
Proceedings of the 31st International Conference on Computational Linguistics, pages 8819–8829
January 19–24, 2025. ©2025 Association for Computational Linguistics

8819

Incremental Transformer: Efficient Encoder for Incremented Text Over
MRC and Conversation Tasks

Weisheng Li1, Yuechen Wang1, Jiaxin Shi3,
Wengang Zhou1,2, Houqiang Li1,2, Qi Tian3

University of Science and Technology of China1

Institute of Artificial Intelligence, Hefei Comprehensive National Science Center2

Huawei Cloud Computing Technologies Co., Ltd.3

{li1117heex, wyc9725}@mail.ustc.edu.cn, shijx12@gmail.com,
{zhwg, lihq}@ustc.edu.cn, tian.qi1@huawei.com

Abstract

Some encoder inputs such as conversation his-
tories are frequently extended with short addi-
tional inputs like new responses. However, to
obtain the real-time encoding of the extended
input, existing Transformer-based encoders like
BERT have to encode the whole extended input
again without utilizing the existing encoding of
the original input, which may be prohibitively
slow for real-time applications. In this paper,
we introduce Incremental Transformer, an effi-
cient encoder dedicated for faster encoding of
incremented input. It takes only added input as
input but attends to cached representations of
original input in lower layers for better perfor-
mance. By treating questions as additional in-
puts of a passage, Incremental Transformer can
also be applied to accelerate MRC tasks. Exper-
imental results show tiny decline in effective-
ness but significant speedup against traditional
full encoder across various MRC and multi-
turn conversational question answering tasks.
With the help from simple distillation-like aux-
iliary losses, Incremental Transformer achieves
a speedup of 6.2x, with a mere 2.2 point ac-
curacy reduction in comparison to RoBERTa-
Large on SQuADV1.1. 1

1 Introduction

Nowadays Transformer (Vaswani et al., 2017)-
based large-scale pre-trained models like BERT
(Devlin et al., 2019) and RoBERTa (Liu et al.,
2019) are still widely used in various tasks like
extractive QA despite the prominent of large lan-
guage models. However, if an encoded input is
extended with short additional text, to obtain the
encoding of the extended text, these Transformer
encoders must completely re-encode the whole ex-
tended input, which may incur substantial inference
latency, rendering it impractical for real-time ap-
plications. They can neither encode only added

1We release our code in https://github.com/
li1117heex/IncrementalTransformer.

Previous Input
(Passage)

Added Input
(Question)

Previous + Added Input
(Passage + Question)

≈
Incremental Transformer Transformer

Cache

Figure 1: Schematic illustration of Incremental Trans-
former comparing to standard Transformer. By attend-
ing to cached representations of encoded previous input,
the model can encode only added input in lower layers,
while still generating output of high quality.

input nor update the encoding of the previously
encoded input using the existing encoding. Be-
cause of the bidirectional information flow in the
attention calculation, any changes to the input will
affect the encoding of every token in the output. If
the existing encoding can be used to encode the
extended input, such incremental encoding will be
very useful for inputs like browsing histories or
conversations, which can be frequently extended
by new records or responses.

Moreover, machine reading comprehension
tasks like SQuAD can also benefit from faster in-
cremental encoding by treating questions as an in-
crement of passages. In many cases, passages are
available before the arrival of questions. Therefore,
the encoding of passages can be pre-computed in-
dependently to achieve a faster speed, but this is
not feasible for Transformer encoders because they
must concatenate and process passages and ques-
tions together across all layers.

DeFormer (Cao et al., 2020) is a decomposed
Transformer designed to reduce runtime compute
for text pair tasks like question answering. It en-
codes questions and passages independently in

https://github.com/li1117heex/IncrementalTransformer
https://github.com/li1117heex/IncrementalTransformer

8820

lower layers, then jointly in upper layers like a
standard Transformer. This decomposition enables
passages to be pre-computed partially, saving most
of the runtime computation. However, despite pas-
sages being completely available when questions
are encoded, DeFormer still encodes questions in-
dependently in lower layers without any assistance
from passages. Furthermore, we discover that en-
coding of the question is more negatively affected
by the decomposition compared to the passage;
refer to the discussion in Section 5. While De-
Former’s decomposition can facilitate incremental
encoding, but all these above suggest that we can
get a better model by employing encoded passage
and to aid question encoding in lower layers.

