
Proceedings of the 31st International Conference on Computational Linguistics, pages 8841–8857
January 19–24, 2025. ©2025 Association for Computational Linguistics

8841

PMSS: Pretrained Matrices Skeleton Selection for LLM Fine-tuning

Qibin Wang1,4, Xiaolin Hu2,4, Weikai Xu3,4, Wei Liu4, Jian Luan4, Bin Wang4,
1Peking University, 2Gaoling School of Artificial Intelligence, Renmin University of China,

3University of Electronic Science and Technology of China, 4XiaoMi AI Lab,
Correspondence: wangqibin@stu.pku.edu.cn, wangbin11@xiaomi.com

Abstract

Low-rank adaptation (LoRA) and its vari-
ants have recently gained much interest due
to their ability to avoid excessive inference
costs. However, LoRA still encounters the
following challenges: (1) Limitation of low-
rank assumption; and (2) Its initialization
method may be suboptimal. To this end, we
propose PMSS(Pre-trained Matrices Skeleton
Selection), which enables high-rank updates
with low costs while leveraging semantic and
linguistic information inherent in pre-trained
weight. It achieves this by selecting skele-
tons from the pre-trained weight matrix and
only learning a small matrix instead. Exper-
iments demonstrate that PMSS outperforms
LoRA and other fine-tuning methods across
tasks with much less trainable parameters. We
demonstrate its effectiveness, especially in han-
dling complex tasks such as DROP bench-
mark(+3.4%/+5.9% on LLaMA2-7B/13B) and
math reasoning(+12.89%/+5.61%/+3.11% on
LLaMA2-7B, Mistral-7B and Gemma-7B of
GSM8K). The code and model will be released
soon.

1 Introduction

Large language models (LLMs) have demonstrated
exceptional capabilities across a wide range of natu-
ral language processing (NLP) tasks (Radford et al.,
2019). The pre-training stage provides LLMs with
foundational abilities for general tasks, but fine-
tuning is typically required to better adapt them to
specific downstream tasks (Dai and Le, 2015). Full
fine-tuning, though effective in unlocking the po-
tential of LLMs, is resource-intensive, introducing
storage and computation challenges. As the scale
of model training data and parameters continues to
grow, the expense of full fine-tuning has become
increasingly prohibitive, hindering the adoption of
LLMs in scenarios where resources are limited.

To address this issue, Parameter-Efficient Fine-
Tuning (PEFT) methods have been proposed to re-

duce the time and computation cost for fine-tuning
pre-trained models(Houlsby et al., 2019; Hu et al.,
2021; Lester et al., 2021; Li and Liang, 2021).
Among these methods, LoRA(Hu et al., 2021) has
gained particular success for its effectiveness and
simplicity without altering model architecture or
introducing any inference latency. However, LoRA
still faces two fundamental limitations: first, its
low-rank assumption may not generalize well to
complex tasks, and second, its initialization method
can result in slower or suboptimal convergence.

Recent studies have found that LoRA’s efficacy
diminishes empirically in some complex tasks,
especially those that differ from the pre-training
dataset compared with full fine-tuning(Biderman
et al., 2024). This phenomenon is hypothesized to
stem from the inherent low-rank assumption under-
lying LoRA(Ji et al., 2024), which posits that an
update of weight during fine-tuning occurs within
a low-rank subspace and can be well-approximated
by a low-rank matrix production. Chen et al. (2024)
and Jiang et al. (2024) have evaluated the general-
izability of the low-rank assumption, showing that
specific complex tasks typically exhibit a higher
intrinsic rank. Other researchers have focused on
LoRA’s initialization method, where adapter matrix
B is initialized with zeros and matrix A with Gaus-
sian noise. PiSSA(Meng et al., 2024) and its follow-
up works(Bałazy et al., 2024; Lingam et al., 2024;
Wang et al., 2024; Yang et al., 2024), usually have
employed low-rank approximations of the original
pretrained matrices, such as low-rank SVD approx-
imation, to initialize adapter matrices in LoRA.
These studies demonstrate that alternative initial-
ization methods can improve performance across
different models and datasets(Mao et al., 2024).
The success of these methods highlights the subop-
timality in LoRA, further indicating that pretrained
matrices contain rich semantic content highly perti-
nent to various downstream tasks. However, these
works have not further examined the pre-trained

8842

matrices themselves.
To address these challenges, we consider the two

key factors simultaneously: (1) Overcome the limi-
tations of low-rank assumption. Even in resource-
constrained environments, it is essential to enable
high-rank updates during fine-tuning to gain an ad-
vantage in handling more complex tasks, such as
mathematical reasoning. (2) Leverage the semantic
and linguistic information inherent in pretrained
matrices rather than initialization in Gaussian noise
or zeros, bridging the gap between the pre-training
and fine-tuning stages.

To this end, we propose PMSS(Pre-trained
Matrices Skeleton Selection), a novel parameter ef-
ficient fine-tuning method designed to enhance the
parameter efficiency of large language model while
leveraging the intrinsic semantic structure of pre-
trained matrices. As illustrated in Figure 1, by care-
fully selecting the row and column skeletons and
freezing them during training, we ensure that the
updates occur within the subspace spanned by these
components. As hypothesized by ReFT(Wu et al.,
2024), pre-training is likely the crucial stage in en-
dowing models with capabilities, while instruction
tuning acts merely as a form of style transfer. We
select three representative and challenging down-
stream NLP tasks, commonsense reasoning, the
challenging English reading comprehension bench-
mark, DROP, which requires discrete reasoning
over paragraphs, and mathematical reasoning to
demonstrate the efficacy in handling complex tasks.
Our experiments demonstrate empirically that af-
ter pre-training on extensive and diverse datasets,
over-parameterized models have already been posi-
tioned into a subspace that captures a wide range
of linguistic and semantic patterns, meaning that
only minimal adjustments are needed to adapt the
model to specific downstream tasks.

The summary of our contributions is as follows:

• We introduce a novel fine-tuning method
while preserving the intrinsic semantic struc-
ture of pre-trained matrices and enabling high-
rank updates. Our method further reduces the
number of trainable parameters compared to
the state-of-the-art LoRA.

