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Abstract
Recently, Multi-modal Entity Linking (MEL)
has attracted increasing attention in the re-
search community due to its significance in
numerous multi-modal applications. Video, as
a popular means of information transmission,
has become prevalent in people’s daily lives.
However, most existing MEL methods primar-
ily focus on linking textual and visual men-
tions or offline videos’ mentions to entities in
multi-modal knowledge bases, with limited ef-
forts devoted to linking mentions within online
video content. In this paper, we propose a task
called Online Video Entity Linking (OVEL),
aiming to establish connections between men-
tions in online videos and a knowledge base
with high accuracy and timeliness. To facili-
tate the research works of (OVEL), we specifi-
cally concentrate on live delivery scenarios and
construct a live delivery entity linking dataset
called (LIVE). Besides, we propose an evalua-
tion metric that considers robustness, timeless-
ness, and accuracy. Furthermore, to effectively
handle (OVEL) task, we leverage a memory
block managed by a Large Language Model
and retrieve entity candidates from the knowl-
edge base to augment LLM performance on
memory management. The experimental re-
sults prove the effectiveness and efficiency of
our method. Our data and code are available at
https://github.com/haidequanbu/OVEL.

1 Introduction

Videos, showcased by platforms like TikTok and
YouTube, have become a dominant medium for
communication. As their significance grows, so
does the breadth of academic research into under-
standing them. Beyond the well-studied areas of
video retrieval and captioning, scholars (Xu et al.,
2016; Miech et al., 2019; Gabeur et al., 2020; Gan
et al., 2021) are exploring aspects like pre-training,
cross-modal fusion, and more, striving for a com-
prehensive grasp of video content. However, these
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Figure 1: The task of OVEL in the live delivery scene.
The upper represents an online delivery video. At time t,
it takes information before time t as input and identifies
salient entities from the video. Relevant entities are
pushed to specific persons for recommendation.

existing studies mainly concentrate on understand-
ing the holistic content of videos and often overlook
the significance of specific entities within them.
Consider a live streaming example: where a video
captioning model might merely state “a host ex-
plaining a product”, however, for viewers, specific
details like “Nike Air Jordan 37th Generation Mid-
Top Basketball Shoes” might be the critical infor-
mation they seek. Therefore, in such scenarios,
discerning specific entities can be more vital than a
broad overview of the video content.

Video entity linking refers to linking mentions
that appear in a video to their corresponding enti-
ties in a knowledge base. Related research on this
task is still relatively limited. There have been stud-
ies (Adjali et al., 2020a,b; Zhou et al., 2021; Wang
et al., 2022b,a; Gan et al., 2021; Sun et al., 2022;
Luo et al., 2023; Xing et al., 2023) focused on
the research of Multimodal Entity Linking (MEL),
which aims to link mentions of multiple modalities
(primarily text and images) to a knowledge base.
These works primarily focus on static visual-textual
pairs, with limited consideration for mentions in
video data.

https://github.com/haidequanbu/OVEL
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Besides, some studies (Li et al., 2015; Venkita-
subramanian et al., 2017) have conducted video
entity linking, but with certain limitations. On the
one hand, they link to coarse-grained entities like
“bird” or “human”, which becomes overly simplis-
tic due to the broad granularity. On the other hand,
they don’t demand real-time processing. With the
rise of network terminals, there is an increasing
demand for improved online performance in cer-
tain scenarios. For instance, in online sports live
broadcasts, if specific athletes can be identified,
comments and even real-time explanations can be
generated based on the career of the athletes. These
scenarios put forward higher requirements for on-
line video entity linking.

In this paper, we propose the task of Online
Video Entity Linking (OVEL) on dynamic video
streams. The objective of this task is to link im-
portant entities appearing in online videos to a cor-
responding knowledge base. Furthermore, to ad-
vance the research on OVEL, we construct a dataset
for LIVE stream product recognition based on live
streaming scenarios called LIVE, which includes 82
live streams and nearly 250 hours of video. Based
on the LIVE dataset, to better evaluate the accuracy
and efficiency of entity linking on video streams,
we introduce a time-weighted decay metric named
RoFA, which comprehensively considers the ac-
curacy and robustness of model predictions while
also imposing requirements on online performance.
Considering the OVEL task and LIVE dataset, as
shown in figure 1 we analyze the OVEL task, which
poses several key challenges:

Much Noise. Real-time scenarios often exhibit
a multitude of visual scenes and various sounds,
which can introduce interference in entity recogni-
tion. For instance, in live-streaming e-commerce
scenarios, hosts tend to use a significant number of
interjections, engage in interactions with viewers,
or interact with other hosts. These can cause sub-
stantial interference in the recognition of entities.

