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Abstract

Large Language models (LLMs) have become
a research hotspot. To accelerate the inference
of LLMs, storing computed caches in memory
has become the standard technique. However,
as the inference length increases, growing KV
caches might lead to out-of-memory issues.
Many existing methods address this issue
through KV cache compression, primarily by
preserving key tokens throughout all layers to
reduce information loss. Most of them allocate
a uniform budget size for each layer to retain.
However, we observe that the minimum budget
sizes needed to retain essential information
vary across layers and models based on the
perspectives of attention and hidden state
output. Building on this observation, this
paper proposes a simple yet effective KV
cache compression method that leverages layer
uncertainty to allocate budget size for each
layer. Experimental results show that the
proposed method can reduce memory usage of
the KV caches to only ∼20% when compared
to Full KV inference while achieving nearly
lossless performance.

1 Introduction

Large language models (LLMs) (Radford et al.,
2018; Touvron et al., 2023; Zhang et al., 2023a;
Brown et al., 2020; Huang et al., 2024) have been
employed across a wide range of natural language
processing tasks, including code completion
(Rozière et al., 2023) and question answering
(Kamalloo et al., 2023; Jiang et al., 2021; Su
et al., 2019). To accelerate inference, it is
common practice to store precomputed key and
value hidden states in memory as a KV cache.
However, as input lengths increase during long-
context modeling (Peng et al., 2023; Peng and
Quesnelle, 2023; Fu et al., 2024; Zhong et al.,
2024; Zhang et al., 2024a), the size of the KV
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Figure 1: Comparison of the proposed method
(ZigZagKV, Right) with previous PartialKV inference
methods (Left). Most existing PartialKV methods
allocate a uniform cache size per layer, whereas
ZigZagKV dynamically adjusts the cache size based
on layer uncertainty. “L0" and “L31" refer to Layer 0
and Layer 31, respectively. The numbers in brackets
represent importance scores from the current token to
prefix tokens, sorted from high to low.

caches grows proportionally, leading to memory
consumption and out-of-memory issues. For
instance, maintaining a KV caches for 100K tokens
in GPU memory for the LLaMA-2 7B model
requires over 50GB of memory, compared to less
than 1GB for a 2K context.

A straightforward solution to mitigate these
memory issues is to reduce the size of the KV
caches, thereby decreasing memory usage (Xiao
et al., 2023; Liu et al., 2024; Li et al., 2024;
Chen et al., 2024; Ren and Zhu, 2024; Zhang
et al., 2024b; Yang et al., 2024). The key to
these methods lies in evicting nonessential KV
caches while minimizing information loss caused
by the eviction process. As depicted in Figure 1(a),
the majority of these approaches uniformly treat
each layer and preserve the top-B most important
tokens at each respective layer. However, it remains
unclear whether the strategy of equally preserving
the top-B important tokens across all layers is an
effective way to optimize information retention
during the compression process.

To answer this question, we investigate the
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impact of token removal on information loss from
the perspectives of attention mechanisms and
hidden state outputs across different layers. Our
empirical results reveal that the minimum required
budget size varies across layers and models to
maintain the same level of attention or hidden state
output loss as in fullKV inference.

Building on these findings, we propose a novel
KV caches compression method, called ZigZagKV,
which minimizes information loss by dynamically
allocating budget size for each layer. As illustrated
in Figure 1(b), the key idea of ZigZagKV is to
adjust the budget size based on the uncertainty of
each layer. For instance, Layer 0, which exhibits
more diffuse attention (i.e., higher uncertainty),
is allocated a larger budget to retain its KV
caches and reduce information loss. In contrast,
layers with more concentrated attention (i.e., lower
uncertainty) receive smaller budgets. In practice,
the proposed method first assigns an initial budget
to each layer and then dynamically adjusts the
remaining cache based on layer uncertainty. Ex-
periments across various benchmarks demonstrate
that ZigZagKV outperforms existing partialKV
inference methods.

Our key contributions can be summarized as
follows:

• We analyze the differences in minimum
budget sizes required to maintain information
across layers and models, considering both at-
tention mechanisms and hidden state outputs.

• Based on these observations, we propose
ZigZagKV, a simple yet effective KV caches
compression method that dynamically allo-
cates budget size to each layer based on its
uncertainty.