In this paper, we present Incremental Trans-
former, an efficient text encoder for incremented
input leveraging the existing encoding of the pre-
vious input. In the lower layers, the model adopts
a decomposed encoding pattern to separately en-
code previous inputs or passages. This enables the
pre-calculation or reuse of part of their encoding,
improving efficiency. For the encoding of added
input or question in lower layers, we substitute
self-attention with proposed Incremental Attention,
where the attended sequence (key and value) is the
whole input sequence. In the case of QA tasks, the
attended sequence is the concatenation of question
and cached passage hidden states, instead of the
question sequence itself. Full self-attention is re-
tained in upper layers to update the encoding output
of the previous input.

In contrast to the straightforward decomposed
attention in DeFormer, Incremental Transformer ex-
tends the attended sequence of question sequence,
facilitating information flow from the passage. This
assistance is proved crucial to obtain a higher per-
formance without imposing a noticeable increase
in computation cost, since the majority of computa-
tion occurs in expensive upper layers with quadratic
complexity. As a result, Incremental Transformer
can be decomposed up to higher layers to achieve
a faster speed, while mitigating the performance
drop imposed by the decomposition.

Experiments are conducted on several datasets
including MRC and conversational QA tasks.
Weights of RoBERTa-large are used to initialize
our model. Results demonstrate that Incremental
Transformer consistently outperforms DeFormer
across all datasets while keeping inference costs
at a similar level. Remarkably, with only one
necessary upper layer, Incremental Transformer

achieves a significant speedup of 6.2x, while the
loss of effectiveness is only 2.2 points compared to
RoBERTa-large on SQuADV1.1 (Rajpurkar et al.,
2016) dataset. Furthermore, Incremental Trans-
former can be applied multiple times to encode
a repeatedly growing input. Comparable perfor-
mance against RoBERTa-large on multi-turn con-
versational QA dataset QuAC (Choi et al., 2018)
shows the model’s ability to encode a repeatedly
incremented input.

2 Incremental Encoding

In this section, we give definition of incremental
encoding and several essential terms. Incremental
encoding involves the encoder processing two input
texts, firstly Ta and later Tb. Ta has been previously
encoded by the same encoder, then Tb is added af-
ter Ta, forming a concatenated input (Ta, Tb). In
incremental encoding, the model is required to en-
code (Ta, Tb) efficiently by reusing the calculated
encoding or intermediate hidden states of Ta. In
other words, an incremental encoder possesses the
capability to encode fully or partially encode Ta

in advance, without requiring the complete input
sequence (Ta, Tb). We refer to Ta, Tb, and (Ta, Tb)
as previous input, added input, and extended input
respectively.

Incremental encoding offers benefits across var-
ious tasks, particularly in scenarios with continu-
ously growing inputs, such as ongoing conversa-
tions. Incremental encoding can be applied to MRC
or QA tasks as well, in which the concatenation
of a passage and a question is encoded to extract
the answer. In practical QA applications, passages
are typically available in advance. By treating pas-
sages as Ta and questions as Tb, passages can be
encoded proactively before the arrival of questions,
thereby mitigating answering latency through ef-
fective reuse. Furthermore, in cases where multiple
questions are asked to a single passage, the reuse
of representations for the passage allows for a one-
time computation, enhancing efficiency. Generally
speaking, all tasks featuring (1) real-time encoding
of growing input , or (2) part of input available
earlier or shared across many samples, can be ac-
celerated by an incremental encoding model, like
Incremental Transformer, which will be described
in the next section.

8821

Upper
Layers

Layer k

Layer 1

…

Layer i

…

Layer 1

…

Layer i

…

Layer k

Incremental
Attention

FFN

Layer k+1

…

Layer n

k v q

Cache

Cache

Cache

CacheLower
Layers

Previous Input
(Passage)

Added Input
(Question)

Before
Incrementation

After
Incrementation

Lower
Layers

Figure 2: Illustration of the model architecture and attention mechanism of Incremental Transformer. Details of the
Incremental Attention module are shown on the right side of this figure. We assume m = k in this figure, in this
case Incremental Attention is applied to all lower layers of added input.

