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Abstract
Large language models (LLMs) have made
great progress in classification and text gen-
eration tasks. However, they are mainly trained
on English data and often struggle with low-
resource languages. In this study, we explore
adding a new language, i.e., Persian, to Llama
(a model with a limited understanding of Per-
sian) using parameter-efficient fine-tuning. We
employ a multi-stage approach involving pre-
training on monolingual Persian data, aligning
representations through bilingual pretraining
and instruction datasets, and instruction-tuning
with task-specific datasets. We evaluate the
model’s performance at each stage on genera-
tion and classification tasks. Our findings sug-
gest that incorporating the Persian language,
through bilingual data alignment, can enhance
classification accuracy for Persian tasks, with
no adverse impact and sometimes even im-
provements on English tasks. Additionally, the
results highlight the model’s initial strength as a
critical factor when working with limited train-
ing data, with cross-lingual alignment offering
minimal benefits for the low-resource language.
Knowledge transfer from English to Persian has
a marginal effect, primarily benefiting simple
classification tasks.

1 Introduction

The emergence of large language models (LLMs)
has transformed natural language processing
(NLP), leading to significant progress in various
applications like machine translation, text gener-
ation, and sentiment analysis. Models such as
GPT-3 (Brown et al., 2020), GPT-4 (OpenAI et al.,
2024), and open-source alternatives like Llama-2
(Touvron et al., 2023), Llama-3 (Li et al., 2024)
and Mistral (Jiang et al., 2023) have shown im-
pressive abilities in understanding and generating
human language. However, these advancements
have mostly centered around English and other
widely spoken languages, leaving less-resourced
languages behind.

In today’s connected world, supporting multiple
languages in a single model is key to breaking lan-
guage barriers and making technology accessible
to everyone, including speakers of less common
languages. Multilingual models help expand the
reach of language technologies while having their
challenges. Limited data for some languages, keep-
ing performance consistent across languages, and
preserving the model’s core abilities while adding
new languages are the existing challenges (Muen-
nighoff et al., 2023; Qi et al., 2023; Vu et al., 2022).
Overcoming these challenges is essential for creat-
ing inclusive global language technologies.

Developing multilingual large language models
(MLLMs) has become crucial to address these chal-
lenges. Models such as XLM-R (Conneau et al.,
2020), Qwen (Bai et al., 2023), GPT-3 (Brown
et al., 2020), GPT-4 (OpenAI et al., 2024), and
Llama-3 (Li et al., 2024) leverage large multilin-
gual datasets to enhance performance across differ-
ent languages. However, problems like language
imbalance persist, with high-resource languages
dominating the training data, resulting in less effec-
tive outcomes for low-resource languages.

In this work, we explore cross-lingual adaptation
of an LLM, i.e., Llama-2 , focusing on Persian as
the target language. Persian, an Indo-European lan-
guage with a non-Latin script, presents unique chal-
lenges due to its linguistic distance from English,
the language most LLMs are primarily trained on.
Despite its rich literary history and widespread use,
Persian has not fully benefited from advancements
in LLMs, largely due to limited annotated data and
research efforts (Abaskohi et al., 2024). This makes
Persian an ideal case study for testing cross-lingual
adaptation. We evaluate several models, ranging
from a fully English-trained model fine-tuned on
Persian data to models with varying degrees of
alignment, such as freezing most parameters, and
models with additional pre-training combined with
Low-Rank Adaptation (LoRA) (Hu et al., 2022).
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These configurations create a spectrum of mod-
els with different levels of understanding of Per-
sian. Our goal was to examine the differences in
performance across these models and assess how
well knowledge transfer from English to Persian
occurred.

For this study, we use two datasets: one bilin-
gual dataset with parallel data in English and Per-
sian, and another monolingual dataset entirely in
Persian. The bilingual dataset allows us to per-
form cross-lingual training, helping the model learn
from aligned English-Persian data. In contrast, the
Persian-only dataset is used to fine-tune the model
solely on Persian tasks, providing insights into how
well the model performs with exclusive exposure
to the target language.

Although there is work adapting LoRA for Per-
sian (Abbasi et al., 2023; Rostami et al., 2024), they
typically focus on a single model for this language.
Our work, however, explores different settings for
model pre-training and instruction-tuning across
both classification and generation tasks, highlight-
ing the effort required to adapt models for specific
tasks.

