
Proceedings of the 31st International Conference on Computational Linguistics, pages 8908–8924
January 19–24, 2025. ©2025 Association for Computational Linguistics

8908

Automatic Mathematic In-Context Example Generation for LLM Using
Multi-Modal Consistency

Jaeseong Lee Wei Yang Gopal Gupta Shiyi Wei
Department of Computer Science
The University of Texas at Dallas

Richardson, TX

Abstract

Large Language Models (LLMs) have ad-
vanced Natural Language Processing (NLP)
tasks but are limited in mathematical reasoning.
To address this, few-shot examples are used
in prompts for in-context learning. However,
existing methods require annotated datasets, re-
sulting in higher computational costs and lower
quality examples. To mitigate these limita-
tions, we propose AutoMathIC, a framework
that automatically generates high-quality in-
context examples to enhance LLMs’ mathe-
matical reasoning. AutoMathIC ensures consis-
tency across different modalities (e.g., Chain-
of-Thought (CoT), code snippets, and equa-
tions) by generating and selecting mutations
that improve response consistency. Evaluated
on four math problem datasets, AutoMathIC
outperforms six baselines, with LLM accuracy
ranging from 87.0% to 99.3% for GPT-3.5 and
93.1% to 98.7% for GPT-4o-mini. It surpasses
the state-of-the-art in-context example retrieval
method in three of the four datasets by 0.3% to
11.8%, without relying on an annotated dataset.

1 Introduction
LLMs have achieved state-of-the-art performance
in many NLP applications (Min et al., 2024). How-
ever, they exhibit limited proficiency in solving
mathematical questions (Rae et al., 2021; Srivas-
tava et al., 2022). This limitation arises due to the
fact that math tasks require understanding complex
multi-step reasoning to solve the questions. To
overcome the deficiency in math-solving capability,
in-context learning has been proposed (Wei et al.,
2022; Zhang et al., 2023). These approaches lever-
age few-shot examples, each consisting of math
question and its explanation, embedding the exam-
ples into prompts to facilitate learning within the
context towards improved performance.

However, in-context learning for math tasks has
limitations, requiring extensive resources and often
relying on large, externally annotated datasets (Wei

et al., 2022; Zhang et al., 2023). This process can
be labor-intensive, requiring manual curation of
examples, and computationally expensive, relying
on complex retrieval models. Additionally, the ex-
ternal dataset’s limited scale restricts the search
space for finding suitable math questions and ex-
planations. These limitations restrict the automatic
generation of in-context examples, reducing the
practicality and scalability of math tasks.

To overcome these limitations, we identify two
challenges. First, searching for a suitable math
question to use as in-context learning for solving
the target question is a challenging. The second
challenge lies in automatically generating accurate
explanations for in-context learning examples. To
address this, it is crucial to ensure that the selected
in-context examples not only align semantically
with the target question but also contain accurate
explanations that can aid in problem-solving. The
existing method assesses the in-context example’s
relevance to the target question by measuring se-
mantic similarity between questions and relies on
manually annotated explanations, assuming this
similarity reflects explanation quality (Zhang et al.,
2023). In situations where external annotated expla-
nations are unavailable, automatically ensuring the
accuracy of these explanations remains a challenge.

To address these challenges, we employ a multi-
modal technique for the retrieval of in-context ex-
amples. Multi-modal learning, which integrates
information from diverse sources such as text, im-
ages, and videos, has demonstrated potential in
improving model comprehension. Prior studies
have shown that models trained on multi-modal
data can attain a deeper understanding of the con-
tent, consistently across different modalities (Lin
and Parikh, 2015; Su et al., 2020; Radford et al.,
2021). Similarly, LLMs also possess the ability
to produce diverse forms of responses to the same
mathematical question, known as modality, such as
generating CoT, composing code snippets, or for-

8909

mulating complex mathematical equations (Kojima
et al., 2022; Wang et al., 2023b; Imani et al., 2023).

When addressing mathematical questions, the
diversity in LLM responses across these modali-
ties can introduce inconsistencies that can under-
mine the reliability and accuracy of the responses.
Modality consistency, the degree of agreement
among model predictions across modalities, is cru-
cial in ensuring that the LLM produces stable and
uniform responses when solving the same ques-
tion (Wang et al., 2023b; Imani et al., 2023). The
convergence across the modalities not only reduces
the likelihood of systematic biases or errors being
present only in a single modality but also facili-
tates cross-validation between modalities, thereby
enhancing prediction reliability. This aids in esti-
mating the accuracy of LLM responses. Therefore,
the modality consistency of LLM responses can
act as an indicator for evaluating the confidence
in LLM predictions. Accordingly, the key insight
of our work lies in leveraging consistency across
modalities, combined with few-shot learning tech-
niques, to improve model performance.

In this work, we present an automated in-
context prompting approach for math questions,
AutoMathIC, that addresses the above challenges
through the dynamic generation of mutations,
thereby eliminating reliance on pre-existing exam-
ples. Additionally, AutoMathIC employs consis-
tency checks across modalities in a zero-shot set-
ting to improve both performance and reliability.
AutoMathIC operates by initially generating a col-
lection of mutated math questions and their corre-
sponding LLM responses across various modalities.
This procedure ensures that the mutation maintains
the same reasoning algorithm utilized for solving
the target question, resulting in potentially the most
relevant in-context examples, addressing the first
challenge. Subsequently, AutoMathIC selects a
subset of mutated examples that improves consis-
tency of responses across modalities for the target
math question. This tackles the second challenge
by evaluating LLM responses of mutations through
consistency. Doing so elevates the confidence level
of the LLM, thereby leading to a correct answer.

Our experiments show that AutoMathIC pro-
duces higher accuracies than the baselines, from
83.8% to 99.3% for GPT-3.5 and from 93.0% to
98.7% for GPT-4o-mini over four arithmetic rea-
soning datasets. In addition, AutoMathIC out-
performs the state-of-the-art in-context retrieval
method in three out of the four datasets by 0.3% to

11.8%, without an external annotated dataset.

2 Motivation

In this section, we present responses to an arith-
metic math question using in-context examples to
motivate the development of AutoMathIC. Figure 1
illustrates an example from the SVAMP, a widely
used dataset for arithmetic reasoning questions (Pa-
tel et al., 2021). This demonstrates the diverse
responses of an LLM (GPT-3.5) to the same math
question under different settings. At the top, it
presents the answers to the math question across
different modalities (CoT, code, and equation) in
zero-shot setting, revealing that the LLM responses
are inconsistent and the confidence level in the an-
swers is low. CoT response incorrectly concludes
that “$17 + $7 = $24” (step 5), leading to the er-
roneous answer “the answer is $24” (step 6). In
contrast, the bottom of the figure shows in-context
examples retrieved from the target question by al-
tering the numerical values (the yellow box). In this
setting, the LLM’s answers across all modalities
are consistent, resulting in a high confidence level
and correct answers. Specifically, the accuracy of
the CoT response is attributed to the underlying al-
gorithm, represented by “x - 65 + 39 = 67”, which
is also applied to solve the target question, “x - 17
+ 10 = 7” (step 4).