3 Model

3.1 Incremental Attention

As discussed in the introduction, passages should
be leveraged to assist the encoding of questions in
lower layers. Building upon this idea, we propose
Incremental Attention for the encoding of the added
input Tb in lower layers. It extends the key and
value sequence from Tb itself to the whole input
(Ta, Tb). In this way, the previous input Ta can also
be attended by Tb to assist its encoding. Denote
Qa, Ka, Va as the query, key, value vector of the
previous input, Kb, Vb as the key, value vector of
the added input respectively, we compute attention
output An as follows:

An = Attention(Qb, [Ka;Kb], [Va;Vb])

= softmax(
Qb[Ka;Kb]

T

√
dk

)[Va;Vb]

3.2 Incremental Transformer

Layers of Incremental Transformer are split into
lower layers and upper layers, then previous and
added inputs are encoded separately in lower lay-
ers and jointly in upper layers like DeFormer. In-
cremental Attention is applied in part or all of the
lower layers during the encoding of the added input,

while standard self-attention is retained in other lay-
ers, including shared upper layers and lower layers
of the previous input. Denote Li:j and IncrLi:j as
the application of a stack of layers from layer i to
layer j with common self-attention and Incremen-
tal Attention respectively, Xi

a, Xi
b as the i-th layer

representation of previous or added input. Given
previous and added input Ta, Tb and their embed-
ded sequence Xa, Xb, independent encoding of the
previous input in lower layers can be written as:

Xk
a = L1:k(Xa)

Layer with Incremental Attention takes previous
input representation of the same layer as additional
input:

Xi
b = IncrLi(X

i−1
a , Xi−1

b)

Encoding of added input in lower layers:

Xk−m
b = L1:k−m(Xb)

Xk
b = IncrLk−m+1:k(X

k−m
b , Xk−m:k−1

a)

Encoding in upper layers can be written as:

[Xn
a ;X

n
b] = Lk+1:n([X

k
a ;X

k
b])

Where [Xn
a ;X

n
b] is the encoding output. k,m

are hyper-parameters, k is the number of lower

8822

layers i.e. the separation layer, and m is the number
of layers using Incremental Attention. For most
experiments below, we set m = k, which means
that Incremental Transformer Attention is adopted
by all lower layers when encoding the added input.

Figure 2 shows the overall structure of Incre-
mental Transformer and how it operates. Before
incrementation i.e. the arriving of added input, In-
cremental Transformer encodes previous input in
lower layers, and caches output representations of
layers k −m to k − 1 for Incremental Attention,
plus the representation of k-th layer for encoding
in upper layers. After incrementation, Incremental
Transformer first encodes added input in lower lay-
ers, with assistance from cached representations in
layers k −m to k − 1, the output is the k-th layer
representation of added input. Then the model
loads the cached k-th layer representation of previ-
ous input, concatenates them, and feeds into upper
layers (from k + 1 to n) to complete the encoding.

In practice, the key and value projection of pre-
vious input representations Ka = WkXa, Va =
WvXa can be calculated before incrementation as
well, then the model caches projected sequence Ka

and Va instead of Xa. In this way, the costly projec-
tion module is excluded from post-incrementation
computation, allowing Incremental Transformer to
run almost as fast as DeFormer. Experiments below
follow this procedure.

3.3 Consecutive Incrementation

Inputs like conversation histories can be incre-
mented multiple times. While it is feasible to
apply the Incremental Transformer separately for
each single incrementation, this approach means
we have to encode the extended input using full
self-attention again, since it also serves as the pre-
vious input in the next incrementation and needs
to be encoded earlier. This iterative re-encoding
can impose a heavy burden for systems occupied
by frequent conversations or questions.

To remove this redundant calculation, instead
of re-encode X(a,b) = [Xa;Xb] and re-cache
Xk−m:k−1

(a,b) and Xk
(a,b), we take [Xi

a;X
i
b], the con-

catenation of newly computed Xi
b and already

cached Xi
a as the updated cache of layer i. In this

way, Incremental Transformer can be consecutively
applied to encode the multiply incremented input.
Every time new input arrives, the model simply
concatenates new representations to the existing
caches, making these updated caches ready for the

next incrementation.

3.4 Computation and Cache Storage
Complexity

Here we discuss the complexity of the Incremental
Transformer. Note that only computation after in-
crementation is taken into account. Given previous
and added input with length la and lb, computation
complexity is O(lb(la + lb)) for each lower layer
with Incremental Attention, O(l2b) for these without
Incremental Attention. However, considering the
cost of the upper layers, overall computation com-
plexity is still O((la+ lb)

2), the same as DeFormer
and full Transformer. Upper layers consume most
of the computation, and the complexity difference
between these models in lower layers becomes triv-
ial. Nevertheless, with the ability to reduce the
number of costly upper layers, Incremental Trans-
former can still save lots of computation, which is
proved by our experiments below.