Our findings indicate that for classification tasks,
aligning models with bilingual data is sufficient,
and further pre-training on monolingual data is
not crucial. However, when dealing with limited
data or generation tasks, further pre-training proves
beneficial and improves performance, as genera-
tion requires a deeper understanding of linguis-
tic structures. Moreover, evaluations of several
models that initially support the Persian language
reveal the weaknesses of Llama models for this
language, leaving it behind Gemma (Team et al.,
2024b) and Qwen models. However, the compar-
ison of our instruction-tuned model with state-of-
the-art systems underscores the potential of tar-
geted fine-tuning. Our model achieves performance
comparable to these advanced models across most
tasks. Notably, for simple yet unseen tasks like sen-
timent analysis, the model demonstrates an ability
to generalize patterns from other instructions. Nev-
ertheless, for more complex tasks that challenge
the model’s knowledge, it struggles to perform ef-
fectively without explicit instructions.

2 Related Work

Cross-lingual Transfer. The rapid advancement
of large-scale language models, such as GPT-3
(Brown et al., 2020) and GPT-4 (OpenAI et al.,

2024), has significantly enhanced the capabilities
of natural language processing (NLP). Moreover,
Recent contributions from the open-source com-
munity, including Llama (Touvron et al., 2023)
and Mistral (Jiang et al., 2023), show that open-
source LLMs can now compete effectively with
their closed-source counterparts. However, the
heavy focus on English limits the flexibility of
these models when incorporating new languages,
particularly low-resource ones, which may not be
initially supported in the training phase. Recent
studies have leveraged the proficiency of language
models in English to enhance performance on low-
resource languages. Some of these studies focus on
translating model input into English, demonstrating
notable improvements for low-resource languages
(Upadhayay and Behzadan, 2023; Abaskohi et al.,
2024). Another approach explores transliteration,
either incorporating it during the pre-training phase
(Moosa et al., 2023; Purkayastha et al., 2023) or
adapting it in the fine-tuning stage (Dabre et al.,
2022; Muller et al., 2021). Additionally, several
works have examined the impact of adding transla-
tion instructions alongside target language instruc-
tions, showing consistent gains in performance
(Ranaldi and Pucci, 2023; Ranaldi et al., 2023;
Zhu et al., 2023). In our study, in addition to fine-
tuning models using bilingual English-Persian in-
structions, we conduct additional experiments to
assess cross-lingual transfer between English and
Persian. While most previous studies focus on com-
bining translation instructions with target language
instructions, we exclude any instructions in the tar-
get language (Persian). Instead, we fine-tune the
models using only English and translation instruc-
tions to evaluate whether the model’s proficiency
in English and its ability to translate into Persian
can eliminate the need for explicit target language
instructions, particularly for a linguistically distant
language like Persian.

Language Adaptation. Multilingual language
models, such as mBERT (Pires et al., 2019), XLM-
R (Conneau et al., 2020), GPT-4 (OpenAI et al.,
2024), and Llama-3 (Li et al., 2024), rely on
large multilingual datasets to learn linguistic struc-
tures. However, they still face challenges like lan-
guage imbalance, where high-resource languages
dominate. Techniques like parameter-tuning and
parameter-freezing have been proposed to enhance
performance (Qin et al., 2024), though these meth-
ods may not always be suitable for extending mono-
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lingual models. Research has focused on efficiently
adding new languages to LLMs, with some studies
investigating ways to mitigate catastrophic forget-
ting when integrating new languages (Csaki et al.,
2023; Alexandrov et al., 2024). Others aim to im-
prove models for specific languages, such as Ara-
bic (Gosal et al., 2024), Chinese (Cui et al., 2023;
Ji et al., 2023), and Persian (Abbasi et al., 2023;
Rostami et al., 2024), through vocabulary exten-
sion and additional pre-training using parameter-
efficient fine-tuning (PEFT). These studies typi-
cally focus on a single language model and do not
systematically evaluate models across each training
phase. The work most similar to ours, (Tejaswi
et al., 2024), explores design choices like base
model selection and vocabulary size for low/mid-
resource languages. Nonetheless, it does not em-
phasize bilingual training during pre-training and
instruction tuning and instead performs full fine-
tuning, which limits its focus on the constraints of
PEFT techniques.