• We compare our method with LoRA and other
parameter-efficient adaptation methods on the
DROP, commonsense reasoning, and math
reasoning benchmarks. Our method yields bet-
ter results compared to LoRA, especially on

Pretrained
Matrix

Trainable

Frozen

Pretrained
Matrix

select

select

Figure 1: An overview of LoRA and our proposed
PMSS. The distinction lies in that PMSS freezes C
and R and only updates U during the fine-tuning stage.
Note that select denotes we select the row and column
skeletons from the original pre-trained matrices to con-
struct matrices C and R, which ensures update happens
in the subspace spanned by skeletons of the original
weight. Further, C and R can be compactly represented
by one-dimensional index vectors.

complex tasks such as DROP(+3.4%/+5.9%
on LLaMA2-7B/13B) and math reason-
ing(+12.89%/+5.61%/+3.11% on LLaMA2-
7B, Mistral-7B and Gemma-7B of GSM8K).

• Through our experiments, we demonstrate
that fine-tuning happens in tiny subspaces re-
lated to subspaces spanned by skeletons of
model parameters.

2 Related Work

2.1 Intrinsic Dimension and Subspace
Learning

Li et al. (2018) first introduced the intrinsic dimen-
sion of objective landscape and demonstrated dif-
ferent tasks exhibit varying intrinsic dimensions
through random subspace training. This work
found that many tasks inherently have lower intrin-
sic dimensions. Following this, Aghajanyan et al.
(2021) further elucidated that common pre-trained
language models typically exhibit low intrinsic di-
mensions, with larger models often possessing even
lower intrinsic dimensions. Gur-Ari et al. (2018)
showed empirically that after a short period of train-
ing, the gradient dynamically converges to a tiny
subspace, which is preserved over even long peri-
ods of training.

Based on intrinsic dimension and subspace learn-
ing, a series of methods (Gressmann et al., 2020;
Li et al., 2022a,b; Gauch et al., 2022; Zhang et al.,
2023) are proposed. Most of these works rely on
either random projections or sampling from opti-
mization trajectories to extract subspaces, allowing

8843

large-scale model training within a tiny subspace.

2.2 Column Subset Selection, CUR and
Interpolative Decomposition

Column Subset Selection Problem(CSSP) has been
extensively studied within the theoretical com-
puter science community(Boutsidis et al., 2009;
Deshpande and Rademacher, 2010; Tropp, 2009;
Altschuler et al., 2016), revolves around selecting
a small subset of representative column skeletons
of a matrix. The goal of CSSP is to identify col-
umn skeletons covering column space and captur-
ing the essential information of the original matrix.
Compared with SVD, CSSP provides a more in-
terpretable way while preserving the underlying
structure, such as sparsity and non-negativity.

Inspired by core idea of CSSP, one way to
achieve low-rank matrix approximation leverages
the self-expression of data, which is the notion that
data is better represented by other data points rather
than an abstract set of bases(Hamm and Huang,
2020). There are two representative methods: CUR
Decomposition(also named Skeleton Decomposi-
tion)(Mahoney and Drineas, 2009) and Interpola-
tive Decomposition(ID)(Cheng et al., 2005). We
will formally define them in Section 3.

2.3 Parameter-Efficient Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) methods
typically only train a small fraction of parame-
ters while keeping the vast majority of parame-
ters frozen to adapt large-scale models to down-
stream tasks. LoRA(Hu et al., 2021) has merged
as a prominent fine-tuning technique of large
pre-trained models, offering a computation and
memory-efficient alternative to full fine-tuning.
PiSSA(Meng et al., 2024) initializes the adapter
matrices using a low-rank SVD of the original
weights and only updates principal singular compo-
nents. LoRA-XS(Bałazy et al., 2024) performs
a basis adaptation for frozen principal singular
values and vectors. Concurrent with our work,
CURLoRA(Fawi, 2024) adopted a CUR-modified
method but involves the random selection of row
and column skeletons with smaller norms to mit-
igate catastrophic forgetting. We will elucidate a
comparison in detail in Section 4.4.

3 Preliminary

In this section, we will first provide a concise
overview of pivoted QR factorization, Interpola-
tive Decomposition (ID), and CUR decomposition.

Then, we will introduce the CUR-ID algorithm,
which forms the basis of our proposed method.

Pivoted QR factorization. For a given matrix
W ∈ Rm×n with real or complex entries, and set
m ≥ n without loss of generality. W (:, J) denotes
the submatrix of W consisting of columns from
W indexed by J . W (K,J) denotes the submatrix
obtained by rows and columns from W indexed by
K and J respectively(Golub and Van Loan, 2013).
The (compact) QR factorization then takes the form

W
m×n

P
n×n

= Q
m×n

R
n×n

, (1)

where P is a permutation matrix, Q is an orthog-
onal matrix and R is upper triangular. The per-
mutation matrix P can be represented via a vector
J ⊂ [n] of indices that P = In(:, J) where In is
the n× n identity matrix.

The QR-factorization is often computed via col-
umn pivoting, which results in factor R satisfy-
ing various decay conditions(Golub and Van Loan,
2013), such as:

R(k, k)2 ≥
j∑

i=k

R(i, j)2, (2)

where j ≥ k + 1, and R(i, j) denotes the element
in the i-th row and j-th column of R.

Interpolative decomposition(ID) and CUR de-
composition. Generally, CUR decomposition ap-
proximates matrix W by a product of three matri-
ces C, U and R, where matrices C and R consist
of subset columns and rows from W and U is a
small carefully constructed matrix to minimize the
low-rank approximation error. Similary, ID ap-
proximates a matrix W as a product of a matrix C
consisting a small subset of columns from W and
a coefficient matrix X .

From skeleton selection standpoint(Dong and
Martinsson, 2023), given any arbitrary linearly
independent column subset C = W (:, J)(W ∈
Rm×n, J ⊂ [n]), the rank-|J | column ID of W
with respect to column skeletons can be formulated
as

Ŵ∗,J ≜ C(C†W), (3)

where † denotes the Moore-Penrose pseudoinverse,
CC† is the orthogonal projector onto the spaning
subspace of column skeletons. Analogously, the
rank-|K| column ID of W with respect to row
skeletons can be formulated as

ŴK,∗ ≜ (WR†)R, (4)

8844

where row subset R = W (K, :)(K ⊂ [m]).
With both column and row skeletons, we can

construct low-rank approximation in two-sided ID
and CUR decomposition. We define |K| = |J | and
S ≜ W (K,J) be an invertible two-sided skeleton,
such that two-sided ID

ŴK,J ≜ (CS−1)S(C†W), (5)

and CUR decomposition

W̃K,J ≜ C(C†WR†)R, (6)

where S−1 represents the inverse of S.
Different from sampling-based methods that

draw skeletons from proper probability distribu-
tions such as Mahoney and Drineas (2009), which
utilized statistical leverage scores originating from
statistics, Voronin and Martinsson (2017) proposed
a novel CUR-ID algorithm drawing skeleton selec-
tions via more deterministic pivoting. They demon-
strated that a CUR decomposition could be con-
structed using a two-sided ID, which can itself be
built from pivoted QR factorization. The matrices
C and R are selected by two successive one-sided
IDs. The idea behind this work is that the matrix
C can be directly obtained via ID, and then a sub-
sequent full-rank ID on matrix C yields an index
vector needed to construct matrix R.

