidong Liu, Jiaxi Hu, Yutian Xiao, Xiangyu Zhao, Jing-
tong Gao, Wanyu Wang, Qing Li, and Jiliang Tang.
2024a. Multimodal recommender systems: A survey.
ACM Computing Surveys, 57(2):1–17.

Qidong Liu, Xian Wu, Wanyu Wang, Yejing Wang,
Yuanshao Zhu, Xiangyu Zhao, Feng Tian, and Yefeng
Zheng. 2024b. Large language model empowered
embedding generator for sequential recommendation.
arXiv preprint arXiv:2409.19925.

Qidong Liu, Xian Wu, Yejing Wang, Zijian Zhang, Feng
Tian, Yefeng Zheng, and Xiangyu Zhao. Llm-esr:
Large language models enhancement for long-tailed
sequential recommendation. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu,
Derong Xu, Feng Tian, and Yefeng Zheng. 2024c.
When moe meets llms: Parameter efficient fine-
tuning for multi-task medical applications. In Pro-
ceedings of the 47th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’24, page 1104–1114, New York,
NY, USA. Association for Computing Machinery.

Ziru Liu, Jiejie Tian, Qingpeng Cai, Xiangyu Zhao,
Jingtong Gao, Shuchang Liu, Dayou Chen, Tonghao
He, Dong Zheng, Peng Jiang, et al. 2023c. Multi-
task recommendations with reinforcement learning.
In Proceedings of the ACM Web Conference 2023,
pages 1273–1282.

Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang,
and Qing He. 2019. Warm up cold-start advertise-
ments: Improving ctr predictions via learning to learn
id embeddings. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 695–704.

Anand Kishor Pandey and Dharmveer Singh Rajpoot.
2016. Resolving cold start problem in recommenda-
tion system using demographic approach. In 2016
International Conference on Signal Processing and
Communication (ICSC), pages 213–218. IEEE.

Steffen Rendle. 2010. Factorization machines. In 2010
IEEE International conference on data mining, pages
995–1000. IEEE.

https://doi.org/10.18653/v1/2024.naacl-long.138
https://doi.org/10.18653/v1/2024.naacl-long.138
https://arxiv.org/abs/2306.05817
https://arxiv.org/abs/2306.05817
https://arxiv.org/abs/2306.05817
https://doi.org/10.1145/3626772.3657722
https://doi.org/10.1145/3626772.3657722

896

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–
523.

Scott Sanner, Krisztian Balog, Filip Radlinski, Ben
Wedin, and Lucas Dixon. 2023. Large language mod-
els are competitive near cold-start recommenders for
language-and item-based preferences. In Proceed-
ings of the 17th ACM conference on recommender
systems, pages 890–896.

Manasi Vartak, Arvind Thiagarajan, Conrado Miranda,
Jeshua Bratman, and Hugo Larochelle. 2017. A meta-
learning perspective on cold-start recommendations
for items. Advances in neural information processing
systems, 30.

Hangyu Wang, Jianghao Lin, Xiangyang Li, Bo Chen,
Chenxu Zhu, Ruiming Tang, Weinan Zhang, and
Yong Yu. 2023a. Flip: Towards fine-grained
alignment between id-based models and pretrained
language models for ctr prediction. Preprint,
arXiv:2310.19453.

Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li,
Xing Xie, and Minyi Guo. 2019. Multi-task feature
learning for knowledge graph enhanced recommen-
dation. In The world wide web conference, pages
2000–2010.

Maolin Wang, Yao Zhao, Jiajia Liu, Jingdong Chen,
Chenyi Zhuang, Jinjie Gu, Ruocheng Guo, and Xi-
angyu Zhao. 2024a. Large multimodal model com-
pression via iterative efficient pruning and distillation.
In Companion Proceedings of the ACM Web Confer-
ence 2024, WWW ’24, page 235–244, New York,
NY, USA. Association for Computing Machinery.

Yuhao Wang, Yichao Wang, Zichuan Fu, Xiangyang Li,
Wanyu Wang, Yuyang Ye, Xiangyu Zhao, Huifeng
Guo, and Ruiming Tang. 2024b. Llm4msr: An llm-
enhanced paradigm for multi-scenario recommenda-
tion. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Manage-
ment, CIKM ’24, page 2472–2481, New York, NY,
USA. Association for Computing Machinery.