3 Data

Building on the advancements outlined in related
work, we collected data for both pre-training and
instruction tuning to extend the LLM to Persian.
This section introduces the datasets used for pre-
training (Figure 1a) and instruction tuning (Figure
1b), utilizing both English and Persian texts.

3.1 pre-training

pre-training data can significantly influence the per-
formance of models. To ensure a wide range of
data, we collect the pre-training data from five dif-
ferent categories: news, poems, Wikipedia, Twitter,
and data collected by crawling web pages. The data
were collected from seven different sources includ-
ing Leipzig1, LSCP (Abdi Khojasteh et al., 2020),
Miras (Sabeti et al., 2018), Farsi-Poems2, VOA
(Voice of America) 3, Wikipedia4 and YJC-news5.

All of the documents have been pre-processed.
Our cleaning pipeline follows the procedure intro-
duced in (Raffel et al., 2020). We first extract sen-
tences from each document and remove those with

1https://corpora.uni-leipzig.de/
2https://github.com/amnghd/Persian_poems_

corpus
3https://jon.dehdari.org/corpora/
4https://github.com/Text-Mining/

Persian-Wikipedia-Corpus
5https://github.com/mohammadiahmad/

persian-dataset

Perian source Type Original pre-processed

Leipzig news/commoncrawl 424.36 MB 414.93 MB

LSCP twitter 2.73 GB 1.27 GB

MirasText commoncrawl 14.62 GB 7.34 GB

FarsiPoems poem 60.72 MB 55.59 MB

VoaPersian news 66.48 MB 59.13 MB

Wikipedia wikipedia 845.10 MB 622.59 MB

YJCNews news 2.85 GB 2.15 GB

Total Data size 21.6GB 12.96GB

Table 1: pre-training data before and after pre-
processing.

fewer than five words. Additionally, sentences con-
taining special keywords from Persian web pages
or characters indicating a piece of code were re-
moved. Finally, sentences with a probability of
being Persian of less than 70% were removed. This
threshold was chosen to include some English texts
alongside Persian texts, ensuring the data was not
entirely in Persian. It is worth noting that only
unique sentences were kept, and duplicates were
removed. Table 1 indicates our collected data for
the pre-training.

In addition to Persian datasets, we also lever-
age parallel English-Persian corpora to align newly
added Persian embeddings with English ones.
The parallel corpora were collected from MIZAN
(Kashefi, 2018), TEP (Pilehvar et al., 2011), and
PEPC (Karimi et al., 2018). Table 2 includes the
details of our parallel datasets.

Source Size (En) Size (Fa)

Mizan 62.55 MB 106.97 MB
TEP 20.11 MB 32.40 MB
PEPC 24.55 MB 36.42 MB

Total 105.38 MB 173.55 MB

Table 2: The parallel English-Persian datasets after
cleaning and deduplication.

3.2 Instruction Tuning
In order to enable the model to follow instructions,
we also perform instruction tuning. According to
Wang et al. 2023, the more diverse the training
data in the instruction tuning phase, the stronger
and more generalizable the resulting model will be.
Unfortunately, the variety of instructions for the
Persian language is very limited. Consequently, in

https://corpora.uni-leipzig.de/
https://github.com/amnghd/Persian_poems_corpus
https://github.com/amnghd/Persian_poems_corpus
https://jon.dehdari.org/corpora/
https://github.com/Text-Mining/Persian-Wikipedia-Corpus
https://github.com/Text-Mining/Persian-Wikipedia-Corpus
https://github.com/mohammadiahmad/persian-dataset
https://github.com/mohammadiahmad/persian-dataset
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(a) Persian pre-training data sizes: 12.96GB monolingual
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(b) Number of instructions used: 184,496 in English and
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Figure 1: Statistics of datasets used for pre-training and instruction-tuning.

addition to Persian instructions, we also utilized
the English ones. For English instructions, the data
were compiled from Alpaca (Taori et al., 2023),
Dolly (Conover et al., 2023), OpenAssistant (Köpf
et al., 2024), and Super Natural Instructions (Wang
et al., 2022). For Persian instructions, translated
and cleaned versions of these corpora, as well as
PN-Summary (Farahani et al., 2021) were used.
Table 3 shows the number of instructions used in
both languages.