The cache storage complexity of the Incremen-
tal Transformer is O((2m+ 1)la) for caching key
and value sequences of m layers with Incremental
Attention, plus the output sequence of k-th layer. It
seems a lot, but a Transformer decoder (Vaswani
et al., 2017) also needs to cache key and value se-
quences of encoder output for each decoder layer.
In contrast, the storage complexity of the Incremen-
tal Transformer is totally acceptable in practice.
What’s more, Incremental Transformer can pre-
serve most of the performance with a quite small
m and the cache storage, as discussed in the abla-
tion study section.

4 Experiments

We use four MRC datasets to evaluate our model,
and one additional multi-turn conversational QA
dataset QuAC to evaluate it under consecutive in-
cremental encoding. All these datasets are in En-
glish and cover different domains. For SQuAD ,
BoolQ and QuAC datasets, we split 10% of the
training set to obtain the real validation set for tun-
ing hyper-parameters, and report metrics on the
original validation set. As for RACE which pro-
vides a test set, we just tune and report metrics on
the validation and the test set as usual.

SQuAD The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is an
extractive question answering dataset derived from
Wikipedia articles, requiring to extract an answer
span from the provided context. SQuAD dataset

8823

Model SQuADV1.1 SQuADV2 RACE BoolQ Speedup
RoBERTa-base 92.1 83.2 75.2 75.8 5.3x
RoBERTa-large (Teacher) 94.6 88.3 84.4 82.7 1.0x
DeFormer16 93.1 81.6 81.8 79.0 2.3x
Incremental Transformer16 94.2 86.0 83.7 84.7 2.2x
DeFormer18 90.6 72.4 75.0 76.7 2.9x
Incremental Transformer18 93.6 85.7 83.3 84.9 2.7x
DeFormer20 88.5 61.5 71.0 71.4 3.9x
Incremental Transformer20 93.4 84.8 83.5 84.8 3.5x
DeFormer23 77.6 58.1 56.9 70.9 8.0x
Incremental Transformer23 92.4 84.5 83.3 83.9 6.2x

Table 1: Performance of RoBERTa-base, RoBERTa-large, Incremental Transformer and DeFormer each with several
different separation layer k. For example, Incremental Transformer23 means Incremental Transformer with k = 23.
The same goes for other models. For SQuADV1.1 and V2.0, we report F1 score; for RACE and BoolQ, we report
accuracy. Notice that only computation cost after incrementation is taken into account. Inference latencies and
speedups are measured using the averaged running time of the model over the SQuAD test set, with RoBERTa-large
model as baseline.

has two versions. In V1.1 the context always con-
tains an answer, whereas in V2.0 some questions
are not answerable by the provided context, making
the task more challenging.

RACE The ReAding Comprehension from Ex-
aminations (RACE) (Lai et al., 2017) is a reading
comprehension dataset collected from the English
exams designed for middle and high school stu-
dents in China. For every question, the task is to
select one correct answer from four options using
provided passage.

BoolQ Boolean Questions (Clark et al., 2019) is
a QA task where each example consists of a short
passage and a yes/no question about the passage.
The questions are provided anonymously and unso-
licited by users of the Google search engine, and af-
terwards paired with a paragraph from a Wikipedia
article containing the answer.

QuAC Question Answering in Context (Choi
et al., 2018) is a dataset created for simulating
information-seeking conversations, where a student
asks a series of questions based on a Wikipedia doc-
ument, and a teacher provides answers in the form
of text spans. Its questions are often more open-
ended, unanswerable, or only meaningful within
the dialog context.

4.1 Implementation Details

We use weights of pre-trained model RoBERTa-
Large (Liu et al., 2019) to initialize our model be-
cause it is well pre-trained and performs better in
various downstream tasks. Because DeFormer uses
a different pre-trained model BERT-base, and we
can’t run DeFormer’s open-source code in the Ten-

sorflow framework due to incompatible environ-
ments, we reimplemented DeFormer with a simple
attention mask in PyTorch (Paszke et al., 2019)
framework and conducts experiments on it. Ex-
periment results of DeFormer with BERT-large as
backbone are comparable to results reported in the
DeFormer paper (see Appendix B).

For these MRC datasets, because Incremental
Transformer retains the structure of the full Trans-
former including positional encoding, decomposed
segments should use the positional encoding of the
same position as in the original combined input
sequence. However, the passage is encoded ear-
lier without the exact length of each question, so
it becomes impossible to decide where should its
positional encoding begins. To address this issue,
we pad or truncate embedded question sequences
to unify their length in each dataset. This length is
chosen to cover almost all the questions except sev-
eral extremely long ones. This alignment slightly
damages the performance of our model because
of these filled padding tokens; nonetheless, our
conclusions are not affected.