• Experimental results show that ZigZagKV out-
performs existing KV cache compression
methods on two widely-used benchmarks:
Needle-in-a-Haystack and LongBench.

2 Problem Formulation

2.1 FullKV Inference

Large Language Model (LLM) inference operates
in an autoregressive manner. During training, the
upper triangular part of the attention matrix is
masked to ensure that each token only attends to
itself and the preceding tokens. At inference time, a
common approach is to cache the key-value vectors

computed up to the current step and append the
newly computed vectors to this cache. Specifically,
at each time step, the computed key states and value
states are stored as a Key-Value (KV) Cache, which
can be formalized as follows, where h denotes the
number of attention heads and i ∈ [1, h] indexes
these heads, X represents the input embeddings,
WK

i is the key projection matrix for head i, and
W V

i is the value projection matrix for head i:

Ki = XWK
i , Vi = XW V

i .

Then, for the computation of the next token,
x is mapped through the query projection WQ

i ,
key projection WK

i , and value projection W V
i as

follows:

qi = xWQ
i , ki = xWK

i , vi = xW V
i .

The key and value states are then updated based on
the previous key-value (KV) Cache:

Ki = Cat[Ki : ki], Vi = Cat[Vi : vi].

Finally, the updated query, key, and value states are
used to compute the attention weights.

Ai = Softmax(
qiK

T
i√

dh
).

y =

i∈[1,h]∑
AiViW

O
i . (1)

2.2 PartialKV Inference

In fullKV inference, the size of the key-value
cache grows linearly with the total sequence length,
which can lead to out-of-memory issues. Recent
studies have shifted towards partialKV inference
to address this. Given a budget size of B for
each attention head, partialKV inference maintains
the key-value cache by applying a cache eviction
policy, as defined below:

K̂i, V̂i = Eviction(Ki, Vi).

Using the evicted key-value cache, attention
weights are then calculated as follows:

ŷ =

i∈[1,h]∑
ÂiV̂iW

O
i , (2)

where Âi = Softmax( qiK̂i
T

√
dh

).
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Figure 2: LMBA across various Layers of Mistral and
LLaMa on 2WikiMQA dataset.

3 Rethinking PartialKV Inference

Compared to fullKV inference, partialKV infer-
ence inevitably incurs some degree of information
loss due to the reduction of the key-value (KV)
cache. To mitigate this information loss, many
partialKV inference strategies seek to minimize
the discrepancy from fullKV inference with a
fixed memory budget. For example, some
approaches (Zhang et al., 2023b; Liu et al., 2024;
Li et al., 2024) focus on retaining tokens with the
highest attention scores, aiming to preserve the
most crucial information from fullKV and thus
reduce attention loss, which in turn helps minimize
overall information loss. Typically, these methods
heuristically assign the same budget size B to each
attention head across different layers, retaining the
Top-B most important tokens.

However, it is uncertain whether preserving
the top-B tokens with the highest scores equally
across all heads in each layer effectively optimizes
information retention. In the following section,
we will examine the impact of token removal
on information loss, considering the attention
mechanisms and hidden state outputs across
different layers.

Layer-Specific Budget Setting for Attention
Retention. Firstly, we investigate the relationship
between the budget size to retain KV caches and
information loss across different layers from the
perspective of attention mechanisms. Specifically,
we calculate the Minimum Budget size required to
maintain 90% of the total Attention score (MBA)
for each head, which corresponds to the attention
loss as 0.1. This is formally defined as:

MBA = argmin
I⊆[n]

{
|I|

∣∣ 1.0−∑
i∈I

ai < 0.1

}
.
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Figure 3: LMBO across various Layers of Mistral and
LLaMa on 2WikiMQA dataset.

Next, we compute the average MBA across all
heads within a layer to determine the required
budget size for that layer, termed Layer Minimum
Budget size to maintain Attention score (LMBA).
The LMBA is formally defined as:

LMBA =
1

h

h∑
i=1

MBAi. (3)

A higher LMBA indicates that more tokens are
required to maintain an attention loss of 0.1 in
that layer, suggesting a larger budget allocation.
Empirically, we analyze the LMBA on two widely-
used large language models, Mistral-7B-Instruct-
v0.3 (Jiang et al., 2023)(Mistral) and LLaMA-3.1-
8B-Instruct (Dubey et al., 2024)(LLaMA), using
200 samples from the 2WikiQA dataset (Ho et al.,
2020). As illustrated in Figure 2, the LMBA
varies across different layers: it initially requires
a relatively larger budget in the lower layers to
maintain an attention loss of 0.1, then decreases
in the middle layers, increases again in the higher
layers, and decreases. This phenomenon indicates
that the LMBA varies across different layers to
maintain the same level of attention loss. This
suggest that applying a uniform budget size
B across all layers to retain the top-B tokens
may not be optimal for preserving attention
information.