Overall, our study is motivated by the exam-
ples with regard to two key facets. First, altering
the numerical values in a math question does not
change the underlying reasoning algorithm used
to solve it. Therefore, using the reasoning algo-
rithm for in-context learning can provide relevant
instructions that enable LLMs to accurately solve
the question. This insight facilitates the automated
generation of math questions that are assumed to
operate under the same reasoning algorithm. Sec-
ond, there is a correlation between the quality of
LLM responses and the consistency of their an-
swers across different modalities. As shown in Fig-
ure 1, when an LLM provides consistent solutions
across modalities, it indicates a higher confidence
level and results in more accurate answers. This
consistency implies that the LLM has effectively
grasped the underlying reasoning algorithm, lead-
ing to improved performance in solving arithmetic
reasoning questions. It motivates us to utilize the
degree of consistency as a metric for assessing the
confidence level of responses, thereby enabling the
automatic selection of high-quality in-context ex-
amples.

8910

Q: Edward spent $ 17. Then he received $ 10 from his
friend. Now he has $ 7. How much did Edward have
before he spent his money?

Q: Edward spent $65 . Then he received $39 from his

friend . Now he has $67 . How much did Edward have

before he spent his money?

A: Step 1: Edward spent $65.

Step 2: He received $39 from his friend.

Step 3: Now he has $67.

Step 4: To find out how much Edward had before he

spent his money, we can use the equation: x - 65 +

39 = 67, where x represents the amount he had

before spending his money.

Step 5: Simplifying the equation, we get x - 26 = 67.

Step 6: Adding 26 to both sides, we get x = 93.

Step 7: Therefore, the answer is 93.

Q: Edward spent $8 . Then he received $12 from his

friend . Now he has $19 . How much did Edward have

before he spent his money?

A: Step 1: Edward spent $8.

...

The answer is $15.

Mutation

CoT The answer is 14

LLM Responses

Step 1: Edward spent $17.

Step 2: He received $10 from his friend.

Step 3: Now he has $7.

Step 4: To find out how much Edward had before

he spent his money, we can use the equation: x -

17 + 10 = 7, where x represents the amount he

had before spending his money.

Step 5: Simplifying the equation, we get x - 7 = 7.

Step 6: Adding 7 to both sides, we get x = 14.

Step 7: Therefore, the answer is 14.

Code The answer is 14

Eqn The answer is 14

...

...

LLM

Q: Edward spent $ 17. Then he received $ 10 from his
friend. Now he has $ 7. How much did Edward have
before he spent his money?

CoT The answer is $24

Code The answer is 20

Eqn The answer is 14

LLM Responses

Step 1: Edward spent $17.

Step 2: He received $10 from his friend.

Step 3: Now he has $7.

Step 4: To find out how much Edward had before

he spent his money, we need to add the $17 he

spent and the $7 he has now.

Step 5: $17 + $7 = $24

Step 6: Therefore, the answer is $24.

...

...

LLM

Figure 1: Responses of GPT-3.5 to an arithmetic reasoning problem derived from the SVAMP dataset (Patel et al.,
2021). The top presents the responses across CoT, Python code, and Mathematical Equation in a zero-shot setting.
The bottom shows the responses in the CoT modality utilizing in-context examples retrieved from the mutation.

3 Approach

We have developed AutoMathIC, an automated
in-context example generation framework. Au-
toMathIC is structured with two main steps: 1. We
employ a mutation technique on the target math
question for the generation of relevant in-context
examples, considering these mutations as poten-
tial candidates for in-context examples. 2. We
employ a genetic algorithm to select a subset of
mutations, aiming to maximize response consis-
tency with the target question. These steps ensure
the generated examples are relevant and enhance
response quality. Figure 2 presents an overview
of AutoMathIC. The Initial Consistency Computa-
tion Phase begins by inputting the target question
along with an LLM. It collects the LLM’s initial
responses to the target question across modalities.
The consistency of these responses is then assessed.
If maximum consistency is achieved (i.e., all re-
sponses are identical), the phase concludes by re-
turning the consistent answer as the output. If not,
the process advances to the Target Question Muta-
tion Phase. This phase mutates the target question
by altering the numerical values in the question.
Furthermore, we use the LLM to process these mu-
tated questions and obtain their corresponding re-

sponses across modalities. A mutation is accepted
if its responses are consistent across the modali-
ties. This phase is crucial as it addresses the first
goal, which is to obtain the relevant questions for
in-context learning. Additionally, we employ a
Mutation Selection by Consistency Optimization
Phase to achieve the second goal, which is the re-
trieval of high-quality in-context examples. In this
phase, the LLM responses to the target question
are collected for each mutation, prepended as an
in-context example. If the consistency of these re-
sponses reaches its maximum value, the response is
used as the output. Otherwise, we further evaluate
whether the new consistency score surpasses the
previous score without the mutation or if the most
consistent answer using the mutation differs from
the previous one. If either condition is met, we up-
date the prompts across modalities, the consistency
score, and the most consistent answer with the new
mutation as an in-context example. This process is
repeated for all mutations, ultimately yielding the
most consistent answer as the output.

3.1 Initial Consistency Computation

Given a target question and an LLM, we gener-
ate the top-K responses for each modality. The
answers are then extracted from these LLM re-

8911

Consistency
ctgt

Mutate

LLMqtgt

MUTtgt

ctgt=1.0 anstgtYes

No

ans tgt

Mod1: [resp'1,...,resp'K]
.
.
.

ModN: [resp'1,...,resp'K]

ans'tgt Consistency
c'tgt

c'tgt=1.0

ctgt<c'tgt
ans' tgt

 qtgt = MUTi
tgt+qtgt

 ctgt = c'tgt

 anstgt = ans'tgt

LLM

No

Yes

i=i+1
No

For i = 1,...|MUTtgt|

Yes

q'tgt=MUTi
tgt+qtgt

Mod1: [resp1,...,respK]
.
.
.

ModN: [resp1,...,respK]
Response across

modalities

4 5

6

Ta
rg

et
 q

u
es

ti
o

n
 m

u
ta

ti
o

n

Initial consistency computation

Mutation selection by consistency optimization

Figure 2: Overview of AutoMathIC.

sponses, and their consistency is evaluated across
the different modalities. Formally, for a specific
modality mod in MOD, the set of all modalities,
we define the top-K answers as ANSmod, and
the overall collection of LLM answers across all
modalities as ANS = {ANSmod | ANSmod =
LM(qtgt, pmod) ∩ pmod ∈ PMOD ∩ mod ∈
MOD}, where LM represents the LLM, qtgt is
the target question, PMOD is the set of prompts
across modalities. We define consistency across
the modalities in Equation 3:

freq (a,ANS) =
∑

ans∈ANS

δ (a = ans) (1)

SC(a,ANS) =
freq (a,ANS)

|ANS|
(2)

C(a,ANS,w) =
∑

mod∈MOD

wmod · SC(a,ANSmod) (3)

where freq(a,ANS) in Equation 1 represents
the number of occurrences of a specific answer
a within the answer set ANS. In Equation 2,
SC denotes self-consistency score of the a in the
ANS (Wang et al., 2023b). The consistency score
across the MOD, C(a,ANS,w) in Equation 3, is
the weighted sum of SC for the a across the MOD.
The modality belief weight wmod represents the de-
gree of empirical confidence of a specific modality
and is set as a hyperparameter of AutoMathIC. An
answer with a higher consistency score C for a spe-
cific answer indicates a higher level of confidence
in the answer across modalities, while a lower score
indicates lower confidence. If the consistency score

of answer to the target question fails to reach the
maximum value, we proceed to the mutation phase.