For the QuAC dataset, following earlier works,
we prepend all previous pairs of (question, answer)
to the passage and current question to form the
current input since every question after the first one
depends on the conversation history. Formally, to
answer the kth question Qk, the input sequences of
previous and added inputs Xa,k, Xb,k is:

Xa,k = (P,Q1, A1, · · · , Qk−1)

Xb,k = (Ak−1, Qk)

8824

QuAC
Model F1 HEQ-Q HEQ-D
RoBERTa-large (Teacher) 63 57.6 4.6
Incremental Transformer16 63.4 57.6 5.3
Incremental Transformer18 62.1 56 5.0
Incremental Transformer20 61.7 55.3 5.1
Incremental Transformer22 59.5 51.1 3.8
Incremental Transformer23 50.4 44.5 2.7

Table 2: Performance of RoBERTa-large, Incremental
Transformer and DeFormer on dev set of QuAC with
different separation layer k.

We put the question after conversation history so
that Xa,k = [Xa,k−1, Xb,k−1], which means the
current input can be constructed through a series
of text incrementation and then encoded incremen-
tally. Because inputs are always too long, we ex-
tend the length of positional encoding from 512 to
1024.

Following DeFormer, we use two auxiliary
losses, Output Representation Similarity Loss Lor

and Prediction Similarity Loss Lpd, to boost model
performance by pushing output representations
Xn

S and predicted distributions PS of Incremen-
tal Transformer as student model closer to equiva-
lents Xn

T and PT of fine-tuned full Transformer as
teacher model. They are calculated as:

Lpd = CrossEntropy(PS , PT)

Lor = MeanSquaredError(Xn
S , X

n
T)

Along with task-specific supervision loss Ltask,
integrated loss L is calculated as:

L = αLpd + βLor + γLtask

Detail hyper-parameters including passage and
question length, batch sizes, learning rates, aux-
iliary losses coefficientsα, β, γ, and others can be
found in the appendix. We use Adam optimizer
(Kingma and Ba, 2014) with linear learning rate de-
cay for every experiment. We implement our model
based on Huggingface Transformers (Wolf et al.,
2020) and PyTorch (Paszke et al., 2019) framework.
All main experiments are conducted on 2 NVIDIA
Tesla A100 GPUs. It takes roughly 1 to 2 hours to
complete one fine-tuning on SQuAD datasets. All
these results are from a single run.

4.2 Main Results
Table 1 shows performance metrics of Incremen-
tal Transformer and DeFormer on MRC datasets
and inference speedups on the SQuADV1.1 test

94.5 94.1 93.9 93.6 93.4 92.4 92.4

94.1 93.7 93.1
90.6

88.5 88.2

77.6

1.7 1.9 2.2 2.7
3.5

5.0
6.2

1.7 2.0 2.3 2.9
3.8

5.6

8.0

0

2

4

6

8

10

12

14

70

75

80

85

90

95

100

12 14 16 18 20 22 23

Sp
ee

du
p

(t
im

es
)

F1
 S

co
re

Separation Layer

Our Model F1 Score DeFormer F1 Score
Our Model Speedup DeFormer Speedup

Figure 3: F1 score and speedup of DeFormer and In-
cremental Transformer with different separation layer k
fine-tuned on SQuADV1.1 dataset with auxiliary losses.
We provide results of the same experiments with BERT-
large as initialization without auxiliary losses in Ap-
pendix B to provide a better comparing of two models.

set. To present a complete view, we compare two
models on different separation layer k including
k = 16, 18, 20, 23. For all these settings, Incre-
mental Transformer consistently performs better
than DeFormer, and the margin goes larger as k in-
creases. In the meantime, the difference in speedup
between two models is rather subtle, because the
difference in attention computation in lower lay-
ers is covered by much more expensive attention
computation in upper layers.

The most noticeable result comes from Incre-
mental Transformer23, which achieved a speedup
of 6.2x over RoBERTa-large while the F1 score
drop is merely 2.2 points. To provide a better com-
parison, we put RoBERTa-base into the chart. In-
cremental Transformer23 is faster than RoBERTa-
base and performs better across all these datasets.
k = 23 means only one upper layer left, the min-
imum number needed to update the encoding out-
put of the passage. These results demonstrate the
strong effectiveness and flexibility of our model.