Notation. Given a positive integer m, the nota-
tion [m] is defined as the set of the first m natural
numbers {1, 2, . . . ,m}. The notation † denotes the
Moore-Penrose pseudoinverse. In contrast to com-
mon conventions in computer science, all indices
in this paper, unless otherwise specified, will begin
from 1. This choice aligns with certain mathemati-
cal traditions and is made for consistency through-
out the text. Full notations can be found in Ap-
pendix D.

4 Methodology

4.1 Formulation of PMSS
We present PMSS(Pre-trained Matrices Skeleton
Selection), a novel parameter efficient fine-tuning
method designed to enhance the parameter effi-
ciency of large language model while preserving
linguistic and semantic information. We reparame-
terize the weight update matrix ∆W as the product
of three matrices C,U and R. Unlike LoRA, where
both A matrix initialized to zero and B matrix ini-
tialized with Gaussian noise are trainable, our algo-
rithm adopts a different way. Once the C and R ma-
trices are initialized, they are frozen and no longer

updated. Correspondingly, the U matrix remains
trainable throughout the training stage, which leads
to computational efficiency while retaining the rele-
vant structure from the pre-trained weights. PMSS
selects the most representative column and row
skeletons of pre-trained matrices W ∈ Rm×n to
construct matrices C ∈ Rm×c and R ∈ Rr×n.
Consequently, we can represent C and R through
compressed index vectors K ⊂ [m] and J ⊂ [n]
respectively, further enhancing memory efficiency.
The overview of PMSS is illustrated in Figure 1.

Skeleton Selection. We observe that different
subspace initializations can impact the fine-tuning
effectiveness of large language models. To capture
the underlying structure (or skeleton) of the origi-
nal weight more deterministicly, we employ a two-
sided ID algorithm. Initially, we apply a one-sided
ID to the original weight matrix W , identifying
the column skeleton (i.e., matrix C) by performing
a rank-c column-pivoted QR factorization. This
yields the row index vector J , which is used to
construct C.Subsequently, we perform successive
one-sided ID on the transpose of matrix C through
a full-rank column-pivoted QR factorization to de-
rive the row skeleton, which forms the matrix R.
Then, we can generate a row index vector K. Ulti-
mately, we only need to explicitly retain the index
vectors. The overall algorithm is summarized in
Algorithm 1.

Forward Pass. LoRA aims to reparameterize
updates ∆W ∈ Rm×n of pre-trained matrix W ∈
Rm×n in the form of low-rank approximation of
adapter matrices A ∈ Rr×n and B ∈ Rm×r with
rank r ≪ min(m,n). LoRA’s forward pass is:

y = W ′x = (W +BA)x, (7)

where x ∈ Rn is the input for the current layer,
and y ∈ Rm is the output of the current layer and
pre-activation input for the next layer. Both A and
B matrices are trainable.

Our proposed forward pass is:

y = W ′x = (W + CUR)x,

C = W (:, J), R = W (K, :),
(8)

where K ∈ Rr,K ⊂ [m], J ∈ Rc, J ⊂ [n]. K
and J are compressed index vectors, where each
scalar value represents a selected row or column
from the original pre-trained matrix. C and R are
frozen after selection and U retains trainable during
training stage. We initialize the U with zero to
prevent any weight drift in the beginning. We scale
∆Wx by α

max{c,r} , where α is a constant in c, r.

8845

Algorithm 1 PMSS Algorithm
Input: Pretrained matrix W ∈ Rm×n.
Parameter: Column number parameter c, row
number parameter r, min(m,n) ≥ c ≥ r WLOG.
Output: Column index set J and row index set K.

1: Perform a rank c column pivoted QR factoriza-
tion to get WP := QR

2: Define the column ordered index set J via I(:
, J) = P

3: Define an interpolation matrix C := W (:
, J(1 : c))

4: Perform a full rank column pivoted QR factor-
ization to get CTP ∗ := Q∗R∗

5: Define the row ordered index set K via I(:
,K) := P ∗

6: Partition J := J(1 : c), K := K(1 : r)
7: Return column index set J and row index set

K

4.2 Fine-tuning Happens in Constraining
Skeleton Subspaces

In this subsection, we will compare the differences
in gradient updates between LoRA and PMSS.
Based on Equation 7, during back-propagation, the
gradient of weight matrix W is:

∇W ′L =
∂L
∂y

xT , (9)

where L is the upstream loss and ∂L
∂y denotes the

partial derivative of L with respect to y.
In LoRA, the adapter matrices A and B are both

trainable, and the gradients for these are computed
separately as follows:

∂L
∂A

= BT∇W ′L, ∂L
∂B

= ∇W ′LAT , (10)

From the above equations, it is evident that the
gradient computations for the matrices A and B
in LoRA are mutually coupled and continuously
evolving. However, in PMSS, the only trainable
matrix is U , and its gradient can be computed as
follows based on Equation 8:

∂L
∂U

= CT∇W ′LRT , (11)

We then find PMSS update matrix U with SGD for
every step t by

Ut+1 ← Ut − ηCT∇W ′LtRT , (12)

where η is the learning rate. Therefore, putting it
to Equation 8, we reparameterize ∆W by

∆W = −ηCCT (
T∑
t=1

∇W ′Lt)RTR, (13)

Let
T∑
t=1
∇W ′Lt be MT for convenience. This equa-

tion indicates the entire update is confined to the
subspace spanned by C and R. Although the matri-
ces C and R are typically not orthogonal and thus
CCT and RTR do not form strict projection ma-
trices. However, CCT still constrains the rows of
MT to the column space of C, and RTR constrains
the columns of MT to the row space of R. Since
C and R are selected from matrix W , the update
is effectively confined to a constrained subspace
spanned by the row and column skeletons of W .
In contrast, FLoRA(Hao et al., 2024) demonstrates
that the update ∆W in the vanilla initilization of
LoRA can be approximated as:

∆W ≈ −η(
T∑
t=1

∇W ′Lt)AT
0 A0, (14)

where A0 is the initialization of adapter matrix A
in LoRA. They reveal that LoRA updates can be
viewed as performing random down and up pro-
jections to the gradient, whereas PMSS applies
projections related to critical subspace of weight to
the gradient.