Layer-Specific Budget Setting for Hidden State
Output Retention. Next, we investigate the
impact of budget size on information loss across
different layers, focusing on the output of hidden
states. Similarly, we examine each layer to
determine the minimal budget size required for
achieving a similarity of at least 90% between
partialKV and fullKV inference outputs. This
threshold is denoted as the Layer-wise Minimum
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Budget for Output (LMBO). The formal definition
of LMBO is as follows:

LMBO = argmin
B

{
B
∣∣ 1.0− similarity(y, ŷ) < 0.1

}
.

Where y represents the hidden state output in
fullKV inference, as shown in Equation 1, and ŷ is
the hidden state output inf partialKV inference,
as illustrated in Equation 2. The experimental
results, depicted in Figure 3, indicate that similar
to LMBA, the LMBO varies across different layers.
In the case of LLaMa, the cache size required to
maintain information stability is minimal initially
but increases with layer depth. Conversely, for
Mistral, the trend of required cache size to preserve
stability is consistently upward as layer depth
increases. This phenomenon suggests that LMBO
varies across different layers and model types to
maintain a consistent level of hidden state output
information loss. Therefore, it may not be optimal
to apply a uniform budget size to retain the top-
B tokens across all layers for preserving hidden
state output information.

4 ZigZagKV

4.1 Dynamic Budget Allocation Based on
Layer Uncertainty

The analysis in Section 3 demonstrates that using
a uniform budget size B across all layers to
select the top-B tokens is suboptimal for retaining
information, both in terms of attention and hidden
state outputs. Most current partialKV methods
use this uniform approach, which may lead to
unnecessary information loss. For instance, Figure
1(a) illustrates that certain layers, particularly
the first one, may risk discarding important
information. In contrast, layers where information
is concentrated on specific tokens do not require
the same budget size allocation.

To mitigate this issue, we introduce ZigZagKV,
a dynamic method for allocating the budget
size more effectively across layers to enhance
information retention. Given an average budget
size B, we determine the uncertainty in each layer
l using the Layer Minimum Budget size to maintain
Attention (LMBA) as defined in Equation 3. The
uncertainty is then used to adjust the budget size
for each specific layer as described below:

uncertaintyl =
LMBAl∑

i ∈ [1, L]LMBAi
. (4)

B̂l = B · L · uncertaintyl. (5)

Where L represents the total number of layers.
As illustrated in Figure 1(b), layers with higher
uncertainty are allocated a larger portion of the
budget, while those with less uncertainty receive a
smaller share.

Allocating the budget solely based on layer
uncertainty can result in shallow budget sizes for
layers with lower uncertainty, potentially leading to
inadequate information retention. For example, if
the LMBA value of one layer is significantly higher
compared to others, Equation 5 could allocate
an excessively large budget to this layer, leaving
the remaining layers with limited resources and
potentially leading to information loss. To resolve
this, we propose a mechanism where a fixed
minimum budget, Bbound, is allotted to each layer
to protect against information degradation. The
leftover budget is then distributed dynamically,
informed by the layer uncertainty. The allocation
strategy is formulated as follows:

B̂l = Bbound+(B−Bbound) ·L ·uncertaintyl, (6)

where uncertaintyl is calculated as shown in
Equation 4. By incorporating Bbound, the method
ensures that each layer receives a guaranteed
minimum budget to preserve information while
allowing dynamic adjustments to optimize infor-
mation retention based on uncertainty.