Timeliness. In online scenarios, which are char-
acterized by strict time constraints, the prompt
identification of salient entities and their timely
recommendation to potential users often results in
enhanced economic benefits. The expeditious iden-
tification of significant entities entails a challenging
prerequisite for timeliness.

Domain knowledge. Recognizing certain prod-
ucts requires a certain level of domain knowledge,
and individuals unfamiliar with the domain may
struggle to make accurate identifications. For in-

stance, it might be challenging for some people
to distinguish the specific generation and specific
superstar’s basketball shoes.

Considering these challenges of OVEL task, We
propose several methodologies to address these
challenges. Firstly, to address the issue of high
noise levels in online scenarios, we propose adopt-
ing a LLM-based information extraction approach,
aiming to extract information from videos that are
more relevant to the entities. Secondly, to address
the issue of timeliness, we utilize a memory block
to store information before the current inference
moment. For the subsequent moment, only the
information within the time interval and the mem-
ory block before this moment need to be inputted,
ensuring real-time performance. And we delegate
the management of the memory block to the LLM.
Furthermore, to tackle the domain-specific nature
of live recognition, we propose utilizing a model
retrieval to provide examples to LLM, enabling
the LLM to possess a broader background knowl-
edge. Lastly, when leveraging LLM for entity link-
ing, a huge amount of entity candidates causes
insufficient text length. We introduce a two-stage
framework where MEL Methods act as candidate
retrieval, and the LLM is used for entity disam-
biguation. This approach not only utilizes the ca-
pabilities of the large language model but also mit-
igates the issue of resource consumption. In sum-
mary, the main contributions of this paper are as
follows:

• To the best of our knowledge, we introduce
the task of online entity linking (OVEL) for the
first time, focusing on improving the accuracy
and efficiency of entity recognition in online
videos.

• Building upon live streaming scenarios, we
have created a dataset for live stream product
recognition, comprising 82 live stream videos,
approximately 250 hours of video, and nearly
3,000 data instants. We alse created a corre-
sponding metric named RoFA.

• To better address the task of OVEL, we pro-
pose a framework for the comprehensive man-
agement of video stream information based on
LLM as a memory manager. Additionally, we
leverage retrieval for LLM to manage mem-
ory better and employ a two-stage approach
for entity linking. Subsequent experiments
validate the effectiveness of our framework.
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2 Related Work

2.1 Multi-modal Entity Linking

Multimodal Entity Linking (MEL) is an extension
of entity linking that links mention in multi-modal
information (e.g., images, audio, or videos) to a
corresponding knowledge base. Existing research
primarily focuses on static image-text pairs. Re-
searchers (Adjali et al., 2020a,b; Zhou et al., 2021;
Wang et al., 2022b,a; Gan et al., 2021; Sun et al.,
2022; Chengmei et al., 2023; Xing et al., 2023;
Shi et al., 2023; Yao et al., 2023; Zhang et al.,
2021) constructed multiple datasets for different
scenarios or proposed various multimodal represen-
tation methods, integrating features from different
modalities to facilitate entity mention and entity
matching.

These studies primarily focus on static textual
and graph data and have not been extended to the
domain of videos. In the realm of entity linking in
videos, Li et al. (2015) introduced a dataset for en-
tity linking in videos and linked prominent entities
from the videos to the knowledge base. For exam-
ple, they linked highlights of Kobe Bryant’s career
to the entity “Kobe Bryant”. Venkitasubramanian
et al. (2017) established a dataset for documentary
video linking, utilizing video descriptions and con-
tent recognition to identify corresponding animals
such as lions, birds, and others. These methods
have two limitations. Firstly, the granularity of
entities in videos is often too coarse, lacking fine-
grained entity identification. Secondly, they pri-
marily focus on pre-stored videos, linking them to
the knowledge base with the whole video informa-
tion, without considering real-time entity linking
for online video streams.