4.3 Parameter Efficiency and Low-Cost
High-Rank Updates

We demonstrate that our method achieves signifi-
cant parameter efficiency compared to LoRA. For
simplicity, let the number of layers for fine-tuning
be Lt and let the dimension of weights be Rm×n.
For each layer, LoRA introduces a pair of train-
able adapter matrices A and B. The total number
of trainable parameters ΘLoRA in LoRA is deter-
mined by the rank rLoRA of adapter matrices:

ΘLoRA = Lt × (m+ n)× rLoRA, (15)

Similary, the total number of trainable param-
eters ΘPMSS in PMSS is determined by cPMSS

and rPMSS of adapter matrix U :

ΘPMSS = Lt × cPMSS × rPMSS , (16)

We observe PMSS’s parameter efficiency arises
from the fact that the number of trainable param-
eters is independent of the dimensions of the pre-
trained weight matrix, m and n, which are typically

8846

much larger in the large-scale model compared to
the rank rLoRA in LoRA.

PMSS enables higher-rank updates than LoRA
when the budget for trainable parameters is the
same. Without loss of generality, we set parameter
cPMSS equal to parameter rPMSS in PMSS. We
further observe the rank of updates in PMSS

rPMSS =
√

(m+ n)× rLoRA ≫ rLoRA, (17)

when rLoRA ≪ min(m,n). Even in resource-
intensive environments, PMSS enables high-rank
updates without increasing memory and computa-
tion costs compared with LoRA.

4.4 Comparison with Other Works
Compared to works such as LoRA-XS or CUR-
LoRA, which only focus on updates at low ranks
and typically underperform LoRA, our algorithm
emphasizes low-cost, high-rank updates instead.
Compared to selecting a set of abstract orthonormal
bases via SVD, we argue that choosing elements
directly from the original matrix provides greater
interpretability. In contrast to our method, CUR-
LoRA focuses on mitigating catastrophic forget-
ting during the fine-tuning stage. They induce im-
plicit regularization by probabilistically sampling
inversely proportional to the row and column norms
of the matrix, aiming to deviate from the original
weight matrix. Their core idea is to induce implicit
regularization by deviating as much as possible
from the original pre-trained weight matrix. How-
ever, they overlook the self-expressive capability of
the weights in large pre-trained language models,
treating them merely as a means to enforce a certain
form of regularization against LoRA. By selecting
less significant features or even noise from the orig-
inal matrix, their work risks capturing suboptimal
or even deficient subspaces within the C and R.
This can lead to the loss of valuable information
crucial for effective fine-tuning, thereby hindering
the model’s ability to adapt to new tasks efficiently.

5 Experiments

In this section, we conduct a series of experiments
on various NLP benchmarks to showcase the ef-
ficiency of PMSS. For convenience, we choose
hyperparameter c equal to r in PMSS for all exper-
imental settings. All experiments are conducted on
the NVIDIA H800(80G) GPUs. We will list im-
plementation details and hyperparameters of these
experiments in Appendix A and C.

Model Method # Params% F1 Score

LLaMA27B

FT† 100% 59.4
Series† 0.747% 58.8

Parallel† 0.747% 59.0
LoRA†

r=8 0.062% 54.0
LoRA†

r=32 0.249% 54.8
LoRA†

r=128 0.996% 56.2
CURLoRAc,r=128 0.016% 54.1
CURLoRAc,r=256 0.062% 58.5
CURLoRAc,r=512 0.248% 59.3
CURLoRAc,r=640 0.388% 58.9

PMSSc,r=128 0.016% 55.1
PMSSc,r=256 0.062% 59.6
PMSSc,r=512 0.248% 59.6
PMSSc,r=640 0.388% 59.3

LLaMA213B
LoRA†

r=8 0.050% 61.0
CURLoRAc,r=128 0.010% 64.3

PMSSc,r=128 0.010% 66.9

Table 1: Benchmark of various fine-tuning methods on
the DROP dataset using LLaMA2 7B/13B models as
the base model. We report F1 score as metric and higher
score is better. All results with † are taken from Chen
et al. (2024).

5.1 DROP Benchmark

Datasets and Models. We first conduct experi-
ments on the DROP dataset(Dua et al., 2019), a
challenging English reading comprehension bench-
mark that requires models to perform discrete rea-
soning over paragraphs. Through experiments us-
ing LoRA with varying ranks and subspace simi-
larity analysis, Chen et al. (2024) demonstrate that
DROP is a representative example of a higher in-
trinsic rank dataset compared to other NLP datasets,
such as RTE dataset(Wang et al., 2019). We evalu-
ate PMSS against LoRA and several baseline meth-
ods which include full fine-tuning, Series adapter
(Series)(Houlsby et al., 2019), Parallel adapter (Par-
allel)(He et al., 2022) and CURLoRA(Fawi, 2024)
by fine-tuning LLaMA-2 7B/13B(Touvron et al.,
2023).

Results. As shown in Table 1, PMSS consis-
tently outperforms other fine-tuning methods. We
observe that PMSS achieves performance compara-
ble to and in some cases exceeding, full fine-tuning
while training only a small fraction of the param-
eters. This demonstrates the effectiveness of our
method’s high-rank updates. To investigate the per-
formance of these methods with the ranks scaling,
we conducted experiments across varying ranks of
PMSS and CURLoRA on LLaMA2-7B. As illus-
trated in Figure 2, we present a line graph depict-
ing the variation of F1 score with respect to ranks
(i.e., the number of trainable parameters) for LoRA,

8847

Model Method #Params(%) BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA AVG

LLaMA27B
LoRA† 0.83 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6

CURLoRA 0.62 69.0 80.1 78.4 81.5 77.5 78.4 63.5 75.8 75.5
PMSS 0.47 70.8 82.8 78.2 88.4 80.9 82.5 68.0 80.2 79.0

LLaMA38B
LoRA† 0.70 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8

CURLoRA 0.13 73.5 87.5 79.0 94.4 83.4 90.2 78.5 84.6 83.9
PMSS 0.13 73.8 87.8 78.9 94.6 84.2 89.6 78.7 85.8 84.2

Table 2: Comparison of LLaMA-2 7B and LLaMA-3 8B with various PEFT methods on eight commonsense
reasoning datasets. All results with † of baseline methods are taken from Liu et al. (2024). We report accuracy as
metric and higher score is better.