Yuhao Wang, Xiangyu Zhao, Bo Chen, Qidong Liu,
Huifeng Guo, Huanshuo Liu, Yichao Wang, Rui
Zhang, and Ruiming Tang. 2023b. Plate: A prompt-
enhanced paradigm for multi-scenario recommenda-
tions. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1498–1507.

Chuhan Wu, Fangzhao Wu, Suyu Ge, Tao Qi, Yongfeng
Huang, and Xing Xie. 2019. Neural news recommen-
dation with multi-head self-attention. In Proceed-
ings of the 2019 conference on empirical methods
in natural language processing and the 9th interna-
tional joint conference on natural language process-
ing (EMNLP-IJCNLP), pages 6389–6394.

Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan
Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie,

Jianfeng Gao, Winnie Wu, et al. 2020. Mind: A large-
scale dataset for news recommendation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3597–3606.

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang
Wang, and Enhong Chen. 2024a. Large language
models for generative information extraction: A sur-
vey. Frontiers of Computer Science, 18(6):186357.

Derong Xu, Ziheng Zhang, Zhenxi Lin, Xian Wu, Zhi-
hong Zhu, Tong Xu, Xiangyu Zhao, Yefeng Zheng,
and Enhong Chen. 2024b. Multi-perspective im-
provement of knowledge graph completion with large
language models. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 11956–11968, Torino, Italia.
ELRA and ICCL.

Derong Xu, Ziheng Zhang, Zhihong Zhu, Zhenxi Lin,
Qidong Liu, Xian Wu, Tong Xu, Wanyu Wang,
Yuyang Ye, Xiangyu Zhao, Enhong Chen, and Yefeng
Zheng. 2024c. Editing factual knowledge and ex-
planatory ability of medical large language models.
In Proceedings of the 33rd ACM International Con-
ference on Information and Knowledge Management,
CIKM ’24, page 2660–2670, New York, NY, USA.
Association for Computing Machinery.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng
Wang, Chung-Ching Lin, Zicheng Liu, and Lijuan
Wang. 2023. The dawn of lmms: Preliminary
explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421.

Hongzhi Yin, Weiqing Wang, Hao Wang, Ling Chen,
and Xiaofang Zhou. 2017. Spatial-aware hierarchical
collaborative deep learning for poi recommendation.
IEEE Transactions on Knowledge and Data Engi-
neering, 29(11):2537–2551.

Chao Zhang, Haoxin Zhang, Shiwei Wu, Di Wu,
Tong Xu, Yan Gao, Yao Hu, and Enhong Chen.
2024a. Notellm-2: Multimodal large representa-
tion models for recommendation. arXiv preprint
arXiv:2405.16789.

Sheng Zhang, Maolin Wang, and Xiangyu Zhao. 2024b.
Glint-ru: Gated lightweight intelligent recurrent units
for sequential recommender systems. arXiv preprint
arXiv:2406.10244.

Yuhui Zhang, Hao Ding, Zeren Shui, Yifei Ma, James
Zou, Anoop Deoras, and Hao Wang. 2021. Language
models as recommender systems: Evaluations and
limitations. In I (Still) Can’t Believe It’s Not Better!
NeurIPS 2021 Workshop.

Zizhuo Zhang and Bang Wang. 2023. Prompt learn-
ing for news recommendation. arXiv preprint
arXiv:2304.05263.

https://arxiv.org/abs/2310.19453
https://arxiv.org/abs/2310.19453
https://arxiv.org/abs/2310.19453
https://doi.org/10.1145/3589335.3648321
https://doi.org/10.1145/3589335.3648321
https://doi.org/10.1145/3627673.3679743
https://doi.org/10.1145/3627673.3679743
https://doi.org/10.1145/3627673.3679743
https://aclanthology.org/2024.lrec-main.1044
https://aclanthology.org/2024.lrec-main.1044
https://aclanthology.org/2024.lrec-main.1044
https://doi.org/10.1145/3627673.3679673
https://doi.org/10.1145/3627673.3679673

	Introduction
	Proposed Framework
	Item Tree Construction
	LLM-Centered Tree-based Recommendation Framework
	Chain-of-Recommendation Strategy
	Search Strategy

	Experiment
	Experiment Setting
	Datasets
	Evaluation Metrics
	Baselines
	Implementation Details

	Performance Comparison (RQ1)
	Token Requirement Analysis (RQ2)
	Hyper-parameter Analysis (RQ3)
	Prompt Study (RQ3)
	Case Study

	Industrial Online Performance
	Related Work
	Cold-Start Recommendation
	Large Language Model for Recommendation

	Conclusion