4.2 KV Cache Selection
After determining the budget size for each layer,
the next is to select the crucial tokens for each
head of specific layers. The core concept of
KV cache selection involves dynamically updating
the KV cache by leveraging cumulative attention
scores (Zhang et al., 2023b; Li et al., 2024; Zhang
et al., 2024b; Wan et al., 2024). Following Li
et al. (2024) using cumulative attention scores of
instruction tokens as the importance scores, we
adopt a similar approach by using the cumulative
attention scores of the last w tokens to assign
importance scores to the prefix tokens. Specifically,
given the budget size calculated by Equation 6, for
each attention head h, the importance score for
retaining the i-th token in the KV cache, denoted
as shi , is computed as:

shi =
∑

j∈[n−w,n]

Ah
ij (7)

Where n represents the sequence length of the
prompt, and [n− w, n] represents the range of the
last segment (instruction tokens) in the prompt.
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5 Experiments

5.1 Backbone LLMs
We compare the proposed method against several
baselines using two open-source LLMs, specifi-
cally LLaMa-3.1-8B-Instruct (Dubey et al., 2024)
and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023).

5.2 Benchmarks
The proposed approach is evaluated on two
widely used benchmarks: Needle-in-a-Haystack
and LongBench.

Needle-in-a-Haystack The Needle-in-a-
Haystack testing (Kamradt, 2023; Fu et al., 2024)
challenges the model to accurately retrieve a
specific sentence (the "needle") hidden within
a lengthy document (the "haystack"), with the
sentence placed at a random location. This
test evaluates whether LLMs can extract key
information from extensive texts and specifically
examines the impact of the proposed adaptive
allocation on the models’ long-context retrieval
abilities. We evaluate all partial KV inference
methods for this test using mean cache budgets
B ∈ {128, 256, 512, 1024}.

LongBench LongBench (Bai et al., 2023) is
a multi-task benchmark designed to rigorously
evaluate long-context understanding across various
datasets, including single- and multi-document QA,
summarization, few-shot learning, synthetic tasks,
and code completion. For LongBench, we evaluate
all partial KV inference methods using mean cache
budgets B ∈ {128, 256, 512, 1024, 2048}.

5.3 Baselines
We conduct experiments comparing the following
methods: FullKV (FullKV) caches all keys
and values for every input token in each layer.
StreamingLLM (StreamLM) (Xiao et al., 2023)
retains the KV cache of the last α tokens and
the first k − α tokens. Heavy Hitter Oracle
(H2O) (Zhang et al., 2023b) is a KV cache
compression policy that dynamically balances
recent and "Heavy Hitter" (H2) tokens. H2O
maintains a fixed cache size across all layers.
SnapKV (SnapKV) (Li et al., 2024) compresses
KV caches by selecting and clustering important
tokens for each attention head. Unlike H2O,
SnapKV captures attention signals using patterns
from a localized window and applies a more
nuanced clustering algorithm, including a pooling
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Figure 4: The evaluation results from Needle-in-
a-HayStack testing across 96, 128, 256, 512 and
1024 budget sizes on Mistral-7B-Instruct-v0.3 and
LLaMa-3.1-8B-Instruct. Proposed method ZigZagKV
outperforms H2O, SnapKV, PyramidKV and StreamLM,
especially in limited budget sizes.

layer. PyramidKV (PyramidKV) (Zhang et al.,
2024b) proposes a layer-wise retention strategy that
reduces cache size per layer based on depth. For
KV cache selection, PyramidKV employs the same
method as SnapKV. ZigZagKV (proposed method)
is detailed in Section 4.

5.4 Main Results

Results on Needle-in-a-Haystack Testing We
first compare the proposed method with previous
approaches on the Needle-in-a-Haystack test, as
shown in Figure 4 and Figure 5. ZigZagKV consis-
tently outperforms previous methods under almost
all constrained cache budget settings, particularly
when the average budget is limited. When the mean
budget size is 256, ZigZagKV achieves an accuracy
of 89.33%, closely matching the retrieval accuracy
of FullKV . In contrast, StreamLM and H2O show
a lower performance. Notably, ZigZagKV only
requires an average budget of 256, even for 30K
context, while FullKV requires retaining the entire
KV cache to inference.
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(d) PyramidKV, Acc Score=86.33
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10
00

41
76

73
53

10
53

0

13
70

7

16
88

4

20
06

0

23
23

7

26
41

4

29
59

1

Inference Length

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

D
e
p
th

 P
e
rc

e
n
t

Mistral-7B-Instruct-v0.3 FullKV, Accuracy=91.67

(f) FullKV, Acc Score=91.67

Figure 5: Performance comparison for Needle-in-a-Haystack testing with a budget size of 256 on Mistral-7B-
Instruct-v0.3 and LLaMa-3.1-8B-Instruct. The x-axis represents the length of the document, while the y-axis
indicates the position where the needle is located. A red cell indicates that the model fails to recall the information
in the needle, whereas a green cell indicates success.
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Figure 6: Ablation studies between ZigZagKV w/
Bounded Budget and w/o Bounded Budget on both
Mistral and LLaMa on 2WikiMQA Dataset.