0.030 0.100 0.300 0.800 1.00 100
Params(%)

54

55

56

57

58

59

F 1
Sc

or
e(

)

LLaMA2-7B

Methods
FT
Series
Parallel
LoRA
CURLoRA
PMSS

Figure 2: Benchmark of different fine-tuning methods
on the DROP dataset. Illustration of the F1 score (y-
axis) with different numbers ratio(%) of trainable pa-
rameters (x-axis) using LLaMA2-7B as the base model.

CURLoRA, and PMSS. As shown in the figure, the
performance of PMSS, CURLoRA, and LoRA im-
prove as the ranks increase, underscoring both the
necessity and effectiveness of high-rank updates.
As the rank increases, PMSS exhibits rapid perfor-
mance gains, achieving superior results compared
to other methods, including LoRA and CURLoRA,
with minimal trainable parameters (0.062%). Con-
versely, LoRA only achieves subpar performance,
though it improves with increased parameters.

5.2 Commonsense Reasoning

Datasets and Models. We fine-tune our models on
COMMONSENSE170K(Hu et al., 2023), a com-
prehensive dataset of various commonsense rea-
soning questions. Eight different commonsense
reasoning datasets are used for evaluation, includ-
ing BoolQ(Clark et al., 2019), PIQA(Bisk et al.,
2020), SIQA(Sap et al., 2019), HellaSwag(Zellers
et al., 2019), WinoGrande(Sakaguchi et al., 2021),
ARC-e, ARC-c(Clark et al., 2018) and OBQA(Ling
et al., 2017). All commonsense reasoning tasks
are formulated as multiple-choice or Yes/No ques-
tions, where the models are required to select the

Model qproj kproj vproj
LLaMA2-7B 4096× 4096 4096× 4096 4096× 4096
LLaMA3-8B 4096× 4096 4096× 1024 4096× 1024

Table 3: Comparison of module dimensions on
LLaMA2-7B and LLaMA3-8B.

most appropriate answers and rationales. We eval-
uate PMSS against LoRA and CURLoRA by fine-
tuning LLaMA-2 7B(Touvron et al., 2023) and
LLaMA-3 8B(Dubey et al., 2024).

Results. The main results are reported in Table
2. PMSS outperforms LoRA and CURLoRA on
most metrics for the LLaMA2-7B and LLaMA3-
8B models. On LLaMA2-7B, PMSS outperforms
LoRA and CURLoRA by 1.4% and 3.5% average
accuracy scores. On LLaMA3-8B, PMSS exceeds
LoRA and CURLoRA by 3.4% and 0.3% average
accuracy scores.

However, PMSS underperforms LoRA on 3 out
of 8 evaluation metrics on LLaMA2-7B, and un-
derperforms LoRA on 2 metrics on LLaMA3-8B.
It may be due to the inherently lower rank of
commonsense reasoning tasks compared to more
complex tasks(e.g., math). As a result, LoRA
remains competitive in such tasks. Additionally,
on LLaMA3-8B, our method performs closely to
CURLoRA. As shown in Table 3, the asymmetric
structure of weight(kproj and vproj) in LLaMA3-
8B may make it easier to capture the critical sub-
space. We explore this point further in the ablation
studies.

5.3 Math Reasoning

Datasets and Models. We train our models on
MetaMathQA dataset(Yu et al., 2023), which com-
prises 395K samples augmented from other math
instruction tuning datasets such as GSM8K(Cobbe
et al., 2021) and MATH(Hendrycks et al., 2021),
with higher diversity and complexity. We select
GSM8K and MATH as the test datasets. We select
LLaMA-2 7B(Touvron et al., 2023), Mistral-7B-

8848

Model Method Params GSM8K MATH

LLaMA27B

Full FT† 6738M 49.05 7.22
LoRA† 320M 42.30 5.50
PiSSA† 320M 53.07 7.44

CURLoRA 56M 54.51 9.30
PMSS 56M 55.19 9.74

Mistral7B

Full FT† 7242M 67.02 18.6
LoRA† 168M 67.70 19.68
PiSSA† 168M 72.86 21.54

CURLoRA 87.5M 72.40 20.40
PMSS 87.5M 73.31 21.34

Gemma7B

Full FT† 8538M 71.34 22.74
LoRA† 200M 74.90 31.28
PiSSA† 200M 77.94 31.94

CURLoRA 49M 76.65 30.20
PMSS 49M 78.01 30.60

Table 4: Math reasoning evaluation results for LLaMA2-
7B, Mistral-7B and Gemma-7B on math reasoning
benchmarks. All results with † of baseline methods
are taken from Meng et al. (2024). We report accuracy
as metric and higher score is better.

Method #Params(%) AVG
Random 0.13 83.9

CURLoRA 0.0082 78.6
Random 0.0082 78.9
PMSS 0.0082 79.5

Table 5: Ablation study results on commonsense rea-
soning using LLaMA3-8B. We also report the result of
random selection when the rank is kept the same as in
Section 5.2.

v0.1(Jiang et al., 2023) and Gemma-7B(Team et al.,
2024) as base models. We evaluate PMSS against
full fine-tuning, LoRA, PiSSA, and CURLoRA as
baseline methods.

Results. Table 4 presents the evaluation re-
sults on the GSM8K and MATH benchmarks. The
results show that PMSS outperforms LoRA and
CURLoRA and even surpasses full fine-tuning
with a small fraction of parameters. On LLaMA2-
7B, PMSS outperforms PiSSA by +2.12/2.30 on
GSM8k and MATH. However, On both the Mistral-
7B and Gemma-7B, PMSS outperforms PiSSA on
the GSM8K but falls short of PiSSA on the MATH.
This suggests that PiSSA’s core idea of utilizing the
principal singular components of the weight matri-
ces is effective. Nevertheless, PMSS still performs
comparably to PiSSA with much fewer parame-
ters(about 18%-52%), demonstrating the potential
scalability of PMSS when handling even complex
tasks like math reasoning.

Method Params GSM8K MATH
Random 56M 53.68 9.38
CURLoRA 3.5M 46.70 6.76
Random 3.5M 45.64 7.04
PMSS 3.5M 47.69 7.38

Table 6: Ablation study results on math reasoning using
LLaMA2-7B. We also report the result of random selec-
tion when the rank is kept the same as in Section 5.3.