3.2 Target Question Mutation

This phase generates a pool of questions, poten-
tially offering relevant knowledge for the LLM
to address the target question effectively. This is
achieved by mutating the target question, result-
ing in a set of mutated questions. We operate
under the assumption that a problem identical to
the original one, but with different numerical val-
ues that preserve the characteristics of the original
values—such as being positive or negative, and
being floating-point or natural numbers—follows
the same reasoning path in solving the original
problem. The phase first identifies the numerical
values present in the target question. These identi-
fied values are then randomly mutated; the original
values are replaced with their mutated values. To
maintain the realism and validity of the generated
questions, the mutations are constrained to ensure
that the resulting numerical values remain positive
and consistent with the data type of the original
values. Subsequently, LLM responses are then ob-
tained to these mutated questions across modalities.
The validity of these mutations is verified by esti-
mating the accuracy of the LLM responses to the
mutated questions through response consistency
across modalities. A mutation is considered accept-
able if responses are consistent across modalities;
otherwise, it is rejected. By repeatedly applying
this mutation process to the target question, this

8912

Algorithm 1 Consistency optimization algorithm.
1: Input: a large language model LM , target question qtgt,

prompts over modalities PMOD , initial the most consis-
tent answer of the target problem ans0, consistency score
of the ans0 mc0, mutations Mqtgt , maximum number
of in-context examples Nexample, belief weights across
modalities W

2: Output: final answer ansfinal

3: n = 1
4: ansfinal = ans0
5: while n < Nexample do
6: if mc0 is maximum then
7: return ansfinal

8: else
9: m = Mqtgt .pop()

10: if m = ∅ then
11: break
12: P+

MOD , R+ = [], []
13: for each pmod from PMOD do
14: p+mod = m.mod+ pmod

15: r+mod = LM(qtgt, p
+
mod)

16: P+
MOD.append(p+mod)

17: R+.append(r+mod)
18: ans+,mc+ = get_answer(R+,W)
19: if (mc+ > mc0) ∨ (ans+ ̸= ansfinal) then
20: PMOD = P+

MOD

21: R = R+

22: mc0 = mc+

23: ansfinal = ans+

24: n = n+ 1
25: return ansfinal

phase generates pairs of mutated questions and
their corresponding LLM responses across modali-
ties.

3.3 Mutation Selection by Consistency
Optimization

Although the mutation phase is capable of produc-
ing numerous mutations, it is important to evaluate
the quality of these mutations for their utility as
in-context examples to accurately solve the target
question. To address this challenge, we have devel-
oped an optimization strategy aimed at improving
consistency as defined in the Equation 3.

Algorithm 1 summarizes the optimization strat-
egy used to identify in-context examples. This algo-
rithm operates by taking as input the following: the
LLM, the target question, prompts across modal-
ities, the initial answer generated for the target
question, and its corresponding consistency score,
which was determined as described in Section 3.1.
Additionally, the algorithm uses a pool of potential
mutations and the predefined maximum number
of in-context examples that can be utilized. If a
maximum consistency value is achieved, indicat-
ing that all answers are the same across modalities,
it returns this answer as the final answer (lines

Algorithm 2 get_answer algorithm.
1: Input: responses of the target question over modalities

R, belief weights across modalities W
2: Output: final answer ans∗, consistency score of the final

answer cs∗

3: unique_answers = set()
4: cs, sc = dict(), dict()
5: for each mod from R.modalities do
6: Anstopk = extract_answers(R[mod])
7: for each ans from unq_ans do
8: sc[mod, ans]=self_consistency(ans,Anstopk)
9: unique_answers.add(unq_ans)

10: for each ans from unique_answers do
11: cs[ans] = 0.0
12: for each mod from R.modalities do
13: cs[ans] += Wmod ∗ SC[mod, ans]
14: ans∗, cs∗=get_highest_score_answer(cs)
15: return ans∗, cs∗

6-7). Otherwise, the algorithm integrates each mu-
tation presented to the LLM within the prompts
(lines 9-18). Following the incorporation of mu-
tations, the LLM generates responses across the
modalities. The consistency of these responses is
then evaluated using the get_answer() algorithm,
as described in Algorithm 2 (line 18).

Algorithm 2 operates by taking LLM responses
over modalities and belief weights across modali-
ties as input. For each modality, it calculates the
self-consistency score for each unique answer gen-
erated by the LLM across the modalities (lines 5-9).
Next, using the self-consistency scores, the algo-
rithm then computes the overall consistency score
for each unique answer, as defined mathematically
in Equation 3 (lines 10-13). The algorithm then
identifies and returns the highest consistency score,
along with the corresponding answer that achieves
this score, which is considered the most reliable
answer (lines 14-15).

Returning to Algorithm 1, the algorithm then
evaluates the difference in the consistency scores
before and after the addition of the mutation to the
modality prompts. Mutations are selected as in-
context examples in prompts if there is an increase
in modal-consistency following their addition, or if
the LLM generates a different answer than the pre-
vious one (line 19). Upon selection of a mutation,
prompts across modalities, answer for the target
question, and their respective consistency values
are updated to facilitate the search for additional
mutations (lines 20-24). This process iterates un-
til either the number of selected mutations or the
consistency reaches its maximum, or until no muta-
tions remain (lines 5, 6 and 10, respectively). The
final answer for the target question is then provided

8913

Modality Prompt

CoT “{QUESTION} Let’s think step by step and end your re-
sponse with ‘the answer is {answer}”’

Code

“I want you to act like a mathematician. I will type math-
ematical question and you will respond with a function
named with ’func’ in python code that returns the answer
of the question. the function should have no arguments.
I want you to answer only with the final python code and
nothing else. Do not write explanations: {QUESTION}”

Equation

“{QUESTION} Write a wolframalpha mathematical equa-
tion with no explanations and no units to the numbers in
the equation. Generate the answer format starting with

‘Answer =”’

Table 1: LLM prompts over different modalities.

through this iterative optimization.

4 Experiments

4.1 Experimental setup

Dataset. We assess the performance of Au-
toMathIC on the widely used public arithmetic
reasoning benchmarks: the Math Word Problem
Repository MultiArith (Roy and Roth, 2016), AS-
Div (Miao et al., 2020), SVAMP (Patel et al., 2021),
and GSM8k (Cobbe et al., 2021), a recently pub-
lished benchmark of grade-school-math questions.
Large Language Models. We evaluate Au-
toMathIC using GPT-3.5 and GPT-4o-mini (Ope-
nAI, 2023, 2024), which are transformer-based ar-
chitectures with 175 billion and 8 billion parame-
ters, respectively. Specifically, we utilize the pub-
lic engine gpt-3.5-turbo from the OpenAI models.
These models differ significantly in scale and archi-
tectural parameters.
Prompts over modalities. Inspired by the prompts
presented in (Akin, 2022), we manually crafted
the prompts detailed in Table 1 over three modal-
ities. The first and second columns of Table 1
represent the modality type and the correspond-
ing prompt text, respectively, with the placeholder