Results on LongBench To assess the perfor-
mance of the proposed method across various
tasks, we conduct experiments using LongBench.
The results are depicted in Table 1 and Table 2.
Similarly, ZigZagKV demonstrates improvements
over the four baseline methods, achieving higher
average scores across multiple tasks. In particular,
ZigZagKV outperforms FullKV using only a
mean KV cache size of 128 on the TriviaQA few-
shot learning task. This demonstrates that the
proposed method reduces memory overhead and
captures more information from few-shot examples,
highlighting its potential for further study in in-
context learning tasks.

5.5 Analysis and Ablation Studies

ZigZagKV Preserves More Attention Informa-
tion. To investigate whether the proposed method
achieves more attention information, as described
in Section 3, we calculated the average deviation
from achieving 0.9 attention across various cache
settings, which we refer to as attention loss.
The results are presented in Table 3. Both
SnapKV and PyramidKV exhibit higher attention
loss. This is because they either apply uniform
treatment for all layers or allocate smaller
cache budgets to higher layers, resulting in a
significant deviation in attention scores compared
to FullKV. In contrast, ZigZagKV substantially
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SAM

Sum
PCount

PRe

Lcc
RB-P Avg.

FullKV 28.7 41.6 52.9 49.4 39.0 28.6 34.8 25.6 27.9 76.0 88.6 47.4 5.5 98.0 61.4 62.6 48.0

KV Size = 128
StreamLM 20.0 19.9 29.4 37.0 24.1 16.8 18.9 17.2 20.2 46.5 73.7 18.1 4.5 67.8 32.1 36.6 30.2
H2O 25.3 29.1 44.6 45.7 32.9 23.8 21.9 23.0 21.2 34.0 88.2 44.2 6.0 94.0 53.7 52.5 40.0
SnapKV 25.3 30.6 48.2 47.6 35.1 21.3 21.8 22.2 21.7 69.5 88.6 43.7 6.0 93.5 56.0 55.2 42.9
PyramidKV 25.6 31.5 47.9 47.9 35.2 25.4 21.9 22.3 21.8 70.0 88.2 43.8 4.0 94.5 55.7 55.0 43.2
ZigZagKV 26.0 30.4 48.1 47.7 35.7 24.7 22.0 22.6 21.9 69.5 89.0 44.0 6.5 93.5 56.1 55.1 43.3

KV Size =256
StreamLM 20.1 21.4 32.5 37.0 25.4 16.8 21.8 16.9 23.6 57.5 72.4 18.5 4.0 65.0 34.4 37.1 31.5
H2O 24.7 29.9 47.0 46.0 35.5 25.2 22.9 24.1 22.8 35.0 88.6 44.6 4.5 96.5 56.4 54.5 41.1
SnapKV 26.8 33.2 52.2 47.9 37.5 24.2 23.8 23.3 23.4 73.0 88.8 45.0 5.0 96.0 58.3 58.2 44.8
PyramidKV 26.7 34.0 51.6 47.5 38.127.4 24.0 23.6 23.5 74.0 88.7 45.0 5.0 96.0 58.4 58.1 45.1
ZigZagKV 27.6 33.4 53.4 48.6 38.1 27.3 24.0 23.6 23.7 73.0 88.9 45.0 6.0 96.0 58.3 58.5 45.3

KV Size = 512
StreamLM 20.8 22.2 34.4 37.9 26.1 16.1 25.2 18.5 26.5 65.5 71.5 18.1 3.3 67.5 36.9 37.5 33.0
H2O 25.3 33.4 50.5 48.4 39.327.2 24.3 24.0 24.4 39.5 88.7 46.1 5.5 97.0 59.0 57.2 43.1
SnapKV 27.4 36.4 54.0 49.7 38.7 26.7 25.8 24.5 25.2 77.8 89.3 46.7 5.0 94.5 60.2 60.9 46.4
PyramidKV 26.7 36.1 53.7 50.1 38.4 27.0 25.8 24.5 25.3 74.5 89.4 46.4 5.5 96.0 60.2 60.5 46.3
ZigZagKV 27.8 36.9 54.2 49.7 39.1 26.9 25.9 24.9 25.2 75.0 89.4 46.7 5.5 96.5 60.3 60.7 46.5