2.2 LLM as Memory Controller

With the development of large language models
(LLMs) (Devlin et al., 2019; Radford et al., 2018,
2019; Brown et al., 2020), LLMs that have been
pre-trained on massive corpora have demonstrated
remarkable capabilities (Ouyang et al., 2022; Wei
et al., 2022a). With the advent of powerful genera-
tive models such as GPT-4 (OpenAI, 2023), these
models have demonstrated exceptional capabilities
in generation, conversation, and the comprehen-
sion of human instructions, finding applications
across a variety of downstream tasks. Recently,
numerous researchers (Liang et al., 2023; Zhong
et al., 2023) have integrated Memory with Large
Language Models (LLMs), proposing frameworks

to address resource constraints such as input length
limitations inherent in LLMs. These Memory-
augmented frameworks have provided significant
insights for enhancing downstream applications.

2.3 Retrieval Augment Generation

Despite the impressive capabilities demonstrated
by models trained on large-scale corpora, they
still suffer from phenomena such as hallucinations,
long-tail problems, and knowledge decay. Retrieval
augmentation, as a form of external corpora and
knowledge enhancement, can alleviate these limi-
tations of large models. In recent years, retrieval
augmentation (Lewis et al., 2021; Guu et al., 2020;
Lin et al., 2023; Izacard et al., 2022; Vu et al., 2023;
Asai et al., 2023) has been employed in various
stages of model training, fine-tuning, and infer-
ence, leading to improved performance of models
on downstream tasks. In this paper, we utilize re-
trieval augmentation to alleviate the issue of insuf-
ficient knowledge using LLM in domain-specific
scenarios.

3 Benchmark Construction

3.1 Problem Formulation

Online Video Entity Linking (OVEL) is a task de-
signed for live video data streams. The goal of this
task is to accurately identify salient entities in a
live video stream, like the products highlighted by
the anchor in the live broadcast scene. Given a live
video, for instance, within the first 3 seconds, the
host first mentions a specific pair of Nike shoes,
followed by another 3 seconds of detailed introduc-
tion of it, then 3 seconds of answering questions
from the live audience, and another 3 seconds of
introduction to Nike shoes, and followed by a 3
seconds of Adidas’s competitive shoes. The promi-
nent entities in these video streams should be Nike
shoes, OVEL should predict the Nike shoes for each
3 seconds input accuracy and robustness. This un-
even distribution of information poses significant
challenges to OVEL task.

Considering mentioned above, The input of
OVEL should be a sequence of clips that accumu-
lated with time. Given a live video Vm consisted of
a list of video clips Vm = {v1m, v2m, ..., vtm, ..., vnm},
where vtm represents the t-th clip of video
Vm. And a predefined knowledge base
KB = {e1, e2, ..., ej}, where each entity in the
knowledge base has corresponding multimodal in-
formation. Below is the formal formulation of
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OVEL at timestamp t:

argmax
etp

P (etp|[v1m, v2m, ..., vtm],KB) (1)

An entity etp should be predicted at each times-
tamp t with the video information before timestamp
t. Hence, a list of entities {e1p, e2p, ..., etp, ..., enp}
will be predicted in the video Vm. Each entity in
the prediction list should be linked to ground truth
em. This places lots of challenges on the robustness
and accuracy of the algorithm.

3.2 Dataset Construction and Analysis
To advance the research on OVEL task, we have
built an e-commerce video stream entity linking
dataset based on live streaming scenarios. The con-
struction of the dataset consists of three main steps.
Firstly, the initial raw videos and their correspond-
ing multimodal knowledge base are obtained. The
second step involves segmenting the correspond-
ing live videos into data instances and manually
annotating the entities in the knowledge base. The
third step entails simulating online input by divid-
ing each data instance into a list of video clips
based on their playback time. The details of dataset
construction and dataset analysis can be found in
Appendix A.