“{QUESTION}” used to represent the input ques-
tion. The goal of the prompt design is to segregate
the explanation from the corresponding final an-
swer, thereby facilitating the automatic parsing of
the answer from the LLM responses. The prompt
for the CoT modality generates a reasoning path.
The phrase within the prompt, “Let’s think step
by step”, facilitates step-by-step thinking before
providing an answer. The instruction “end your
response with ‘the answer is {answer}’ ” prompts
the LLM to conclude its response with the phrase

‘the answer is {answer}’, where {answer} repre-
sents the ultimate answer to the question. For the

code and equation modalities, we obtain the gen-
erated executable Python code and WolframAlpha
mathematical equation from the LLM with no ad-
ditional explanation provided. We then execute the
code and equation using the Python command and
WolframAlpha API (WolframAlpha, 2023), respec-
tively. Finally, we consider the returned value as
the answer for the respective modality.
Evaluation Metric. We compare accuracy of LLM
responses, defined as the ratio of the number of
correctly predicted answers to the number of arith-
metic math questions in the test datasets.
Baselines. We evaluate AutoMathIC by assessing
its accuracy on the datasets compared to baselines.
It aims to demonstrate AutoMathIC’s ability to gen-
erate relevant examples in zero-shot contexts. We
also show the effectiveness of consistency across
modalities by comparing it to AutoMathIC’s per-
formance without this feature. Furthermore, we
compare an existing state-of-the-art method for
retrieving in-context examples with AutoMathIC
to highlight the effectiveness of mutations for in-
context examples over those from external datasets.

• Zero-shot with a specific Modality: It solely
uses a specific modality without any in-context
examples. In this experiment, we utilize the CoT,
Code, and Equation modalities, denoted as CoT-
Prompt, CodePrompt and EqnPrompt, respec-
tively. For each modality, the final answer is de-
termined by selecting the most frequently occur-
ring answers from the top three responses (Wang
et al., 2023b). The prompt used is identical to
the corresponding modality prompt in Table 1.

• Majority voting of answers across modalities
(MajVotModals): It determines the final answer
by majority voting of answers across modalities.

• AutoMathIC w/o modalities: For a specific
modality, we employ a subset of mutations that
improve the self-consistency, as defined in Equa-
tion 2, of top-K LLM responses, utilizing these
as in-context examples. Specifically, we extract
the top-3 CoT responses.

• In-context retrieval method (AutoCoT): Auto-
CoT (Zhang et al., 2023) is implemented. It clus-
ters the embedding vectors of retrieval examples
using Sentence-BERT (Reimers and Gurevych,
2019) into K clusters. Next, for each clustered
examples, the embedding vector of the target
question is compared with them, and the clos-
est example is selected. These K examples are

8914

then utilized as in-context examples. In this ex-
periment, we construct 8 clusters, providing 8
in-context examples for each target question.

Implementation Details and Hardware Environ-
ment. We utilized the OpenAI API to run LLMs.
We applied temperature with T = 0.7 and trun-
cated at the top-3 responses. Due to the limited
resources, we generated 20 mutated questions for
each original question and obtained their LLM re-
sponses to identify relevant in-context examples.
In addition, the modality belief weights used for
aggregation across the modalities are set to 0.4 for
the CoT modality and 0.3 for both the code and
equation modalities, respectively. These weights
are determined based on empirical performance,
highlighting the CoT modality’s pivotal role in rea-
soning and logical flow (Wei et al., 2022; Chowdh-
ery et al., 2023). All experiments were conducted
on a Ubuntu 14.04 server with three Intel Xeon E5-
2660 v3 CPUs @2.60GHz, eight Nvidia 1080Ti
GPUs, and 500GB of RAM.

4.2 Results

This section presents the experimental results and
these results are available at the AutoMathIC repos-
itory (Lee et al., 2024)
Comparison of AutoMathIC with Zero-Shot
Baselines. Table 2 shows LLM accuracies on
different math problem datasets. The first two
columns denote the dataset names and the num-
ber of problems used. Columns 3-6 show ac-
curacies achieved using baseline methods, and
the last column shows the accuracy with Au-
toMathIC. AutoMathIC outperforms all baselines
on all four datasets. Over the two LLMs, Au-
toMathIC achieved better accuracy than the base-
lines by 1% to 7.3% on ASDiv, 1.4% to 15.4%
on SVAMP, 4% to 22.4% on GSM8k, and 0.2%
to 62.1% on MultiArith. This signifies significant
improvements in accuracy across various mathe-
matical problem datasets in the zero-shot setting.
The additional contextual processing enabled by
AutoMathIC’s mutation selection phase is crucial
for handling mathematical queries that may not be
effectively addressed through standard zero-shot
methodologies. In Appendix A.1, we provide sam-
ples of AutoMathIC-generated in-context examples
for each dataset.
Effectiveness of Mutation as In-context Exam-
ples. Table 3 compares LLM accuracies using Au-
toMathIC and AutoCoT. The datasets are listed in
the first column, with the accuracies of AutoCoT

and AutoMathIC in the second and third columns,
respectively. AutoMathIC improves GPT-3.5’s ac-
curacy by up to 4.4%, except for a 0.3% decrease
on ASDiv. For GPT-4o-mini, AutoMathIC boosts
accuracy by 0.6% to 11.8% across all datasets.
Overall, AutoMathIC’s in-context examples are
more effective than current retrieval-based meth-
ods without external datasets and models. We also
manually assess consistency across modalities to
evaluate LLM responses to mutated questions, de-
termining correctness by comparing responses to
ground truth data. Table 4 shows the number of
mutations used and the number of correct muta-
tions for each dataset. AutoMathIC achieves 73.3%
(132/180) to 100% (24/24) accuracy across datasets.
Accuracy variations are due to differing problem
complexities. These results suggest that consis-
tency across modalities is crucial for response cor-
rectness, enhancing LLM evaluation effectiveness.
Effectiveness of Modalities. Comparing to Au-
toMathIC w/o modalities (fourth column in Table
3), AutoMathIC shows a 3.1% and 0.6% decrease
in accuracy for the GSM8k and ASDiv datasets us-
ing GPT-3.5 and GPT-4o-mini, respectively. How-
ever, it improves accuracy by 1% to 2.5% with
GPT-3.5 and 0% to 1.1% with GPT-4o-mini. For
example, of the 79 problems AutoMathIC correctly
solved but AutoMathIC w/o modalities failed using
GPT-3.5, AutoMathIC could not find in-context
examples for 53 problems, while AutoMathIC w/o
modalities could. The remaining 26 discrepancies
are due to randomness from the LLM’s temperature
setting. This indicates that enhancing consistency
across modalities is effective.
Effectiveness of Consistency Optimization. We
also conduct an ablation study of the optimiza-
tion phase in AutoMathIC, as described in Sec-
tion 3.3. While the optimization methods improve
accuracies in certain cases—such as the ASDiv
with the GPT-3.5 and SVAMP and GSM8k with
the GPT-4o-mini model—they had minimal im-
pact or slight negative effects in others. Specifi-
cally, using the ASDiv, SVAMP, MultiArith, and
GSM8k datasets, while the GPT-4o-mini improved
consistency scores, it produced the same incorrect
results of AutoMathIC both with and without the
optimization phase for 23, 41, 8 and 82 examples,
respectively. Among these examples, AutoMathIC
applied 6, 16, 4, and 59 mutations but failed to
correct the responses. Additionally, 1, 1, 0 and 10
mutations selected via the optimization phase con-
verted 2, 1, 0, and 17 correct results into incorrect

8915

Dataset #Data CoTPrompt [%] CodePrompt [%] EqnPrompt [%] MajVotModals [%] AutoMathIC [%]

ASDiv 1218 95.2 | 98.2 95.0 | 97.6 89.8 | 94.7 96.1 | 97.9 97.1 | 98.0
SVAMP 1000 79.5 | 93.6 79.7 | 91.2 71.6 | 88.1 83.2 | 94.4 87.0 | 95.8
GSM8k 1319 77.5 | 90.9 69.4 | 87.1 61.4 | 74.2 79.8 | 90.8 83.8 | 93.0
MultiArith 600 96.0 | 98.0 98.3 | 97.7 37.2 | 93.3 97.0 | 98.5 99.3 | 98.7

Table 2: Accuracies of LLMs on various math problem datasets in the zero-shot setting. For each dataset, the left
and right numbers represent results from GPT-3.5 and GPT-4o-mini, respectively.