Source Count (En) Count (Fa)

Alpaca 51,902 30,209

Dolly 15,015 14,486

Super-Natural-Instructions 106,658 113,230

OpenAssistant 10,894 34,847

PN-Summary - 5,198

All 184,496 197,970

Table 3: Number of instructions in both English and
Persian languages, used for instruction tuning.

4 Training Details

Our goal is to train a model that can comprehend
the Persian language with limited training data and
transfer the knowledge it has in English to answer
Persian tasks. To achieve this, we leverage the
Llama-2-7B model, which performs well in En-
glish but does not understand Persian properly. We
then extend the model’s vocabulary with Persian
words, pre-train it with both monolingual and bilin-
gual datasets, and finally, instruction-tune it with
instructions in both languages.

4.1 Vocabulary Expansion

To enhance the model’s ability in the Persian lan-
guage and also reduce training and inference time,
we first train a SentencePiece (Kudo and Richard-
son, 2018) model to extract Persian tokens from
4GB of Persian data, randomly selected from our
Persian corpora introduced in Section 3.1. We
then merge the 20,000 new Persian tokens with the
32,000 original model vocabulary tokens. About
10% of the new tokens overlapped with the original
model vocabulary, resulting in a total of 49,816 to-
kens in the model. Finally, the model embeddings
are expanded to include the additional Persian vo-
cabulary.

4.2 Token Prediction

We perform two phases to train our model with the
objective of the next token prediction. In the first
phase, the focus is on learning new Persian repre-
sentations and aligning them with English embed-
dings, while the second phase emphasizes Persian
text generation.

4.2.1 Embedding Alignment
To obtain representations for Persian tokens and
align them with the English ones, all transformer
layers are frozen, and only the heads and embed-
dings are trained. The training is done using mono-
lingual and bilingual next-token prediction. In the
first step, the Persian corpora are used to improve
the embeddings for Persian tokens. In this stage,
the model only needs to predict Persian words. In
the second step, the model is trained for token pre-
diction in a bilingual manner. First, the model
predicts Persian text. Then, it generates English
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sentences which are translations of the Persian sen-
tences. Throughout this process, the model is pe-
nalized based on our parallel data during training.
This approach not only maintains the model’s pro-
ficiency in English but also aligns the learned rep-
resentations for Persian with English ones. For this
step, we leverage the parallel dataset introduced in
section 3.1.

4.2.2 Text Generation
Training the heads and embeddings alone is not
sufficient for generating Persian text. The model
obtained from the previous section has limited
knowledge about the semantic and syntactic struc-
ture of Persian sentences (see Figure 2). There-
fore, we continue training the model by adding
weights from LoRA using a monolingual Persian
dataset. At this stage, in addition to fully updat-
ing the heads and embedding layers, the LoRA
weights are also updated across all layers. We
use LoRA to first accelerate the training time and
reduce the required resources, and second, to main-
tain the model’s capabilities for the English lan-
guage by only changing limited weights. Finally,
the model is instruction-tuned using both Persian
and English instructions to align the two languages.
Notably, around 24% of the instructions are related
to English ↔ Persian translations.

Figure 2: Generated text before and after LoRA fine-
tuning. Models are tasked with completing the sentence
in the orange box. The text generated without LoRA
does not follow the expected syntactic and semantic
structure.

4.3 Configuration

Model training and fine-tuning in all stages are
performed using eight V100 GPU units. To opti-
mize memory usage, the Zero Redundancy Opti-

mizer (Rajbhandari et al., 2020) was applied, and
the weights’ gradients, along with the optimizer’s
variables, were distributed among the processing
devices. Moreover, all variables were stored in half-
precision floating-point format (fp16). In all stages
where the LoRA model was used, the rank was
8, and the value of α was 32 (the weight update
coefficient was α/r = 4). Table 4 indicates the
percentage of trainable parameters in each step.

Parameter Alignment pre-training Instruction-tuning

All 6,884,372,480 6,904,360,960 6,904,360,960

Trainable 408,100,864 428,089,344 428,089,344

Percentage 5.93% 6.20% 6.20%

Table 4: Percentage of trainable parameters in each
stage. pre-training and instruction-tuning are done with
LoRA.