3.3 Evaluation For OVEL
Evaluating the OVEL task is not inherently straight-
forward and presents certain challenges. In the
domain of live streaming, early identification of en-
tities is increasingly effective for recommendation
algorithms, potentially leading to greater economic
benefits. The simplest approach involves assign-
ing higher scores to instances where the correct
location of real entities is identified earlier in the
video. However, there is a possibility of correct
recognition in the first minute but misidentification
after one and a half minutes, which puts forward
requirements for the robustness of the algorithm.
Based on the aforementioned characteristics, we
propose a comprehensive metric that considers ac-
curacy, online performance, and robustness, we call
it Robust online Fast Accuracy (RoFA). Below is
the formulation of RoFA:

Given a list of prediction results in the temporal
sequence {e1p, e2p, ..., etp, ..., enp}, where the scores
for predictions made later should be lower. Hence,
we have devised a weighted decay mechanism that
is proportional to the size of the prediction re-
sults. We initialize a linearly decreasing weight

{w0, w1, ..., wt, ..., wn}. For example, the weight
of the first prediction is set to 1, and the weight of
the last prediction is set to 0.2 (w0 = 1, wn = 0.2).
The weights between these two windows decrease
linearly, which aims to evaluate the fast and robust
performance of algorithms. As we only recom-
mend the best matching product to users, so con-
sidering the prediction result for each video clip,
if the prediction is correct, the score should be 1.
Meanwhile, if the prediction is incorrect, the score
is 0. The final metric is calculated as the sum of
scores divided by the sum of weights, representing
the average score. The calculation method of RoFA
is as follows:

RoFA =

∑n
i=0wi · scorei∑n

i=0wi
(2)

while scorei is calculated as below, as em denotes
the ground truth of the video, and epi denotes the
predicted entity.

scorei =

{
1, if (epi = em)

0, if (epi ̸= em)
(3)

4 Method

In this section, we will first present the overall
framework of the methodology, followed by an
introduction to the summary modules that consti-
tute the methodology and an overview of the main
components of the LLM as the memory controller.
Finally, we will introduce the two-stage entity link-
ing methods.

4.1 Overview of the Framework

Figure 2 illustrates the entire workflow of our
Framework. When the input is an online video,
we initialize the initial memory block using the
summary module. Then we leverage the memory
block and image information from video clips to
perform the initial retrieval of candidate products.
At each time t, the LLM manager gets the current
video information, accesses the content within the
memory, and refers to the results obtained from the
retrieval model to make decisions and update the
memory from the previous time step. To better use
LLM’s capacity, we also employed a two-stage en-
tity linking method. First is the retrieval model to
retrieve the candidate entities, and give candidates
to LLM for fine-grained entity disambiguation. Be-
low we will provide a detailed description of each
module.
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You need to update the template information based on the recommended product 
information and the voice text of the anchor introducing the product. 
[RAG]The following are k possible product recommendation sequences:
Product recommendations are not necessarily related to live broadcast products. 
The live broadcast introduction text is as follows:
Please update the description information below based on the product recommend-
dation sequence and the relevance of the live broadcast content to the description 
below:

⼤家只要点开链接，详情⻚去领取这张470元优惠券
Everyone just needs to click on the link to the details page 

to receive this 470 yuan coupon

⼿表来了,⼀个很百搭,⽽且很好看的⼀个⼿表The watch 
is coming.A very versatile one

And a very nice watch

FORSIL的⼿表,给⼤家看⼀下,他们家其实覆盖了万表,然后
⾹包

The watchof FORSIL. They actually cover watches and sachets.

更亮,更亮，整个就是显得更加的闪,我来给⼤家再看⼀
下细节,FORSIL这个品牌线下都有

Brighter, the whole looks more sparklinglet me show you 
the details again. FORSIL is a brand available offline.

product name: FORSIL Watch
Product category: Not mentioned 

product brand: FORSIL
Product attributes: versatile, nice

product name: Watch
Product category: Not mentioned

product brand: Not mentioned
Product attributes: versatile, nice

product name: Fossil Watch
Product category: Fashion watch

product brand: Fossil
Product attributes: versatile, nice, bright

Multimodal Knowledge Base

Input Information at time t

Memory before time t

Update Memory

Memory block is 
updated by LLM 

Memory Controller

Input information 

Retrieval

Figure 2: Overview of framework structure. The initialized memory block is obtained through the summary module
and used alongside keyframes extracted from the video by MEL to get initial retrieval candidates. At time t, the
LLM memory controller acquires video information within the current input time interval, the memory block before
time t, and incorporates retrieval results to update the content within the memory block.