Dataset AutoCoT [%] AutoMathIC
w/o Opt [%]

AutoMathIC
w/o modalities
[%]

AutoMathIC [%]

ASDiv 97.4 | 97.4 96.9 | 98.1 96.1 | 98.6 97.1 | 98.0
SVAMP 82.6 | 84.0 87.0 | 95.3 85.4 | 94.7 87.0 | 95.8
GSM8k 81.4 | 97.4 83.9 | 92.2 86.9 | 93.0 83.8 | 93.0
MultiArith 97.2 | 97.7 99.5 | 98.7 96.8 | 98.7 99.3 | 98.7

Table 3: Comparison of LLM accuracies with in-context example retrieval methods across math problem datasets.
For each dataset, the left and right numbers represent results from GPT-3.5 and GPT-4o-mini, respectively.

Dataset #MutUsed #CorrectMutUsed

ASDiv 98 89
SVAMP 180 132
GSM8k 180 149
MultiArith 24 24

Table 4: Results of manual study to evaluate the correct-
ness of GPT-3.5 responses to mutated math problems.
The number of mutations and correct mutations used
as in-context examples are denoted as MutUsed and
CorrectMutUsed, respectively.

ones, respectively. Searching within 20 random
mutated questions for our experiment hinders the
achievement of high-quality in-context examples.

5 Related Work
In-context Learning. There has been recent
advancement in in-context learning. Saunshi et
al. (Saunshi et al., 2021) suggests that downstream
tasks can be solved linearly by conditioning on a
prompting words following an input text. Xie et
al. (Xie et al., 2022) suggests that the language
model can infer in-context shared latent concept
among examples in a prompt. Levine et al. (Levine
et al., 2022) establishes that the information within
in-context examples gives more improvements. In
addition, Wei et al. (Wei et al., 2022) has imple-
mented manually hand-crafted the few-shot exam-
ples for improving quality of CoT explanation that
LLM generates. However, to tackle the need for
manually hand-crafted few-shot examples, recent
studies have developed a retriever to select analogy
examples for demonstration (Zhang et al., 2023;

Rubin et al., 2022; Su et al., 2023; Wang et al.,
2023a; Luo et al., 2023). These studies differ from
ours in that they require a substantial amount of
fully annotated data to train models and retrieve in-
context examples, whereas AutoMathIC generates
in-context examples automatically through muta-
tion and consistency optimization.

Consistency in LLM. Prior research has suggested
that language models may experience inconsistency
in natural language conversation (Adiwardana et al.,
2020), and factual knowledge extraction (Elazar
et al., 2021). Wang et al. (Wang et al., 2023b) uti-
lize answer consistency across various reasoning
paths within top-K responses to enhance accuracy.
Camburu et al. (Camburu et al., 2020) introduced
an adversarial framework aimed at verifying lan-
guage models’ coherence in generating natural lan-
guage explanations. Moreover, recent studies have
tackled the issue of inconsistency in the long-form
creative writing generated by LLMs through tech-
niques like prompt chaining (Mirowski et al., 2022)
and editing to rectify long-range factual inconsis-
tencies within story passages (Yang et al., 2022). In
this paper, we quantify answer consistency across
modalities and use it to estimate LLM response
accuracy with mutations as in-context examples.

Prompt Optimization. Our research also inter-
sects with prompt optimization. Research work
improves hard prompts via an iterative local edit
and gradient-free search (Prasad et al., 2023) or
gradient-based optimization (Sun et al., 2023).
Yang et al. (Yang et al., 2023) describes the op-
timization task in natural language and feeds it to

8916

the large language model as a prompt and then
generates new prompt. Compared with them, Au-
toMathIC automatically optimizes in-context ex-
amples across modalities, rather than relying on a
single modality to improve the robustness of evalu-
ation of LLM behavior. In addition, prior research
work have optimized a small continuous vector
for downstream tasks, leaving LLM parameters
frozen (Li and Liang, 2021; Zhong et al., 2021;
Sun et al., 2022b,a; Chen et al., 2023). Diao et
al. (Diao et al., 2023) applies a policy gradient
to estimate the gradients of the parameters of the
categorical distribution of each discrete prompt.
However, they are limited to the white-box setting,
requiring accessing the parameters of a pre-trained
model while AutoMathIC is in black-box optimiza-
tion by the consistency of LLM responses across
modalities. In addition, Mishra et al. (Khashabi
et al., 2022) studies advantages of prompt tuning,
but it requires manual efforts. Zhou et al. (Zhou
et al., 2023) automate the generation of instructions
and select the most suitable instruction based on
computed evaluation scores. However, their focus
lies on instruction induction tasks rather than math
problem-solving tasks.

6 Conclusions

This paper introduces AutoMathIC, a novel tool
that automates the generation of relevant in-context
examples to enhance the arithmetic problem-
solving capabilities of LLMs. AutoMathIC auto-
mates the mutation of target math problems, gener-
ating variants that use the same solving algorithm.
It also employs a consistency check across vari-
ous LLM response modalities to evaluate answer
confidence and estimate accuracy for both original
and altered problems. Additionally, it identifies
mutations for in-context examples that improve re-
sponse consistency. Evaluations show AutoMathIC
significantly enhances answer accuracy for mutated
math problems, demonstrating efficient generation
of relevant in-context examples without manual
annotations or external datasets. The proposed con-
sistency check method increases LLM response
confidence and correctness.

7 Limitation

This work has several limitations. First, Au-
toMathIC relies on random mutations of numer-
ical values, limiting the realism of generated math
problems. Future work will explore context-aware
mutation techniques. Second, AutoMathIC eval-

uates LLM responses to multiple mutated ques-
tions across modalities, which can increase time
consumption. To address this computational over-
head, we implement an adaptive mutation mecha-
nism that dynamically adjusts the number of muta-
tions and in-context examples. Enhancing eval-
uation efficiency is identified as a direction for
future work. Third, AutoMathIC shows advan-
tages mainly for solving arithmetic math problems;
we focus on arithmetic reasoning as a key bench-
mark for LLMs’ mathematical understanding and
problem-solving. Though currently centered on
arithmetic, AutoMathIC’s principles are generaliz-
able, with future plans to extend mutation genera-
tion to a broader range of reasoning problems.

Acknowledgments
This work was partly supported by NSF grants
CCF-2008905, CCF-2047682, CCF-2146443 and
ISI-1910131, and multiple industry grants through
the UT Dallas Center for Applied AI and Machine
Learning (CAIML).