5.4 Ablation Study

In this subsection, we provide ablation study results
to empirically demonstrate how different skeleton
selection strategies impact the experimental out-
comes. In previous experiments, we set a relatively
high rank (e.g., 512). High-rank updates may pro-
vide an inherent advantage by enabling the model
to learn more effectively. When selecting a suffi-
cient number of rows and columns from the origi-
nal weight matrix to construct the skeletons, even
a random selection method can yield good results,
as it effectively covers the row and column spaces’
information of the weight matrix. We use random
selection and CURLoRA as a baseline. We adhere
to the hyperparameters used in previous experi-
ments, modifying only the learning rate. We also
report the results of the random selection method
at higher-rank updates, using the exact same hyper-
parameter settings as in the previous experiments.

Ablation Study on Commonsense Reasoning.
As shown in Table 5, we present the average scores
of the eight commonsense evaluation sets. PMSS
consistently outperforms baseline methods at lower
ranks. We also report the result of random selection
at the same high rank and find it performs closely
to CURLoRA and PMSS, which may be attributed
to the asymmetric structure of weight matrices on
LLaMA3-8B,

Ablation Study on Math Reasoning. As shown
in Table 6, we present the evaluation result on
GSM8K and MATH sets. PMSS consistently out-
performs baseline methods across all rank settings.

6 Conclusion

In this paper, we introduce PMSS, a novel fine-
tuning method designed to enhance parameter effi-
ciency while preserving the semantic and linguistic
information contained in the weights. Our method
effectively overcomes the low-rank limitation of
LoRA and enables high-rank updates at a low cost.
Experimental results demonstrate that PMSS out-

8849

performs LoRA and other fine-tuning methods with
much less trainable parameters. PMSS is expected
to demonstrate superior learning capacity, espe-
cially in handling complex tasks.

7 Limitation

We have leveraged the inherent world knowledge
embedded in the model’s weights. However, to bet-
ter adapt the model to specific downstream tasks,
task-specific knowledge should also be incorpo-
rated, which remains for future research. Due to
time and objective conditions, it is still unclear
whether PMSS is effective for other specific tasks,
such as logical reasoning tasks. Additionally, the
effectiveness of this method on models with larger
parameter scales (e.g. 70B) remains to be verified.

References
Armen Aghajanyan, Sonal Gupta, and Luke Zettle-

moyer. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 7319–
7328.

Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab
Mirrokni, Afshin Rostamizadeh, and Morteza Zadi-
moghaddam. 2016. Greedy column subset selection:
New bounds and distributed algorithms. In Interna-
tional conference on machine learning, pages 2539–
2548. PMLR.

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer,
and Jacek Tabor. 2024. Lora-xs: Low-rank adap-
tation with extremely small number of parameters.
arXiv preprint arXiv:2405.17604.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, et al. 2024. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Christos Boutsidis, Michael W Mahoney, and Petros
Drineas. 2009. An improved approximation algo-
rithm for the column subset selection problem. In
Proceedings of the twentieth annual ACM-SIAM
symposium on Discrete algorithms, pages 968–977.
SIAM.

Zhuo Chen, Rumen Dangovski, Charlotte Loh,
Owen Dugan, Di Luo, and Marin Soljačić. 2024.
Quanta: Efficient high-rank fine-tuning of llms with
quantum-informed tensor adaptation. arXiv preprint
arXiv:2406.00132.

Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Mar-
tinsson, and Vladimir Rokhlin. 2005. On the com-
pression of low rank matrices. SIAM Journal on
Scientific Computing, 26(4):1389–1404.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

8850

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. Advances in neural information
processing systems, 28.

Amit Deshpande and Luis Rademacher. 2010. Efficient
volume sampling for row/column subset selection. In
2010 ieee 51st annual symposium on foundations of
computer science, pages 329–338. IEEE.

Yijun Dong and Per-Gunnar Martinsson. 2023. Simpler
is better: a comparative study of randomized pivoting
algorithms for cur and interpolative decompositions.
Advances in Computational Mathematics, 49(4):66.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Muhammad Fawi. 2024. Curlora: Stable llm contin-
ual fine-tuning and catastrophic forgetting mitigation.
arXiv preprint arXiv:2408.14572.

Martin Gauch, Maximilian Beck, Thomas Adler,
Dmytro Kotsur, Stefan Fiel, Hamid Eghbal-zadeh,
Johannes Brandstetter, Johannes Kofler, Markus Hol-
zleitner, Werner Zellinger, et al. 2022. Few-shot
learning by dimensionality reduction in gradient
space. In Conference on Lifelong Learning Agents,
pages 1043–1064. PMLR.

Gene H Golub and Charles F Van Loan. 2013. Matrix
computations. JHU press.

Frithjof Gressmann, Zach Eaton-Rosen, and Carlo
Luschi. 2020. Improving neural network training
in low dimensional random bases. In Proceedings of
the 34th International Conference on Neural Infor-
mation Processing Systems, pages 12140–12150.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. 2018.
Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754.

Keaton Hamm and Longxiu Huang. 2020. Perspectives
on cur decompositions. Applied and Computational
Harmonic Analysis, 48(3):1088–1099.

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024.
Flora: Low-rank adapters are secretly gradient com-
pressors. arXiv preprint arXiv:2402.03293.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Poria,
and Roy Lee. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 5254–5276.

Yuheng Ji, Yue Liu, Zhicheng Zhang, Zhao Zhang, Yut-
ing Zhao, Gang Zhou, Xingwei Zhang, Xinwang
Liu, and Xiaolong Zheng. 2024. Advlora: Adversar-
ial low-rank adaptation of vision-language models.
arXiv preprint arXiv:2404.13425.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan
Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. 2024.
Mora: High-rank updating for parameter-efficient
fine-tuning. arXiv preprint arXiv:2405.12130.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. 2018. Measuring the intrinsic dimension
of objective landscapes. In International Conference
on Learning Representations.

Tao Li, Lei Tan, Zhehao Huang, Qinghua Tao, Yipeng
Liu, and Xiaolin Huang. 2022a. Low dimensional tra-
jectory hypothesis is true: Dnns can be trained in tiny
subspaces. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(3):3411–3420.

https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok

8851

Tao Li, Yingwen Wu, Sizhe Chen, Kun Fang, and Xi-
aolin Huang. 2022b. Subspace adversarial train-
ing. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 13399–
13408. IEEE.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh
Shetty, Gautham Krishna Gudur, Joydeep Ghosh,
Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski,
and Sujay Sanghavi. 2024. Svft: Parameter-efficient
fine-tuning with singular vectors. arXiv preprint
arXiv:2405.19597.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Michael W Mahoney and Petros Drineas. 2009. Cur
matrix decompositions for improved data analysis.
Proceedings of the National Academy of Sciences,
106(3):697–702.

