@inproceedings{liu-etal-2025-selected,
title = "Selected Languages are All You Need for Cross-lingual Truthfulness Transfer",
author = "Liu, Weihao and
Wu, Ning and
Ding, Wenbiao and
Liang, Shining and
Gong, Ming and
Zhang, Dongmei",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.601/",
pages = "8963--8978",
abstract = "Truthfulness stands out as an essential challenge for Large Language Models (LLMs). Although many works have developed various ways for truthfulness enhancement, they seldom focus on truthfulness in multilingual scenarios. Meanwhile, contemporary multilingual aligning technologies struggle to balance massive languages and often exhibit serious truthfulness gaps across different languages, especially those that differ greatly from English. In our work, we extend truthfulness evaluation to multilingual contexts and propose a practical method for cross-lingual truthfulness transfer called Fact-aware Multilingual Selective Synergy (FaMSS). FaMSS is able to select an optimal subset of all tested languages by language bias and transfer contributions, and then employ translation instruction tuning for cross-lingual truthfulness transfer. Experimental results demonstrate that our approach can effectively reduce the multilingual representation disparity and boost cross-lingual truthfulness transfer of LLMs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-selected">
<titleInfo>
<title>Selected Languages are All You Need for Cross-lingual Truthfulness Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weihao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ning</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenbiao</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shining</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongmei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Truthfulness stands out as an essential challenge for Large Language Models (LLMs). Although many works have developed various ways for truthfulness enhancement, they seldom focus on truthfulness in multilingual scenarios. Meanwhile, contemporary multilingual aligning technologies struggle to balance massive languages and often exhibit serious truthfulness gaps across different languages, especially those that differ greatly from English. In our work, we extend truthfulness evaluation to multilingual contexts and propose a practical method for cross-lingual truthfulness transfer called Fact-aware Multilingual Selective Synergy (FaMSS). FaMSS is able to select an optimal subset of all tested languages by language bias and transfer contributions, and then employ translation instruction tuning for cross-lingual truthfulness transfer. Experimental results demonstrate that our approach can effectively reduce the multilingual representation disparity and boost cross-lingual truthfulness transfer of LLMs.</abstract>
<identifier type="citekey">liu-etal-2025-selected</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.601/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>8963</start>
<end>8978</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Selected Languages are All You Need for Cross-lingual Truthfulness Transfer
%A Liu, Weihao
%A Wu, Ning
%A Ding, Wenbiao
%A Liang, Shining
%A Gong, Ming
%A Zhang, Dongmei
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F liu-etal-2025-selected
%X Truthfulness stands out as an essential challenge for Large Language Models (LLMs). Although many works have developed various ways for truthfulness enhancement, they seldom focus on truthfulness in multilingual scenarios. Meanwhile, contemporary multilingual aligning technologies struggle to balance massive languages and often exhibit serious truthfulness gaps across different languages, especially those that differ greatly from English. In our work, we extend truthfulness evaluation to multilingual contexts and propose a practical method for cross-lingual truthfulness transfer called Fact-aware Multilingual Selective Synergy (FaMSS). FaMSS is able to select an optimal subset of all tested languages by language bias and transfer contributions, and then employ translation instruction tuning for cross-lingual truthfulness transfer. Experimental results demonstrate that our approach can effectively reduce the multilingual representation disparity and boost cross-lingual truthfulness transfer of LLMs.
%U https://aclanthology.org/2025.coling-main.601/
%P 8963-8978
Markdown (Informal)
[Selected Languages are All You Need for Cross-lingual Truthfulness Transfer](https://aclanthology.org/2025.coling-main.601/) (Liu et al., COLING 2025)
ACL