References
Daniel Adiwardana, Minh-Thang Luong, David R. So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a human-like open-
domain chatbot. CoRR, abs/2001.09977.

Fatih Kadir Akin. 2022. Awesome chatgpt prompts.
https://github.com/f/awesome-chatgpt-prompts.

Oana-Maria Camburu, Brendan Shillingford, Pasquale
Minervini, Thomas Lukasiewicz, and Phil Blunsom.
2020. Make up your mind! adversarial generation
of inconsistent natural language explanations. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4157–
4165, Online. Association for Computational Lin-
guistics.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng
Huang, and Tianyi Zhou. 2023. Instructzero: Ef-
ficient instruction optimization for black-box large
language models. CoRR, abs/2306.03082.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,

https://arxiv.org/abs/2001.09977
https://arxiv.org/abs/2001.09977
https://github.com/f/awesome-chatgpt-prompts
https://github.com/f/awesome-chatgpt-prompts
https://doi.org/10.18653/v1/2020.acl-main.382
https://doi.org/10.18653/v1/2020.acl-main.382
https://doi.org/10.48550/ARXIV.2306.03082
https://doi.org/10.48550/ARXIV.2306.03082
https://doi.org/10.48550/ARXIV.2306.03082

8917

Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. J. Mach. Learn. Res., 24:240:1–
240:113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li,
Yong Lin, Xiao Zhou, and Tong Zhang. 2023. Black-
box prompt learning for pre-trained language models.
Trans. Mach. Learn. Res., 2023.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha
Ravichander, Eduard H. Hovy, Hinrich Schütze, and
Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Trans.
Assoc. Comput. Linguistics, 9:1012–1031.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. In Proceedings of the The 61st An-
nual Meeting of the Association for Computational
Linguistics: Industry Track, ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 37–42. Association
for Computational Linguistics.

Daniel Khashabi, Chitta Baral, Yejin Choi, and Han-
naneh Hajishirzi. 2022. Reframing instructional
prompts to gptk’s language. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 589–612.
Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Jaeseong Lee, Wei Yang, Gopal Gupta, and Shiyi Wei.
2024. AutoMathIC.

Yoav Levine, Noam Wies, Daniel Jannai, Dan Navon,
Yedid Hoshen, and Amnon Shashua. 2022. The in-
ductive bias of in-context learning: Rethinking pre-
training example design. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 4582–
4597. Association for Computational Linguistics.

Xiao Lin and Devi Parikh. 2015. Don’t just listen, use
your imagination: Leveraging visual common sense
for non-visual tasks. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 2984–2993.
IEEE Computer Society.

Man Luo, Xin Xu, Zhuyun Dai, Panupong Pasu-
pat, Seyed Mehran Kazemi, Chitta Baral, Vaiva
Imbrasaite, and Vincent Y. Zhao. 2023. Dr.icl:
Demonstration-retrieved in-context learning. CoRR,
abs/2305.14128.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online.
Association for Computational Linguistics.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. 2024.
Recent advances in natural language processing via
large pre-trained language models: A survey. ACM
Comput. Surv., 56(2):30:1–30:40.

Piotr Mirowski, Kory W. Mathewson, Jaylen Pittman,
and Richard Evans. 2022. Co-writing screen-
plays and theatre scripts with language models:
An evaluation by industry professionals. CoRR,
abs/2209.14958.

OpenAI. 2023. Introducing chatgpt.
https://openai.com/blog/chatgpt.

OpenAI. 2024. Gpt-4o mini: advancing cost-efficient
intelligence. https://openai.com/index/gpt-4o-mini-
advancing-cost-efficient-intelligence/.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 2080–2094. Association for
Computational Linguistics.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2023. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, EACL 2023, Dubrovnik, Croatia, May
2-6, 2023, pages 3827–3846. Association for Com-
putational Linguistics.

http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=IvsGP7xRvm
https://openreview.net/forum?id=IvsGP7xRvm
https://doi.org/10.1162/TACL_A_00410
https://doi.org/10.1162/TACL_A_00410
https://doi.org/10.18653/V1/2023.ACL-INDUSTRY.4
https://doi.org/10.18653/V1/2023.ACL-INDUSTRY.4
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.50
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.50
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://github.com/jasonlee27/AutoMathIC
https://openreview.net/forum?id=lnEaqbTJIRz
https://openreview.net/forum?id=lnEaqbTJIRz
https://openreview.net/forum?id=lnEaqbTJIRz
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.1109/CVPR.2015.7298917
https://doi.org/10.1109/CVPR.2015.7298917
https://doi.org/10.1109/CVPR.2015.7298917
https://doi.org/10.48550/ARXIV.2305.14128
https://doi.org/10.48550/ARXIV.2305.14128
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.48550/ARXIV.2209.14958
https://doi.org/10.48550/ARXIV.2209.14958
https://doi.org/10.48550/ARXIV.2209.14958
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.18653/V1/2021.NAACL-MAIN.168
https://doi.org/10.18653/V1/2023.EACL-MAIN.277
https://doi.org/10.18653/V1/2023.EACL-MAIN.277

8918

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8748–8763.
PMLR.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, H. Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Antonia
Creswell, Nat McAleese, Amy Wu, Erich Elsen, Sid-
dhant M. Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris
Jones, James Bradbury, Matthew J. Johnson, Blake A.
Hechtman, Laura Weidinger, Iason Gabriel, William
Isaac, Edward Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2021. Scaling
language models: Methods, analysis & insights from
training gopher. CoRR, abs/2112.11446.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
CoRR, abs/1908.10084.

Subhro Roy and Dan Roth. 2016. Solving general arith-
metic word problems. CoRR, abs/1608.01413.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 2655–2671. Association for
Computational Linguistics.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora.
2021. A mathematical exploration of why language
models help solve downstream tasks. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam

Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ameet Rahane, Anantharaman S.
Iyer, Anders Andreassen, Andrea Santilli, Andreas
Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K.
Lampinen, Andy Zou, Angela Jiang, Angelica Chen,
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto-
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi,
Arfa Tabassum, Arul Menezes, Arun Kirubarajan,
Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and
et al. 2022. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
CoRR, abs/2206.04615.

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A. Smith, and Tao Yu. 2023.
Selective annotation makes language models better
few-shot learners. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. VL-BERT: pre-
training of generic visual-linguistic representations.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Hong Sun, Xue Li, Yinchuan Xu, Youkow Homma,
Qi Cao, Min Wu, Jian Jiao, and Denis Charles. 2023.
Autohint: Automatic prompt optimization with hint
generation. CoRR, abs/2307.07415.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou,
Xuanjing Huang, and Xipeng Qiu. 2022a. Bbtv2:
Towards a gradient-free future with large language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates,
December 7-11, 2022, pages 3916–3930. Association
for Computational Linguistics.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing
Huang, and Xipeng Qiu. 2022b. Black-box tuning
for language-model-as-a-service. In International
Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
20841–20855. PMLR.