4.2 Summary Module

For a given input of video clips {v0, v1, ..., vt, ...},
while vt represents the video clip at time t,
transcribed speech text {s0, s1, ..., st, ...}, and
keyframe sequences {i0, i1, ..., it, ...} over time.
The task of OVEL is to predict ground truth en-
tities at every moment as accurately as possible. As
a task of multimodal entity linking, the fundamen-
tal model should be a multimodal retrieval model.
The multimodal retrieval model aims to maximize
the similarity between real-time videos and their
corresponding entities while minimizing the simi-
larity between non-matching entities. This can be
represented by the following equation:

Embedv = Encoderv(V
t
s , V

t
i ) (4)

Embede = Encodere(e
t
m, eim) (5)

et = argmax
em∈KB

Sim (Embedv, Embede)) (6)

V t
s = [s0 : s1 : ... : st] V t

i = [i0 : i1 : ... : it] (7)

In the equation, Sim denotes the similarity cal-
culation, while Encoder represents the encoder
component for both the video and the entities in
the knowledge base. The video contains two multi-
modal information: speech text and images. Vt

contains all the information before time t.

However, in the context of live streaming, real-
time videos present dynamic and evolving infor-
mation, accompanied by a substantial amount of
irrelevant noise, such as the host’s habit of intro-
ducing “all girls” and engaging with the audience.
To address this issue, we first propose an approach
that leverages an LLM for extracting textual con-
tent from speech. Equation 7 is replaced with the
following formulation:

V t
s = LLMsummary([s0 : s1 : ... : st]) (8)

We utilize speech text following summaries for
multimodal retrieval, which forms the summary
module of our proposed method.

4.3 Memory Controller Module

However, online entity linking poses a challenge in
terms of responsiveness. As the video progresses
in time, we encounter a more important challenge.
The length of the textual content extracted from
speech increases over time, resulting in longer sum-
maries time. At this point, using the summary
module cannot meet the real-time requirements. To
address this issue, we propose utilizing a memory
block to store past extracted information. As shown
in the bottem of Figure 2, which aims to store past
information with limited resources. The memory
block module is designed to record entity-related
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attributes from previous video clips. When process-
ing new video segments, only the current memory
information needs to be updated, thereby avoiding
linear growth in the number of tokens required for
inference per clip. The input speech text in Equa-
tion 7 is replaced by the equation listed below:

V t
s = Memt = LLM(st,Memt−1) (9)

From the equation, it can be observed that at each
time step, only the memory from the previous time
step and the textual information of the current clip
are required as inputs.

However, in the live-streaming scenario, there
are limitations. The granularity of products in
live streaming is relatively fine, requiring domain-
specific knowledge. Additionally, there is a signif-
icant amount of irrelevant information present in
the videos. If we solely rely on an LLM trained in a
general domain to manage the memory block, there
is a risk of extracting a large amount of irrelevant
information. To ensure that the memory block is
primarily filled with information related to the prod-
ucts, we combine it with the retrieval model. The
products obtained through multimodal retrieval are
simultaneously considered by the LLM, which acts
as guidance for better memory block management.
Equation 9 is replaced by the following formula:

V t
s = Memt = LLM(st,Memt−1, [Ek]) (10)

[Ek] = Topk(argmax
em∈KB

Sim (Embedv, Embede)))

(11)
In equation 11, Embedx denotes the embedding en-
coded by corresponding encoders. From the equa-
tion, it can be observed that at each time step, the
inputs consist of the memory from the previous
time step, the textual information of the current
slice, and the retrieval results from the retrieval
model. This not only fulfills the requirements of
real-time inference but also alleviates the issue of
insufficient domain-specific knowledge in LLM.