KV Size = 1024
StreamLM 22.0 28.1 41.2 37.9 27.0 17.2 27.9 19.9 27.2 71.5 70.3 19.0 5.4 69.0 41.0 38.3 35.2
H2O 27.3 34.8 51.2 49.2 37.0 26.8 26.1 24.9 26.3 48.0 89.3 46.5 5.0 97.5 60.5 58.6 44.3
SnapKV 26.8 37.8 52.7 49.2 38.9 28.1 28.2 25.3 26.8 76.0 89.0 46.2 5.5 97.5 61.3 62.2 47.0
PyramidKV 26.7 37.7 52.7 49.3 38.9 27.9 28.2 25.0 26.8 76.0 89.2 46.4 5.5 97.5 61.4 61.9 47.0
ZigZagKV 26.9 37.8 53.4 49.6 38.928.1 28.6 25.1 26.9 76.0 89.2 46.5 5.5 98.0 61.5 62.2 47.1

KV Size = 2048
StreamLM 23.3 31.8 47.1 38.0 29.5 18.9 30.1 20.2 27.3 73.0 70.0 19.0 5.3 72.2 45.6 39.8 36.9
H2O 27.7 38.8 52.7 49.3 38.4 27.4 29.1 25.1 27.3 63.5 89.1 47.0 5.5 98.0 61.3 61.1 46.3
SnapKV 28.2 40.5 53.1 49.7 38.6 28.3 30.8 25.6 27.5 75.5 88.9 47.3 5.5 98.0 62.0 62.0 47.6
PyramidKV 28.2 40.8 52.8 49.7 38.828.5 30.6 25.5 27.5 75.5 89.1 47.2 5.5 98.0 61.9 62.2 47.6
ZigZagKV 28.2 40.8 53.0 49.9 38.6 28.5 30.8 25.4 27.6 75.5 89.1 47.2 5.5 98.0 62.0 62.3 47.7

Table 1: Comparison Based on Mistral-7B-Instruct-v0.3 Among 16 Datasets

reduces attention loss in the Mistral and LLaMa
models, minimizing the attention score gap
between the proposed method and FullKV. This
indicates that ZigZagKV preserves more attention
information compared to the baseline methods.

ZigZagKV Maintains More Hidden State Infor-
mation. Furthermore, to analyze whether the
proposed method maintains a more stable hidden
state output as described in Section 3, we compared
the difference between the output of PartialKV
Inference and FullKV Inference using the metric
1−similarity(y, ŷ), termed as output loss. We then
computed the average output loss for each layer.
The results are illustrated in Table 4. The mean
output loss of ZigZagKV is the lowest among all
methods and models, except when the mean budget
is set to 128. This indicates that, compared to
baseline methods, the proposed method effectively
maintains more stable output by setting the budget

size based on layer uncertainty.

Ablation Studies on Bounded Budget. To
evaluate the effectiveness of the bounded budget
operation in our proposed method, we compare
the performance of our method with and without
using this strategy. As shown in Figure 6, utilizing
the bounded budget strategy enhances performance
on both Mistral and LLaMa across various budget
sizes.

Computational Overhead. To evaluate the
computational cost differences between the
ZigZagKV and the baseline method, we mea-
sure the latency of StreamLM, PyramidKV, and
ZigZagKV, as presented in Table 5. The
latency tests indicate that PyramidKV and
ZigZagKV demonstrate similar performance. In
contrast, StreamLM exhibits faster processing
speeds, while StreamLM is faster but has a
performance drop.
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Single-Doc. QA Multi-Doc. QA Summarization Few-shotLearning Synthetic Code

NrtvQA
Qasper
M

F-en
HotpotQA
2W

ikiM
QA

M
usique

GovReport
QM

Sum
M

ultiNews
TREC

TriviaQA
SAM

Sum
PCount

PRe

Lcc

RB-P Avg.