Liang Wang, Nan Yang, and Furu Wei. 2023a. Learning
to retrieve in-context examples for large language
models. CoRR, abs/2307.07164.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023b. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference

http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
http://proceedings.mlr.press/v139/radford21a.html
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/1608.01413
https://doi.org/10.18653/V1/2022.NAACL-MAIN.191
https://doi.org/10.18653/V1/2022.NAACL-MAIN.191
https://openreview.net/forum?id=vVjIW3sEc1s
https://openreview.net/forum?id=vVjIW3sEc1s
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://openreview.net/pdf?id=qY1hlv7gwg
https://openreview.net/pdf?id=qY1hlv7gwg
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/10.48550/ARXIV.2307.07415
https://doi.org/10.48550/ARXIV.2307.07415
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.259
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.259
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.259
https://proceedings.mlr.press/v162/sun22e.html
https://proceedings.mlr.press/v162/sun22e.html
https://doi.org/10.48550/ARXIV.2307.07164
https://doi.org/10.48550/ARXIV.2307.07164
https://doi.org/10.48550/ARXIV.2307.07164
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw
https://openreview.net/pdf?id=1PL1NIMMrw

8919

on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

WolframAlpha. 2023. Wolfram|alpha apis.
https://products.wolframalpha.com/api.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2023. Large language models as optimizers. CoRR,
abs/2309.03409.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan
Klein. 2022. Re3: Generating longer stories with
recursive reprompting and revision. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022,
pages 4393–4479. Association for Computational
Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Inter-
national Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pages 5017–5033. Association for Computa-
tional Linguistics.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://products.wolframalpha.com/api
https://products.wolframalpha.com/api
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.48550/ARXIV.2309.03409
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.296
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.296
https://openreview.net/pdf?id=5NTt8GFjUHkr
https://openreview.net/pdf?id=5NTt8GFjUHkr
https://doi.org/10.18653/V1/2021.NAACL-MAIN.398
https://doi.org/10.18653/V1/2021.NAACL-MAIN.398
https://openreview.net/pdf?id=92gvk82DE-
https://openreview.net/pdf?id=92gvk82DE-

8920

A Appendix

A.1 Qualitative Analysis of AutoMathIC

Tables ?? to ?? present four illustrative examples
from the datasets employed in our experiments
to evaluate AutoMathIC. In each table, the first
row displays in-context examples generated by Au-
toMathIC. The second row shows the target mathe-
matical problem to be solved. Furthermore, the first
and second columns in the third row present GPT-
3.5’s responses to the target problem across modal-
ities, using the zero-shot setting and AutoMathIC,
respectively.

These examples demonstrate that in the zero-
shot setting, GPT-3.5’s reasoning is incorrect in at
least one modality across all datasets. Conversely,
the in-context examples generated by AutoMathIC
correctly instruct GPT-3.5 to solve the target prob-
lem, resulting in accurate answers by following
the same reasoning implemented in the in-context
examples.

8921

(In-context 1)
Q: Olivia had 69 math problems to complete . She spent about 15 minutes on each problem and then
she spent 42 minutes checking her answers . How many minutes did she spend total?
[CoT] A: To find the total time Olivia spent, we need to calculate the time she spent on solving the
math problems and the time she spent checking her answers separately. First, let’s calculate the time
Olivia spent on solving the math problems. Since she spent about 15 minutes on each problem, we
can multiply the number of problems by 15: 69 problems * 15 minutes/problem = 1035 minutes Next,
let’s calculate the time Olivia spent checking her answers, which is given as 42 minutes. Now, let’s
add the time spent on solving the problems and checking the answers together: 1035 minutes + 42
minutes = 1077 minutes Therefore, Olivia spent a total of 1077 minutes. The answer is 1077 minutes.
[Code] A: def func(): return 69 * 15 + 42
[Eqn] A: Answer = 69*15 + 42

(In-context 2)
Q: Olivia had 52 math problems to complete . She spent about 10 minutes on each problem and then
she spent 50 minutes checking her answers . How many minutes did she spend total?
[CoT] A: To find the total number of minutes Olivia spent, we need to add the time she spent solving
the math problems to the time she spent checking her answers. First, we need to calculate the time
Olivia spent solving the math problems. Since she spent about 10 minutes on each problem, we can
multiply the number of problems by 10: 52 problems * 10 minutes/problem = 520 minutes. Next, we
need to calculate the time Olivia spent checking her answers, which is given as 50 minutes. Finally,
we can find the total time by adding the time spent solving the problems to the time spent checking
the answers: 520 minutes + 50 minutes = 570 minutes. Therefore, the answer is 570 minutes.
[Code] A: def func(): return 52 * 10 + 50
[Eqn] A: Answer = 52*10 + 50

Target Q: Olivia had 7 math problems to complete. She spent about 4 minutes on each problem and
then she spent 3 minutes checking her answers. How many minutes did she spend total?

Zero-shot After AutoMathIC
Target [CoT]A: To find the total time Olivia spent,
we need to calculate the time she spent on solving
the math problems and the time she spent checking
her answers separately. First, let’s calculate the
time Olivia spent on solving the math problems.
Since she spent about 4 minutes on each problem,
we can multiply 4 by the number of problems she
had: 4 minutes/problem * 7 problems = 28 minutes.
Next, let’s calculate the time Olivia spent check-
ing her answers. She spent 3 minutes checking
her answers after solving each problem, so we can
multiply 3 by the number of problems she had: 3
minutes/problem * 7 problems = 21 minutes. Fi-
nally, to find the total time Olivia spent, we add
the time spent on solving the problems to the time
spent checking her answers: 28 minutes + 21 min-
utes = 49 minutes. Therefore, the answer is 49
minutes.

Target [CoT]A: To find the total time Olivia spent,
we need to calculate the time she spent on solving
the math problems and the time she spent checking
her answers separately. First, let’s calculate the
time Olivia spent on solving the math problems.
Since she spent about 4 minutes on each problem,
we can multiply the number of problems by 4: 7
problems * 4 minutes/problem = 28 minutes Next,
let’s calculate the time Olivia spent checking her
answers, which is given as 3 minutes. Now, let’s
add the time spent on solving the problems and
checking the answers together: 28 minutes + 3
minutes = 31 minutes Therefore, Olivia spent a
total of 31 minutes. The answer is 31 minutes.

Target [Code]A: def func(): return 7 * (4 + 3) Target [Code]A: def func(): return 7 * 4 + 3
Target [Eqn]A: Answer = 7 * 4 + 7 * 3 Target [Eqn]A: Answer = 7*4 + 3

Table 5: AutoMathIC generated in-context examples for ASDiv.

8922

(In-context 1)
Q: Edward spent $8 . Then he received $12 from his friend . Now he has $19 . How much did Edward
have before he spent his money?
[CoT]A: Step 1: Edward spent $8. Step 2: He received $12 from his friend. Step 3: Now he has $19.
Step 4: To find out how much Edward had before he spent his money, we can use the equation: x - 8 +
12 = 19, where x represents the amount he had before spending his money. Step 5: Simplifying the
equation, we get x + 4 = 19. Step 6: Subtracting 4 from both sides, we get x = 15. Step 7: Therefore,
Edward had $15 before he spent his money. The answer is $15.
[Code]A: def func(): return (19 - 12 + 8)
[Eqn]A: Answer = x - 8 + 12 = 19

(In-context 2)
Q: Olivia had 52 math problems to complete . She spent about 10 minutes on each problem and then
she spent 50 minutes checking her answers . How many minutes did she spend total?
[CoT]A: Step 1: Edward spent $65. Step 2: He received $39 from his friend. Step 3: Now he has
$67. Step 4: To find out how much Edward had before he spent his money, we can use the equation: x
- 65 + 39 = 67, where x represents the amount he had before spending his money. Step 5: Simplifying
the equation, we get x - 26 = 67. Step 6: Adding 26 to both sides, we get x = 93. Step 7: Therefore,
the answer is 93.
[Code]A: def func(): return (67 - 39) + 65
[Eqn]A: Answer = x - 65 + 39 = 67

Target Q: Edward spent $17. Then he received $10 from his friend. Now he has $7. How much did
Edward have before he spent his money?