5 Evaluations

Our evaluations include two types of tasks: classi-
fication and text generation. The assessments are
performed on various models obtained from each
phase (see section 4). This section presents the
experiments as well as our analysis of different
training strategies.

5.1 Models and Downstream Tasks
For precise evaluation of each step taken for train-
ing, as well as examining the extent of information
transfer from English to Persian, different models
are examined. Below are the models along with
their descriptions:

• Llama-2. The original Llama-2 model with
32k vocabs and limited persian tokens.

• Llama-2-noLoRA. The original Llama-2
model without the extracted Persian tokens.
During the instruction-tuning phase in all the
experiments, the model only updates its head
and embedding while freezing the transformer
layers. The model is not trained on our pre-
trained data.

• Em-aligned. The model is obtained after
adding the Persian tokens and further train-
ing using a monolingual and bilingual token
prediction approach. In this model, only the
heads and embeddings are updated, and LoRA
is not applied.
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Training Instructions: English + Persian

English Tasks Persian Tasks

Random Llama-2 Em-aligned Fa-pretrained Random Llama-2 Em-aligned Fa-pretrained

*Multiple choice 0.22 0.28 0.26 0.26 0.25 0.26 0.29 0.26
*Sentiment 0.33 0.59 0.55 0.54 0.50 0.74 0.66 0.71
Entailment 0.33 0.70 0.88 0.81 0.33 0.67 0.73 0.72
Summarization - 0.35 0.32 0.23 - 0.26 0.33 0.36
Translation - 0.12 0.18 0.20 - 0.25 0.30 0.29

Avg.Classification 0.29 0.52 0.56 0.54 0.36 0.56 0.56 0.56
Avg.Generation - 0.23 0.25 0.21 - 0.25 0.31 0.32

Table 5: Performance comparison of various models on five downstream tasks in English and Persian, reported
after instruction-tuning with both English and Persian instructions. Stars (*) denote tasks that are unseen during
instruction-tuning. Translation refers to the English → Persian translation task for the English and Persian →
English for the Persian part.

• Fa-pretrained. The model is obtained by
further pre-training the Embedding-aligned
model. The pre-training involved updating
the entire heads and embeddings as well as
the LoRA weights, with the objective of Per-
sian token prediction.

The performance of these models is examined
on five different tasks, including multiple-choice
question answering, sentiment analysis, and tex-
tual entailment (classification tasks), as well as
summarization and translation (generation tasks).
For the Persian language, the models are evalu-
ated on multiple-choice question answering, tex-
tual entailment, and translation using the Super-
Natural-Instructions Dataset. Sentiment analysis is
done using reviews gathered from the Snappfood
website 6, and the PN-Summary Dataset is em-
ployed for the summarization task. For the English
language, all tasks are selected from the Super-
Natural-Instructions dataset. Additionally, to as-
sess the generalization ability of our models, we ex-
clude sentiment analysis and multiple-choice tasks
during instruction tuning, utilizing them solely in
the test phase. Throughout all experiments, accu-
racy is used as the evaluation metric for classifi-
cation tasks, while BLEU (Papineni et al., 2002)
score is utilized for text generation tasks.

5.2 Performance Analysis of Models
Table 5 presents the performance of models ob-
tained from different steps on the downstream tasks.
The results are reported after fine-tuning the mod-
els with instruction data introduced in Section 3.2.
As expected, the results suggest that further pre-

6https://snappfood.ir/

training on Persian data improves the translation
ability of the model, especially when performing
embedding alignment. However, this can lead to a
performance drop when summarizing in English,
as some model weights will be allocated to the Per-
sian language. Interestingly, for the textual entail-
ment task, models pre-trainedor aligned with Per-
sian data outperform the original Llama-2 model in
both English and Persian languages, meaning that
incorporating the Persian language benefits even
the English task. This improvement could be at-
tributed to the fact that the two models, capable of
understanding both languages to some extent, uti-
lize Persian instructions during training, while the
Llama-2 model only relies on English instructions
and does not effectively learn from all instructions.
It should be noted that, for unseen tasks during
training (multiple-choice and sentiment analysis),
the performance varies depending on the defined
task.