Yuren Mao, Yuhang Ge, Yijiang Fan, Wenyi Xu, Yu Mi,
Zhonghao Hu, and Yunjun Gao. 2024. A survey
on lora of large language models. arXiv preprint
arXiv:2407.11046.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vectors
adaptation of large language models. arXiv preprint
arXiv:2404.02948.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Joel A Tropp. 2009. Column subset selection, matrix
factorization, and eigenvalue optimization. In Pro-
ceedings of the twentieth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 978–986. SIAM.

Sergey Voronin and Per-Gunnar Martinsson. 2017. Ef-
ficient algorithms for cur and interpolative matrix
decompositions. Advances in Computational Mathe-
matics, 43:495–516.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo
Wang, Guanhua Chen, and Yun Chen. 2024.
Milora: Harnessing minor singular components for
parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atti-
cus Geiger, Dan Jurafsky, Christopher D Manning,
and Christopher Potts. 2024. Reft: Representa-
tion finetuning for language models. arXiv preprint
arXiv:2404.03592.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Leon
Song, Jianlong Wu, Liqiang Nie, and Bernard
Ghanem. 2024. Corda: Context-oriented decompo-
sition adaptation of large language models. arXiv
preprint arXiv:2406.05223.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791–4800.

Zhong Zhang, Bang Liu, and Junming Shao. 2023. Fine-
tuning happens in tiny subspaces: Exploring intrinsic
task-specific subspaces of pre-trained language mod-
els. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1701–1713, Toronto, Canada.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/2023.acl-long.95
https://doi.org/10.18653/v1/2023.acl-long.95
https://doi.org/10.18653/v1/2023.acl-long.95
https://doi.org/10.18653/v1/2023.acl-long.95

8852

A Implementation Details

A.1 DROP dataset

Implementation Details. We conduct experiments across different ranks and compare PMSS’s perfor-
mance with LoRA and CURLoRA, highlighting the impact of high-rank updates. We follow the setting
of Chen et al. (2024), selecting 2,000 samples from the training set of the DROP dataset as our training
set, 800 samples as the validation set, and 1,200 samples from the validation set of DROP as the test
set. F1-score is used as the evaluation metric for measuring the closeness of the model’s output with the
ground truth. The best checkpoint from the validation set is loaded as the final model for testing. Chen
et al. (2024) select the number of epoch parameters arbitrarily between 3 and 6. For a fair comparison, we
standardize our experiments to run for 3 epochs.

A.2 Commonsense Reasoning Dataset

Implementation Details. We first fine-tune the model on the joint COMMONSENSE170K dataset and
evaluate the fine-tuned model on eight downstream commonsense tasks. We follow the setting of Liu et al.
(2024), splitting the COMMONSENSE170K dataset in a train set of 170,020 samples and a validation
set of 400 samples. We optimize the hyperparameters on the validation set and load the best checkpoint
on the validation set as the final model for evaluation. Accuracy is reported as a metric. We use the
implementation of LLM-Adapters(Hu et al., 2023) and standardize our experiments to run for 3 epochs.

A.3 Math Reasoning Dataset

Implementation Details. In math reasoning experiments, we use the implementation of PiSSA(Meng
et al., 2024) and follow the setting of them while only fine-tuning the learning rate. All models are first
trained on a subset containing 100K data points from the MetaMathQA. We load the last checkpoint as
the final model for evaluation. Then the fine-tuned models are evaluated on GSM8K and MATH datasets
to assess their capabilities in solving mathematical problems as specific downstream tasks. Accuracy is
reported on the GSM8K and MATH datasets. All models are fine-tuned for only one epoch.

B Case Studies

In this section, we present examples of three different tasks to help readers gain a deeper understanding of
the specifics of the Three different benchmarks. Additionally, the process output of the Math task(GSM8K)
further highlights the validity of the theoretical assumptions discussed in the main text.

B.1 DROP

[An example in DROP]
Context:

As of the census of 2000, there were 325,957 people, 149,937 households, and 94,460 families
residing in the county. The population density was 570 people per square mile (220/km2). There
were 182,467 housing units at an average density of 319 per square mile (123/km2). The racial
makeup of the county was 92.65% Race (United States Census), 4.18% Race (United States Census)
or Race (United States Census), 0.22% Race (United States Census), 0.77% Race (United States
Census), 0.03% Race (United States Census), 1.14% from Race (United States Census), and 1.02%
from two or more races. 4.34% of the population were Race (United States Census) or Race (United
States Census) of any race. 89.7% spoke only English language at home; 4.4% spoke the Spanish
language, 1.3% German language, and 1.0% French language at home.

Question: Which group is smaller for the county according to the census: people or families?
Answer: families.

[PMSS Reasoning by LlaMA2-7B]
[Prediction: families.] (Right)

8853

[CURLoRA Reasoning by LlaMA2-7B]
[Prediction: people.] (Wrong)

B.2 ARC-e

[An example in ARC-e]
Context:

Below is an instruction that describes a task. Write a response that appropriately completes the
request. Instruction: Please choose the correct answeanswerhe question: Copper (Cu) reacts with
oxygen (O) to form copper oxide (CuO). The properties of CuO are most likely

Options:
Answer1: different from copper or oxygen.
Answer2: similar to both copper and oxygen.
Answer3: similar only to copper.
Answer4: similar only to oxygen.
Question: Which one is the correct answeanswerswer1/answer2/answer3/answer4)

Answer: the correct answer is answer1.

[PMSS Reasoning by LlaMA3-8B]
[Prediction: the correct answer is answer1.] (Right)

[CURLoRA Reasoning by LlaMA3-8B]
[Prediction: the correct answer is answer2.] (Wrong)

B.3 GSM8K

[An example in GSM8K]
Context:

question: Below is an instruction that describes a task. Write a response that appropriately completes
the request. Helga was the fastest clog dancer in all of Slovenia. With both hands at her sides, she
could tap her right foot at a rate of 300 taps per minute while simultaneously tapping her left foot at
a rate of 250 taps per minute. When she raised her arms, her tap rate slowed down to 200 taps per
minute with each foot.

Question: If she dances a total of 5 minutes, with her arms raised during only 2 of those minutes,
what would be the combined total number of times that she taps both of her feet?

Answer: 2450.

[PMSS Reasoning by Gemma-7B]
Reasoning Process:

• In the first 3 minutes, Helga taps her right foot at a rate of 300 taps per minute, so she taps her
right foot 300 * 3 = 900 times.

• In the first 3 minutes, Helga taps her left foot at a rate of 250 taps per minute, so she taps her
left foot 250 * 3 = 750 times.