Zero-shot After AutoMathIC
Target [CoT]A: Step 1: Edward spent $17. Step
2: He received $10 from his friend. Step 3: Now
he has $7. Step 4: To find out how much Edward
had before he spent his money, we need to add the
$17 he spent and the $7 he has now. Step 5: $17 +
$7 = $24 Step 6: Therefore, the answer is $24.

Target [CoT]A: Step 1: Edward spent $17. Step
2: He received $10 from his friend. Step 3: Now
he has $7. Step 4: To find out how much Edward
had before he spent his money, we can use the
equation: x - 17 + 10 = 7, where x represents the
amount he had before spending his money. Step 5:
Simplifying the equation, we get x - 7 = 7. Step
6: Adding 7 to both sides, we get x = 14. Step 7:
Therefore, the answer is 14.

Target [Code]A: def func(): return 17 + 10 - 7 Target [Code]A: def func(): return (7 - 10) + 17
Target [Eqn]A: Answer = x - 17 + 10 = 7 Target [Eqn]A: Answer = x - 17 + 10 = 7

Table 6: AutoMathIC generated in-context examples for SVAMP.

8923

(In-context 1)
Q: Gwen and her friends were recycling paper for their class . For every 1 pounds they recycled they
earned 38 point . If Gwen recycled 15 pounds and her friends recycled 36 pounds, how many points
did they earn?
[CoT]A: First, we need to calculate the number of points Gwen earned for recycling 15 pounds.
Since they earned 38 points for every 1 pound, Gwen earned 15 * 38 = 570 points. Next, we need to
calculate the number of points Gwen’s friends earned for recycling 36 pounds. Following the same
logic, her friends earned 36 * 38 = 1368 points. Finally, we need to find the total number of points
earned by Gwen and her friends. Adding Gwen’s points to her friends’ points, we get 570 + 1368 =
1938 points. Therefore, the answer is 1938.
[Code]A: def func(): gwen_pounds = 15 friends_pounds = 36 points_per_pound = 38 total_points =
(gwen_pounds + friends_pounds) * points_per_pound return total_points
[Eqn]A: Answer = 15*38 + 36*38

Target Q: Gwen and her friends were recycling paper for their class. For every 3 pounds they recycled
they earned one point. If Gwen recycled 5 pounds and her friends recycled 13 pounds, how many
points did they earn?

Zero-shot After AutoMathIC
Target [CoT]A: First, we need to calculate how
many points Gwen earned. Since she recycled 5
pounds, we divide 5 by 3 to find out how many
sets of 3 pounds she recycled. 5 divided by 3
equals 1 with a remainder of 2. So, Gwen earned 1
point. Next, we need to calculate how many points
Gwen’s friends earned. Since they recycled 13
pounds, we divide 13 by 3 to find out how many
sets of 3 pounds they recycled. 13 divided by 3
equals 4 with a remainder of 1. So, Gwen’s friends
earned 4 points. Finally, we add the points Gwen
earned (1 point) to the points her friends earned
(4 points) to find the total number of points they
earned. 1 + 4 equals 5. Therefore, the answer is 5
points.

Target [CoT]A: First, we need to find the total
pounds of paper recycled by Gwen and her friends.
Gwen recycled 5 pounds and her friends recycled
13 pounds, so the total pounds recycled is 5 + 13
= 18 pounds. Next, we need to determine how
many points they earn for recycling 18 pounds. For
every 3 pounds recycled, they earn 1 point. So,
18 pounds divided by 3 pounds per point equals 6
points. Therefore, Gwen and her friends earned a
total of 6 points for recycling paper. the answer is
6

Target [Code]A: def func(): gwen_pounds = 5
friends_pounds = 13 total_pounds = gwen_pounds
+ friends_pounds points = total_pounds // 3 return
points

Target [Code]A: def func(): gwen_pounds = 5
friends_pounds = 13 total_points = (gwen_pounds
+ friends_pounds) // 3 return total_points

Target [Eqn]A: Answer = (5 + 13) / 3 Target [Eqn]A: Answer = 6

Table 7: AutoMathIC generated in-context examples for MultiArith.

8924

(In-context 1)
Q: George has 46% more pears than bananas . If George has 90 bananas, how many fruits does
George have?
[CoT]A: If George has 90 bananas, then he has 46/100 * 90 = «46/100*90=41.4»41.4 more pears
than bananas. This means George has 90 + 41.4 = «90+41.4=131.4»131.4 pears. In total, George has
90 + 131.4 = «90+131.4=221.4»221.4 fruits. The answer is 221.4.
[Code]A: def func(): bananas = 90 pears = bananas * 1.46 total_fruits = bananas + pears return
total_fruits
[Eqn]A: Answer = 90 + 1.46 * 90

(In-context 2)
Q: George has 56% more pears than bananas . If George has 74 bananas, how many fruits does
George have?
[CoT]A: If George has 74 bananas, then he has 56/100 * 74 = «56/100*74=41.44»41.44 more pears
than bananas. This means George has 74 + 41.44 = «74+41.44=115.44»115.44 pears. Therefore,
George has a total of 74 + 115.44 = «74+115.44=189.44»189.44 fruits. The answer is 189.44.
[Code]A: def func(): bananas = 74 pears = bananas + (bananas * 56 / 100) return bananas + pears
[Eqn]A: Answer = 74 + 1.56 * 74

Target Q: George has 45% more pears than bananas. If George has 200 bananas, how many fruits
does George have?

Zero-shot After AutoMathIC
Target [CoT]A: Step 1: Calculate 45% of 200
bananas. 45% of 200 = (45/100) * 200 = 0.45 *
200 = 90 Step 2: Add the result from step 1 to the
number of bananas. 200 + 90 = 290 Therefore,
George has 290 fruits. The answer is 290.

Target [CoT]A: If George has 200 bananas, then
he has 45/100 * 200 = «45/100*200=90»90 more
pears than bananas. This means George has 200 +
90 = «200+90=290»290 pears. Therefore, George
has a total of 200 + 290 = «200+290=490»490
fruits. The answer is 490.

Target [Code]A: def func(): bananas = 200 pears =
bananas + (0.45 * bananas) return bananas + pears

Target [Code]A: def func(): bananas = 200 pears
= bananas + (bananas * 45 / 100) return bananas +
pears

Target [Eqn]A: Answer = 200 + 0.45 * 200 Target [Eqn]A: Answer = 200 + 1.45 * 200

Table 8: AutoMathIC generated in-context examples for GSM8k.

	Introduction
	Motivation
	Approach
	Initial Consistency Computation
	Target Question Mutation
	Mutation Selection by Consistency Optimization

	Experiments
	Experimental setup
	Results

	Related Work
	Conclusions
	Limitation
	Appendix
	Qualitative Analysis of AutoMathIC