Table 2 presents the performance of Incremental
Transformer on the QuAC dataset with different
separation layer k. Although being incremented
several times, our model can still perform compa-
rably against RoBERTa-large even when k = 20.
These results fully display the potential of Incre-
mental Transformer to be applied consecutively.

4.3 Ablation Study

The choice of separation layer k directly affects
the model’s effectiveness. In Figure 3, we show

8825

88.5

91.5

92.4
93.1 93.4 93.4

0.6
5.3

10.0

14.7

19.3

24.0

0

5

10

15

20

25

30

35

40

86

87

88

89

90

91

92

93

94

0 4 8 12 16 20

St
or

ag
e

(M
B)

F1
 S

co
re

Incremental Attention Layer

F1 Score Cache Storage

Figure 4: F1 score and cache storage of Incremental
Transformer with different numbers of Incremental At-
tention layer m while k = 20. Cache storage is es-
timated that it takes 0.59MB to store a sequence of
150 tokens with hidden dimension 1024, then multiply
2m+ 1 because 2m+ 1 sequence is cached for Incre-
mental Attention. 150 is the average length of passage
for the SQuADV1.1 test set.

how the F1 score and inference speedup of both
DeFormer and Incremental Transformer change as
the separation layer changes. In terms of effec-
tiveness, Incremental Transformer performs consis-
tently better than DeFormer, the same as the main
results. The inference speed of both models grows
like an x-axis reflected f = 1/x function because
the computation cost for one upper layer with full
self-attention is much more expensive than for one
lower layer; while the difference between them is
negligible.

For all experiments above, we set m = k to
apply Incremental Attention to all lower layers
for the encoding of added input. This assistance,
however, is less important for layers closer to the
input since they encode more locally. We con-
duct an experiment with different numbers of In-
cremental Attention layer m, from m = 0 (in this
case our model becomes the same as DeFormer)
to m = k = 20, presenting the changes of F1
score and cache storage in Figure 4. F1 score
grows faster at the beginning, only 4 layers with
Incremental Attention make over half of the to-
tal improvement; after that, the growth gradually
slows down. Smaller m equals less cache storage
and computation required. This experiment shows
that Incremental Transformer can preserve most of
the improvements over DeFormer while using less
cache storage. By adjusting m and k, users can
choose the best model with respect to the required
inference speed and the cache limitation.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Av
er

ag
ed

 D
is

ta
nc

e

Layer
Passage of our model Passage of DeFormer
Question of our model Question of DeFormer

Figure 5: Averaged token distance to fine-tuned
RoBERTa-large from both DeFormer20 and Incremental
Transformer20, for both question and passage segments,
across all lower layers.

5 Analyses

5.1 Distance of Output Representations
Both DeFormer and Incremental Transformer keep
the structure of the full Transformer, with only part
of the attention calculation in lower layers removed
for decomposition purposes. On the other hand,
they can both be initialized with weights of pre-
trained model and they both employ outputs of
fine-tuned full Transformer as additional supervi-
sion. Given that both of them have been trained
to mimic the pre-trained model, it’s reasonable to
use the distance from their hidden layer represen-
tations to equivalent representations of fine-tuned
full Transformer, to measure how successful their
imitations are ; shorter distance and smaller de-
viation should indicate better performance. We
evaluate this deviation using the full test dataset of
SQuADV1.1 and calculate the averaged distance
as follows:

AverageDistance(X,Y) =

∑
j ||Xj − Yj ||

l

Where X,Y are two token sequences of equal
length l. Masked padding tokens are excluded from
this calculation.

5.2 Passage Helps Question in Lower Layers
In QA tasks, the question is much shorter than the
passage, whose average sequence length after em-
bedding is only 14.5 in the SQuADv1.1 test set,
comparing to the full sequence length of 384 or
512. We suspect that many tokens in the ques-
tion sequence become harder to be understanded

8826

without reference to the passage sequence, which
makes much more damage to the encoding of the
question than the passage.

To verify this, we calculate the averaged token
distance to fine-tuned RoBERTa-large from both
DeFormer20 and Incremental Transformer20, for
both question and passage, at all lower layers. All
these results are shown in Figure 5. Results show
that question representations deviate further than
passages for both models, which is in accordance
with our suspicion that question suffers more dam-
age from decomposed encoding.

Comparing the two models, for passage, their
behavior is similar, which meets our expectation as
they both encode passage independently in lower
layers. However, for the question, results show
clear differences; with the assistance from cached
passage outputs, representations are closer in every
layer, enabling Incremental Transformer to produce
better performance in downstream tasks.