It is evident that for sentiment analysis, all mod-
els significantly outperform a random model. In
contrast, for multiple-choice question answering,
which is considerably more challenging than sen-
timent analysis, this difference is not noticeable.
Overall, the average performance of the models
indicates that the Em-Aligned model performs the
best in English evaluation, benefiting from its rel-
ative comprehension of Persian without compro-
mising its English abilities, as only heads and em-
beddings were changed during its training. Bilin-
gual training maintains a balance in language ca-
pabilities, resulting in a minor 3% drop in En-
glish summarization score compared to the base
model. In contrast, the Fa-pretrained model, fo-
cusing more on Persian, exhibits a significant 12%

https://snappfood.ir/
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Training Instructions : English + Translation

English Tasks Persian Tasks

Random
Llama-2 -
noLoRA

Llama-2
Em-

aligned
Fa-

pretrained
Random

Llama-2 -
noLoRA

Llama-2
Em-

aligned
Fa-

pretrained

*Multiple choice 0.22 0.28 0.25 0.28 0.27 0.25 - 0.18 0.32 0.29
*Sentiment 0.33 0.55 0.56 0.59 0.50 0.50 - - 0.76 0.80
Entailment 0.33 0.45 0.46 0.83 0.67 0.33 - - 0.33 0.32
Summarization - 0.15 0.36 0.33 0.30 - - 0.12 0.16 0.18
Translation - 0.07 0.12 0.19 0.19 - 0.21 0.26 0.29 0.28

Avg.Classification 0.29 0.43 0.42 0.56 0.48 0.36 - 0.06 0.47 0.47
Avg.Generation - 0.11 0.24 0.26 0.24 - 0.10 0.18 0.22 0.23

Table 6: Performance comparison of different models after fine-tuning with English and translation instructions,
excluding Persian ones. Dashes (-) indicate that the model was unable to follow the given instruction, resulting in
repeated or translated input in the output.

drop in English summarization. Consequently, the
embedding-aligned model outperforms the other
models on average. However, for Persian, differ-
ences between models are only noticeable in gener-
ation tasks, while classification tasks demonstrate
relatively equal performance. This suggests that
models further pre-trainedon Persian data may not
yet adequately compensate for the loss of English
capabilities.

5.3 Knowledge Transfer

One of the existing challenges in the Persian lan-
guage is the scarcity of data, especially scientific
and domain-specific ones. Therefore, in another
experiment, we evaluated the ability of each model
to transfer knowledge from English to Persian.

For this purpose, all Persian instructions are re-
moved, and each model is trained only with the
English instructions along with the English ↔
Persian translations. Table 6 represents the scores
of our models under this setting. The results indi-
cate that the Em-aligned model achieved the best
results in most cases for English tasks. This find-
ing suggests that adding another language, without
making significant changes to the original model
and aligning representations using parallel data en-
hances the capability of models in learning. As
observed, in most tasks, this model has even out-
performed the original Llama-2 model, which pri-
marily focuses on English. However, it should be
noted that the model still lags behind the original
model in text summarization, which heavily relies
on language comprehension.

When relying on transferring knowledge from
English to Persian for Persian instructions, the re-
sults indicate a significant performance drop in
Persian tasks when Persian instructions are re-

moved (see Table 5 for comparison). Additionally,
the rows corresponding to Llama-2 and Llama-2-
noLoRA models contain a large number of dashes,
indicating that these models cannot effectively
transfer their English knowledge to perform Per-
sian tasks due to their limited understanding of the
Persian language (they have a restricted number of
Persian tokens).

Em-aligned and Fa-pretrained models, which
possess greater knowledge in Persian, generally
show improvements, although their performance
varies with task complexity. For a simple senti-
ment analysis, the models can perform classifica-
tion with high accuracy, but they struggle with the
more complex textual entailment task. In this case,
the models often learn only the format of the ex-
pected outputs without truly understanding the in-
put sentences, leading to ineffective classification.
It should be noted that due to our limitations in
training resources, the obtained models may not
have a very high proficiency in Persian. If stronger
models with more parameters are used for training,
the transfer of information from English to Persian
may occur at deeper levels.

5.4 Input Translation

This section analyzes the impact of the language
used for instructions and inputs given to the models.
To this end, we examine the effect of translating
instructions to English (with inputs in Persian), as
well as translating both instructions and inputs to
assess the performance of our models.

The results of our experiments are indicated in
Table 7.