FullKV 28.8 13.0 27.5 16.7 16.5 11.4 34.5 23.5 26.9 72.5 91.7 43.8 7.1 97.7 65.1 58.7 39.7

KV Size = 128
StreamLM 11.7 4.9 14.5 10.0 10.4 5.9 21.5 17.9 20.6 43.5 71.1 17.3 9.5 72.7 40.5 37.0 25.6
H2O 23.1 7.7 19.0 13.2 13.4 8.1 22.3 22.1 20.1 39.0 90.2 40.7 7.5 93.7 56.6 48.9 32.9
SnapKV 21.3 8.4 20.6 14.6 14.1 8.4 22.2 22.6 21.5 62.0 90.2 40.0 8.1 92.8 60.7 50.6 34.9
PyramidKV 21.3 8.7 21.0 13.9 13.8 9.2 22.2 22.5 21.8 63.5 90.3 40.1 8.0 93.9 58.7 50.0 34.9
ZigZagKV 21.4 8.6 21.6 15.0 14.4 8.7 22.6 22.5 22.1 62.0 90.8 40.5 8.7 94.3 61.1 51.7 35.4

KV Size =256
StreamLM 14.0 5.6 14.8 10.2 9.7 6.2 23.8 18.0 22.9 54.5 70.6 17.7 8.9 76.7 42.2 37.4 27.1
H2O 25.0 7.8 20.2 14.7 13.4 9.1 23.3 22.8 21.1 39.0 90.6 41.5 7.1 93.0 60.0 49.8 33.7
SnapKV 24.2 9.4 23.2 15.1 14.7 9.2 24.1 23.1 23.2 70.0 91.4 41.1 7.2 95.9 62.0 53.7 36.7
PyramidKV 24.4 9.2 23.4 14.7 14.8 9.3 24.3 23.2 23.3 70.0 91.4 41.7 7.1 95.8 61.6 53.1 36.7
ZigZagKV 25.5 9.5 23.3 15.2 14.9 9.9 24.2 23.2 23.5 70.0 91.6 41.6 7.5 94.5 62.1 53.8 36.9

KV Size = 512
StreamLM 12.8 6.4 19.4 10.6 10.1 6.3 25.9 19.0 24.7 60.5 71.9 18.7 8.1 79.6 43.9 38.9 28.5
H2O 23.9 8.5 21.5 14.3 13.6 9.6 24.3 22.6 23.4 41.0 91.6 41.5 7.6 94.3 61.5 51.7 34.4
SnapKV 25.2 11.3 25.1 15.1 15.7 9.9 26.1 23.1 24.7 70.5 91.7 41.4 7.7 96.2 63.8 55.6 37.7
PyramidKV 25.9 11.1 24.7 15.5 15.5 9.8 26.1 23.3 24.6 70.5 91.9 41.7 7.8 96.3 63.7 54.9 37.7
ZigZagKV 26.1 11.2 25.2 15.5 15.3 9.6 26.3 23.5 24.6 70.5 91.7 41.5 8.1 96.8 64.2 55.2 37.8

KV Size = 1024
StreamLM 13.0 7.4 20.9 12.1 10.6 7.1 27.8 19.3 26.0 67.5 74.0 19.5 8.1 79.9 45.8 39.0 29.9
H2O 24.7 10.0 24.1 14.8 14.9 9.9 26.1 23.2 25.5 45.0 91.7 42.4 8.1 95.0 63.3 54.6 35.8
SnapKV 28.8 11.8 27.3 15.8 15.6 10.8 28.3 23.6 25.8 70.0 91.7 43.0 7.4 97.6 63.9 56.6 38.6
PyramidKV 28.2 11.7 26.9 16.1 15.7 10.9 28.5 23.7 25.8 70.0 91.7 43.1 7.4 97.8 63.9 56.9 38.6
ZigZagKV 28.8 12.0 26.8 16.2 15.8 10.7 28.4 23.8 25.8 70.0 91.7 43.1 7.8 97.8 64.0 56.9 38.7