6 Related Works

To improve the efficiency of Transformer, numer-
ous model compression methods have been investi-
gated.

Knowledge Distillation uses different losses to
train a small student model to mimic the behavior
of a large teacher model, such behaviors including
output distribution, representation, attention matrix,
or others. By doing so, the knowledge inside the
teacher model is transferred into the student model.
Earliest work to apply knowledge distillation on
BERT (Devlin et al., 2019) is DistillBERT (Sanh
et al., 2019) and TinyBERT (Jiao et al., 2020), fol-
lowed by MiniLM (Wang et al., 2020) and Mo-
bileBERT (Sun et al., 2020), which achieved 4x
speed-up and competitive results.

Pruning removes less important parts of the
model to achieve a faster speed. Fan et al. (2020)
drops some layers, Michel et al. (2019) and Voita
et al. (2019) drops redundant attention heads. Mc-
Carley et al. (2019) introduces gates to select both
heads and feed-forward layers on question answer-
ing tasks.

Quantization compresses model parameters of
higher precision floating-point to lower precision.
Q8BERT (Zafrir et al., 2019) compresses the 32-bit
model to 8-bit with negligible performance drop, Q-
BERT (Shen et al., 2020) and TernaryBERT (Zhang
et al., 2020) even produce a 2-bit model. However,
with special hardware needed, it’s not easy for other

people to use these models.
Compared to these methods, Incremental Trans-

former accelerate the inference process by before-
hand encoding and calculation reusing, without
compressing or removing model parameters. As a
result, basically all these methods can be applied
in combination with Incremental Transformer to
achieve a faster speed.

In addition to these approaches above, some
methods targeting directly on the reduction of input
sequence length. They progressively skip or skim
less important tokens or text blocks in each layer,
reducing length of hidden states to achieve speedup.
POWER-BERT (Goyal et al., 2020) eliminates ir-
relevant tokens based on self-attention matrix and
drop them directly. Length-Adaptive Transformer
(Kim and Cho, 2021) improves it by forwarding
the inflected tokens to the final output. Incorporat-
ing reinforcement learning and reparameterization
technique, TR-BERT (Ye et al., 2021) and Tran-
skimmer (Guan et al., 2022a) further enhance the
optimization of skim predictor. Block-Skim (Guan
et al., 2022b) uses a CNN-based predictor to se-
lect and skip irrelevant text blocks of 32 tokens,
slightly improves QA models’ accuracy on differ-
ent datasets and achieves 3× speedup on BERT-
base model. However, performance of these meth-
ods on large size backbones are not presented.

7 Conclusion

In this paper, we present Incremental Transformer,
an efficient decomposed encoder for incremented
input like conversations or passages with questions
in MRC tasks. Decomposed lower layers enable
previous input to be encoded in advance or its ex-
isting encoding to be directly reused. Above that,
its representations are cached and attended in In-
cremental Attention module during the encoding of
added input to assist its encoding. Experiments
show significant speedup and tiny decreases in
terms of model effectiveness across MRC and con-
versational QA tasks. This paper shows the strong
potential of largely unexplored incremental mod-
els. For future works, we will continue to explore
the application of incremental encoding in other
scenarios including longer inputs, retrieval, multi-
tasking, and generative tasks. We also expect to see
how these cached sequences can be compressed to
save memory. We believe incremental encoding
deserves greater attention and deeper exploration.

8827

References
Qingqing Cao, Harsh Trivedi, Aruna Balasubrama-

nian, and Niranjan Balasubramanian. 2020. De-
Former: Decomposing pre-trained transformers for
faster question answering. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4487–4497, Online. Association
for Computational Linguistics.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question answering in context.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2174–2184, Brussels, Belgium. Association for Com-
putational Linguistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on Learn-
ing Representations.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh M.
Raje, Venkatesan T. Chakaravarthy, Yogish Sabhar-
wal, and Ashish Verma. 2020. Power-bert: Accelerat-
ing bert inference via progressive word-vector elimi-
nation. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML’20. JMLR.org.

Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan Lin,
and Minyi Guo. 2022a. Transkimmer: Transformer
learns to layer-wise skim. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7275–
7286, Dublin, Ireland. Association for Computational
Linguistics.

Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan Lin,
Minyi Guo, and Yuhao Zhu. 2022b. Block-skim: Ef-
ficient question answering for transformer. Preprint,
arXiv:2112.08560.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.

TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Gyuwan Kim and Kyunghyun Cho. 2021. Length-
adaptive transformer: Train once with length drop,
use anytime with search. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6501–6511, Online. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint.