It can be observed that translating inputs into
English enhances model performance. Notably,
translating both instructions and inputs leads to a
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Multiple
Choice

*Sentiment Entailment Summarization
Avg.

Classification

Random 0.25 0.50 0.33 - 0.36

Translated Instructions

Llama-2 0.25 0.77 0.59 0.24 0.54
Em-aligned 0.29 0.66 0.75 0.33 0.57
Fa-pretrained 0.32 0.76 0.62 0.37 0.57

Translated Instructions + Inputs

Llama-2 0.44 0.81 0.70 0.36 0.65
Em-aligned 0.44 0.74 0.75 0.34 0.64
Fa-pretrained 0.41 0.78 0.50 0.33 0.56

Table 7: Translation effect of instructions and inputs.
The original Persian test data is used for the experi-
ments.

significant improvement, especially for the Llama-
2 and Em-aligned models, which maintain their
English capabilities due to limited training on Per-
sian data. The average accuracy achieved on clas-
sification tasks for the two models has reached
approximately 64%, representing a nearly 8% in-
crease compared to the accuracy obtained in the
previous section (where all inputs and instructions
were in Persian). However, in the summarization
task, the highest score is achieved by only translat-
ing the instructions and utilizing the Fa-pretrained
model, while translating the inputs resulted in a
performance drop for this model. This suggests
that, unlike classification tasks, aligning the input
language with the model’s proficiency in that lan-
guage is crucial for the generation task and leads
to an improvement in performance.

5.5 Training with Limited Instructions

Collecting data for training language models is a
challenging task, especially for low-resource lan-
guages. This emphasizes the development of mod-
els that can learn and extract patterns from text us-
ing minimal training data. To this end, we selected
100 Persian instructions from multiple-choice ques-
tions, which none of our models had seen during
training, and compared their performance when
fine-tuned with the limited instructions.Table 8 in-
dicates the results. In this table, pre-trained refers
to models that did not see instruction data during
training, and Instruction-Tuned represents models
that were further fine-tuned with both English and
Persian instructions.

The results show that while the Fa-pretrained
model achieves the worst performance among pre-
trainedmodels, it achieves the best results after the
instruction tuning phase. This indicates that instruc-
tion tuning improves the Fa-pretrained model more

than other models. Comparing the results with
the previous section, where the Em-aligned model
achieved the best results for English classification
tasks, we can conclude that when using limited
data for training (Persian in our experiments), the
model’s ability to comprehend the target language
is the key factor for performance. However, when
the model is trained on a large dataset and has a
great understanding of a language (English in our
experiments), adding another language and align-
ing the embeddings while slightly adjusting the
model weights might lead to improvements in clas-
sification tasks, although it causes the degradation
of the model in text generation.

Math Literature Knowledge Average

pre-trained

Llama-2 0.53 0.53 0.54 0.53
Em-aligned 0.43 0.60 0.51 0.51
Fa-pretrained 0.37 0.46 0.48 0.44

Instruction-Tuned

Llama-2 0.65 0.63 0.64 0.64
Em-aligned 0.64 0.62 0.67 0.64
Fa-pretrained 0.64 0.64 0.73 0.67

Table 8: Performance comparison of pre-trained and
instruction-tuned models. The questions cover math,
literature, and general knowledge in Persian language.

Along with the experiments discussed in previ-
ous sections, we also examined the Fa-pretrained
model in conversational settings. The model in-
corporates information specific to Iranian culture.
For example, it correctly generated the recipe for
Khoresht Gheymeh, an Iranian dish. However, it
has some drawbacks such as hallucinations and text
repetition. Please refer to Appendices A and B for
more details.

6 Persian Task Performance Across
Models

We also compare the results of our best model (Fa-
pretrained, fine-tuned with both English and Per-
sian instructions) with models that initially support
the Persian language. The comparison includes
models of approximately the same size as ours
(Llama-3.1, Mistral, Qwen2.5, Gemma2) as well
as larger-scale models (Gemini 1.5 (Team et al.,
2024a) and ChatGPT).