• In the first 3 minutes, Helga taps both feet a total of 900 + 750 = 1650 times.

• In the next 2 minutes, Helga taps her right foot at a rate of 200 taps per minute, so she taps her
right foot 200 * 2 = 400 times.

• In the next 2 minutes, Helga taps her left foot at a rate of 200 taps per minute, so she taps her
left foot 200 * 2 = 400 times.

8854

• In the next 2 minutes, Helga taps both feet a total of 400 + 400 = 800 times.

• In the total 5 minutes, Helga taps both feet a total of 1650 + 800 = 2450 times.

The answeanswer2450

[Prediction: 2450.] (Right)

[CURLoRA Reasoning by Gemma-7B]
Reasoning Process:

• In the first 3 minutes, Helga dances with her arms at her sides, so she taps each foot at a rate of
300 taps per minute and 250 taps per minute, respectively.

• In the first 3 minutes, she taps her right foot 3 minutes x 300 taps per minute = 900 times.

• In the first 3 minutes, she taps her left foot 3 minutes x 250 taps per minute = 750 times.

• In the first 3 minutes, she taps both feet a total of 900 taps + 750 taps = 1650 times.

• In the next 2 minutes, Helga dances with her arms raised, so she taps each foot at a rate of 200
taps per minute..

• In the next 2 minutes, she taps her right foot 2 minutes x 200 taps per minute = 400 times.

• In the next 2 minutes, she taps her left foot 2 minutes x 200 taps per minute = 400 times.

• In the next 2 minutes, she taps both feet a total of 400 taps + 400 taps = 800 times.

• In the last minute, Helga dances with her arms at her sides again, so she taps each foot at a rate
of 300 taps per minute and 250 taps per minute, respectively.

• In the last minute, she taps her right foot 1 minute x 300 taps per minute = 300 times.

• In the last minute, she taps her left foot 1 minute x 250 taps per minute = 250 times.

• In the last minute, she taps both feet a total of 300 taps + 250 taps = 550 times.

• In the last minute, she taps both feet a total of 550 times.

[Prediction: 550.] (Wrong)

C Hyperparamaters

D Notations

We summarize key notations used in this paper in Table 12.

8855

Hyperparameters PMSS CURLoRA
Batch Size 4
Optimizer AdamW
Scheduler Linear Scheduler

Weight Decay 0
Dropout 0
Modules q_proj, v_proj

Number of GPUs 2
Epochs 3

Model c, r, α Learning Rate

LLaMA2-7B

128-128-128 3e-4
256-256-256 4e-4
512-512-512 7e-5
640-640-640 7e-5

LLaMA2-13B 128-128-128 1e-3

Table 7: Hyperparameters used for DROP dataset for PMSS and CURLoRA on LLaMA2-7B and LLaMA2-13B.

Hyperparameters LLaMA2-7B LLaMA2-13B
Batch Size 16
Warmup Steps 100
Optimizer AdamW
Scheduler Linear Scheduler
Weight Decay 0
Dropout 0.05
Modules q_proj, v_proj,k_proj, up_proj, down_proj
Number of GPUs 1
Epochs 3
c, r, α(PMSS) 448-448-896 256-256-512
Learning Rate(PMSS) 1e-4 1e-4
c, r, α(CURLoRA) 512-512-1024 256-256-512
Learning Rate(CURLoRA) 2e-4 2e-4

Table 8: Hyperparameter configurations of PMSS and CURLoRA for LLaMA2-7B, and LLaMA3-8B on the
commonsense reasoning tasks.

Hyperparameters PMSS Random CURLoRA
c, r, α 64-64-128
Learning Rate 7e-4

Table 9: Ablation study on the commonsense reasoning tasks. We report hyperparameter configurations of PMSS,
Random and CURLoRA for LLaMA3-8B.

8856

Hyperparameters LLaMA2-7B Mistral-7B Gemma-7B
Batch Size 128
Warmup Ratio 0.03
Optimizer AdamW
Scheduler Cosine
Weight Decay 0
Dropout 0
Modules q_proj, v_proj,k_proj, o_proj, gate_proj, up_proj, down_proj
Number of GPUs 1
Epochs 3
c, r, α 512-512-1024 640-640-1280 512-512-1024
Learning Rate(PMSS) 2e-4 1e-3 7e-4
Learning Rate(CURLoRA) 4e-4 7e-4 7e-4

Table 10: Hyperparameter configurations of PMSS and CURLoRA for LLaMA2-7B, Mistral-7B and Gemma-7B
on the math reasoning tasks.

Hyperparameters PMSS Random CURLoRA
c, r, α 128-128-256
Learning Rate 2e-3 1e-3 2e-3

Table 11: Ablation study on the commonsense reasoning tasks. We report hyperparameter configurations of PMSS,
Random and CURLoRA for LLaMA2-7B.

8857

Notation Description

[m]
Denotes the set of the first m natural numbers, i.e., 1, 2, · · · ,m.This is used to
simplify expressions involving iterating over the first m elements.

† Denotes the Moore-Penrose pseudoinverse of a matrix.

W (: J)

Denotes the submatrix of matrix W consisting of the columns indexed by the
set J , where J is an ordered index set. For example, if J = {j1, j2, · · · , jk},
then W (: J) refers to the matrix consisting of the columns
W (:, j1),W (:, j2), · · · ,W (:, jk).

W (K : J)

Denotes the submatrix of matrix W obtained by selecting rows indexed by the
set K and columns indexed by the set J . If K = {k1, k2, · · · , kp} and
J = {j1, j2, · · · , jq}, then W (K,J) is the matrix formed by taking the
intersection of the rows W (k1, :),W (k2, :), · · · ,W (kp, :) and the columns
W (:, j1),W (:, j2), · · · ,W (:, jq).

Table 12: Table of Notations.

	Introduction
	Related Work
	Intrinsic Dimension and Subspace Learning
	Column Subset Selection, CUR and Interpolative Decomposition
	Parameter-Efficient Fine-Tuning

	Preliminary
	Methodology
	Formulation of PMSS
	Fine-tuning Happens in Constraining Skeleton Subspaces
	Parameter Efficiency and Low-Cost High-Rank Updates
	Comparison with Other Works

	Experiments
	DROP Benchmark
	Commonsense Reasoning
	Math Reasoning
	Ablation Study

	Conclusion
	Limitation
	Implementation Details
	DROP dataset
	Commonsense Reasoning Dataset
	Math Reasoning Dataset

	Case Studies
	DROP
	ARC-e
	GSM8K

	Hyperparamaters
	Notations