J. S. McCarley, Rishav Chakravarti, and Avirup Sil.
2019. Structured pruning of a bert-based question
answering model. arXiv preprint.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt

https://doi.org/10.18653/v1/2020.acl-main.411
https://doi.org/10.18653/v1/2020.acl-main.411
https://doi.org/10.18653/v1/2020.acl-main.411
https://doi.org/10.18653/v1/D18-1241
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/2022.acl-long.502
https://doi.org/10.18653/v1/2022.acl-long.502
https://arxiv.org/abs/2112.08560
https://arxiv.org/abs/2112.08560
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.18653/v1/2021.acl-long.508
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1910.06360
https://doi.org/10.48550/ARXIV.1910.06360
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.48550/ARXIV.1910.01108
https://doi.org/10.48550/ARXIV.1910.01108

8828

Keutzer. 2020. Q-bert: Hessian based ultra low pre-
cision quantization of bert. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):8815–
8821.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5797–5808, Florence, Italy.
Association for Computational Linguistics.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. In Advances in Neural
Information Processing Systems, volume 33, pages
5776–5788. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Deming Ye, Yankai Lin, Yufei Huang, and Maosong
Sun. 2021. TR-BERT: Dynamic token reduction
for accelerating BERT inference. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5798–5809,
Online. Association for Computational Linguistics.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS Edi-
tion (EMC2-NIPS), pages 36–39.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. TernaryBERT:
Distillation-aware ultra-low bit BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages
509–521, Online. Association for Computational Lin-
guistics.

A Hyperparameters

In Table 3 we show hyperparameters for fine-
tuning both Incremental Transformer and De-
Former models on SQuAD, RACE, BoolQ, and
QuAC datasets. Learning rates are chosen from
the best of 1e− 5, 2e− 5, 3e− 5, 5e− 5 for ev-
ery dataset on RoBERTa-large, then batch size is
chosen from the best of 8, 16, 32, 64.

B Results on BERT-large

We have compared Incremental Transformer and
DeFormer with RoBERTa-large as backbone
model. Here we provide results with BERT-large as
backbone in Figure 6 to give a more comprehensive
comparison.

89.8 90.0 89.0 87.8 87.7 86.6
83.889.7 89.6 88.2

84.4

79.3

70.8

61.7

50

55

60

65

70

75

80

85

90

95

12 14 16 18 20 22 23

F1
 S

co
re

Separation Layer

Our Model F1 Score DeFormer F1 Score

Figure 6: F1 score of DeFormer-BERT-large and Incre-
mental Transformer-BERT-large with different separa-
tion layer k fine-tuned on SQuADV1.1 dataset without
auxiliary losses.

C Licenses

License for SQuAD and QuAC datasets are CC
BY-SA 4.0, and for BoolQ is CC BY-SA 3.0. In
the case of RACE, the authors did not provide any
license but specified that it could only be used for
non-commercial research purposes.

https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.18653/v1/2021.naacl-main.463
https://doi.org/10.1109/EMC2-NIPS53020.2019.00016
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://doi.org/10.18653/v1/2020.emnlp-main.37

8829

Hyperparam SQuAD RACE BoolQ QuAC
Dropout 0.1 0.1 0.1 0.1
Attention Dropout 0.1 0.1 0.1 0.1
Warmup ratio 0.06 0.06 0.06 0.06
Learning Rate 2e-5 1e-5 1e-5 2e-5
Batch Size 16 8 16 8
Weight Decay 0.01 0.1 0.1 0.01
Max Epochs 2 4 2 2
Learning Rate Decay Linear Linear Linear Linear
Question Length 50 30 15 —
Passage Length 334 482 369 —
Adam ϵ 1e-8 1e-8 1e-8 1e-8
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999
α 0.9 0 0 0.6
β 0 0.9 0.9 0
γ 0.1 0.1 0.1 0.4

Table 3: Hyperparameters for fine-tuneing both Incremental Transformer and DeFormer models on SQuAD, RACE,
BoolQ, and QuAC datasets.

	Introduction
	Incremental Encoding
	Model
	Incremental Attention
	Incremental Transformer
	Consecutive Incrementation
	Computation and Cache Storage Complexity

	Experiments
	Implementation Details
	Main Results
	Ablation Study

	Analyses
	Distance of Output Representations
	Passage Helps Question in Lower Layers

	Related Works
	Conclusion
	Hyperparameters
	Results on BERT-large
	Licenses