The results are presented in Table 9. Among all
models, Gemini 1.5 demonstrates excellent under-
standing of the Persian language, surpassing other
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Fa
pre-trained

Llama-3.1
8B

Mistral
7B

Qwen2.5
7B

Gemma2
9B

Gemini 1.5
Flash

GPT-3.5 Random

*Multiple choice 0.26 0.25 0.26 0.26 0.27 0.72 0.32 0.25
*Sentiment 0.71 0.49 0.49 0.62 0.68 0.78 0.73 0.50
Entailment 0.72 0.34 0.35 0.44 0.54 0.71 0.36 0.33
Summarization 0.36 0.26 0.17 0.44 0.62 0.20 0.14 -
Translation 0.29 0.23 0.29 0.29 0.28 0.29 0.29 -

Avg. Classification 0.56 0.36 0.37 0.44 0.50 0.74 0.47 0.36
Avg. Generation 0.32 0.24 0.23 0.36 0.45 0.24 0.21 -

Table 9: Performance comparison of different models on Persian tasks. Fa-pretrained refers to the model further
pre-trained on monolingual Persian data and instruction-tuned with both English and Persian tasks. Comparisons
are made among models approximately the same size as ours, as well as state-of-the-art models. Starts (*) denote
tasks the model has not encountered during instruction tuning. Underlines indicate where our model performs
comparably with the best-performing state-of-the-art model.

models in most tasks (except summarization, where
its performance is comparatively lower).

When comparing the smaller models, Llama-3.1
and Mistral perform poorly on our Persian tasks.
However, Gemma2 delivers promising results, even
surpassing state-of-the-art models in generation
tasks. Both Qwen2.5 and Gemma2 outperform our
model in generation tasks, but our model performs
slightly better in classification tasks. Although we
use the instruction-tuned versions of these models,
we acknowledge that the improvement in classifica-
tion tasks over the two models may be influenced
by similarities between the training and test sets,
such as instruction formats.

Nevertheless, the comparison between our
model and Gemini 1.5 highlights the potential of
targeted fine-tuning to enhance the performance
of open-source models on low-resource languages.
Our model performs on par with the state-of-the-art
Gemini 1.5 and, for unseen, simple classification
tasks like sentiment analysis, it can generalize pat-
terns from other instructions (though this is not the
case for more complex tasks).

7 Conclusion

This study explores the impact of incorporating a
new language (Persian) into a model with limited
or no capability in that language. We evaluated
various training strategies and the effectiveness of
transferring knowledge from a strong language (En-
glish) to a weaker one. Our findings reveal that
while adding another language, considering bilin-
gual alignment, can enhance classification perfor-
mance—sometimes even surpassing the original
model’s accuracy—this alignment negatively im-
pacts the model’s English text generation. Addi-

tionally, our results suggest that with limited train-
ing data, the model’s initial strength is crucial, and
cross-lingual alignment provides minimal benefits
for the low-resource language. Our experiments
relying on the model to transfer its English knowl-
edge to perform Persian tasks yields only limited
success, being effective mainly for simple classi-
fication tasks. Moreover, evaluations of several
recent models show that Llama models may not
be the best base for achieving a significant gain in
Persian language understanding, while Gemma and
Qwen models demonstrate better performance on
Persian tasks. Finally, our comparisons with state-
of-the-art models highlight the potential of targeted
fine-tuning to narrow the gap for low-resource lan-
guages.

8 Limitations

This study faced several limitations that impacted
the effectiveness of the models. The primary con-
straint was the limited time and hardware resources,
which necessitated using a low rank (8) for the
LoRA models to manage memory usage, poten-
tially restricting their capacity. A higher rank for
the LoRA models or pre-training all weights could
lead to stronger models, particularly for the Persian
language, as it would allow the models to better cap-
ture complex linguistic structures. However, these
adjustments would require significantly more com-
putational power and time, which were beyond the
scope of this study. Additionally, there was a lack
of diversity in the Persian instruction data, resulting
in most of the data being used for fine-tuning rather
than evaluation. These factors highlight the need
for further experimentation and more comprehen-
sive data to enhance model performance.
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A Model generations

Figure 3: An example of the model conversation. The results are the best generations from multiple attempts.
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Figure 4: Model lack of Consistency

Figure 5: Model Hallucination

Figure 6: An example of model repetition
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B Model generations (English translations)

Figure 7: An example of model conversation



8883

Figure 8: Model lack of Consistency

Figure 9: Model Hallucination (The answer about the birthplace of Molana is incorrect.)
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Figure 10: An example of model repetition
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