KV Size = 2048
StreamLM 13.6 10.1 23.4 11.7 12.5 7.2 29.9 19.8 26.7 68.5 79.5 21.1 8.2 64.3 54.1 40.4 30.7
H2O 28.0 11.3 25.5 16.0 15.3 10.4 28.7 23.3 26.6 56.5 91.6 43.0 7.9 96.7 64.7 57.2 37.7
SnapKV 29.2 12.4 27.2 16.6 16.3 11.3 30.4 23.5 26.6 71.0 91.5 42.8 7.7 97.7 64.9 58.2 39.2
PyramidKV 29.2 12.4 27.1 16.6 16.5 11.6 30.6 23.6 26.3 71.0 91.5 42.5 7.7 97.6 64.7 58.3 39.2
ZigZagKV 29.4 12.7 27.1 16.6 16.5 11.5 30.8 23.7 26.7 71.0 91.5 42.7 7.5 97.6 65.0 58.4 39.3

Table 2: Comparison Based on LLaMA-3.1-8B-Instruct Among 16 Datasets

Model Mistral LLaMa

Budget 128 256 512 128 256 512

SnapKV 2.71 1.54 0.89 1.76 0.90 0.46
PyramidKV 2.96 1.59 0.89 1.91 0.88 0.42
ZigZagKV 2.45 1.25 0.61 1.50 0.64 0.23

Table 3: Attention loss of Mistral-7B-Instruct-v0.3 and
LLaMa-3.1-8B-Instruct on 2WikiMQA Dataset.

Model Mistral LLaMa

Budget 128 256 512 128 256 512

SnapKV 2.55 1.51 0.85 2.91 1.67 0.88
PyramidKV 2.98 1.60 0.87 3.26 1.76 0.90
ZigZagKV 2.54 1.50 0.83 2.92 1.67 0.88

Table 4: Hidden state loss of Mistral-7B-Instruct-v0.3
and LLaMa-3.1-8B-Instruct on 2WikiMQA Dataset.

Method Average Latency (s)
StreamingLM 4.59
PyramidKV 6.56
ZigZagKV 6.50

Table 5: Average Latency on NarrativeQA of LLaMA-
3.1-8B-Instruct

6 Related Work

Existing KV cache compression techniques can be
broadly divided into two categories: fixed policies
and adaptive policies.

For fixed policies, Xiao et al. (2023) and
Han et al. (2024) suggest that the initial tokens
often receive consistently high attention weights
across layers and heads. Therefore, they propose
reducing the memory required for the KV cache
by retaining only the first few tokens and local
tokens. For adaptive policies , most approaches
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select important tokens based on attention weights.
Liu et al. (2024) introduce the "persistence of
importance" hypothesis, suggesting that tokens
with significant influence at one step will continue
to impact future generations. Zhang et al. (2023b);
Oren et al. (2024) employ cumulative normalized
attention scores to determine which tokens to retain
while preserving recent tokens due to their strong
correlation with the current generation. Li et al.
(2024) compress the KV cache by selecting and
clustering necessary tokens based on the attention
scores from the last segment of tokens.

While these methods differ in selecting tokens
for KV cache retention, they generally apply a
uniform budget size across layers, even though
the optimal budget size may vary. Recently, some
studies have explored budget size allocation across
different layers (Zhang et al., 2024b; Yang et al.,
2024; Wan et al., 2024), but these approaches
overlook the need for a minimum budget size to
preserve essential information.

Unlike PyramidKV, which heuristically allocates
more cache in the lower layers and less in the higher
ones, ZigZagKV leverages layer uncertainty to
allocate the cache budget. As illustrated in Figure
2 of the submission, the largest LMBA might not
occur in the highest layers, which can lead to more
cache being allocated to the middle layers. In
PyramidKV, the cache sizes for all intermediate
layers are set according to an arithmetic sequence.
In contrast, with ZigZagKV , the cache sizes for all
layers vary depending on the context and models.

7 Conclusion

In this paper, we pay attention to the variation
in minimum budget sizes required to retain infor-
mation across different layers. A comprehensive
analysis reveals that the necessary budget size
differs across layers from the perspectives of
attention mechanisms and hidden state outputs.
Building on these findings, we propose a training-
free method that dynamically allocates budget sizes
based on layer uncertainty, effectively reducing
information loss during PartialKV inference.
Experiments conducted on two benchmarks and
several models demonstrate the effectiveness of
our proposed approach.

Limitations

This paper primarily analyzes two widely-used
decoder-only LMs, LLaMa (Dubey et al., 2024)

and Mistral (Jiang et al., 2023). It does not include
a validation study of encoder-decoder and encoder-
only architectures.
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