4.4 Two-stage Entity Linking

The LLM demonstrates remarkable capability,
which we desire to use for entity linking. How-
ever, in real-time scenarios, it is challenging to
provide all the candidate entities to the LLM due
to its limited context length, and fine-grained non-
deterministic generation is also difficult. Drawing
from previous approaches (Wang et al., 2022b),
we divide the linking process into two steps: the

first step involves the retrieval model to get entity
candidates, and the second step involves the en-
tity disambiguation made by the powerful LLM.
The formula for this progress is illustrated in the
following:

[Ek] = Topk(argmax
em∈KB

Sim (Embedv, Embede)))

(12)
ept = LLMchoice([e

1
k, e

2
k, ..., e

n
k ]) (13)

From the formula, it can be observed that initially,
a reduced set of entity candidates is retrieved using
MEL. Then, LLM is employed to select the opti-
mal candidate entity from this set. This approach
not only leverages the powerful background knowl-
edge of LLM but also reduces the time-consuming
inference capacity.

Above is the comprehensive presentation of our
proposed framework. The following experiments
show that our method ensures real-time perfor-
mance while effectively enhancing overall perfor-
mance.

5 Experiments

In this section, we will present the experimental
results on the LIVE dataset. First, we will discuss
the main experiment results. Next, we will examine
the performance of our method on various Multi-
model retrieval methods and other large language
models. Lastly, we will analyze real-time perfor-
mance and share some findings regarding memory
management, which are listed in Appendix B.

5.1 Experiments Settings

As a new task, existing methods (Multi-modal En-
tity Linking methods) perform poorly when directly
applied to OVEL. We analyze the following rea-
sons for the challenges we encountered: (1)Due
to language differences, the LIVE dataset is com-
posed of Chinese text. We attempted to translate
the Chinese text into English, but the nature of the
OVEL platform results in predominantly colloquial
expressions in the texts. Moreover, translating pro-
prietary brand names from the knowledge base into
corresponding English terms proved to be diffi-
cult. The experimental results demonstrated poor
performance when using this approach. (2)The
existing methods are primarily designed for static
and unchanging inputs, whereas our task involves
dynamic and evolving inputs. Consequently, these
methods exhibit poor performance when applied to
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such scenarios. These factors contribute to the diffi-
culties we face in comparing different approaches.

Model selection. Based on the aforementioned
considerations, we adopt three different architec-
tures from two models (Chinese-CLIP (Yang et al.,
2023) and AltCLIP (Chen et al., 2022)) that exhibit
superior performance in multimodal retrieval on
Flickr-CN (Xie et al., 2023) and COCO-CN (Li
et al., 2019) datasets as our baseline approaches
for model selection. Chinese-CLIP involves fine-
tuning a well-trained Chinese text encoder and im-
age encoder for high-quality text-image retrieval
through contrastive learning. AltCLIP, on the other
hand, incorporates Chinese training data into CLIP,
making it a multilingual text encoder model. We
employed Chinese-CLIP architectures based on
ResNet (He et al., 2015) and RBT3, as well as ViT-
H/14 (Dosovitskiy et al., 2021) and RoBerta (Liu
et al., 2019). These architectures are denoted as
CN-CLIP_B and CN-CLIP_L, respectively. Alt-
CLIP utilized official weight initialization. Fur-
thermore, taking into account the characteristics
of the e-commerce domain, we utilize Qwen-14B-
Chat (Bai et al., 2023) as the large language model
in this study.

Implementation Details. For the method pro-
posed in this article is designed for online perfor-
mance analysis, all experiments are performed on
the same machine. Our local machine has four
3090 GPUs. To facilitate better inference, we de-
ployed open-source LLM on an A100 80G ma-
chine and used API calls to manage memory blocks
through the LLM controller. Due to limitations in
local inference memory, we randomly sampled a
product database approximately 10 times larger
than the test set from the knowledge base. We
fixed this subset of 3,000 products as the candidate
pool, and the test set consisted of 275 video sam-
ples. We assume that the model begins generating
outputs after processing 10 video clips, indicating
that the model starts linking from the 10th video
clip. To better utilize the sequential information
in memory, except for the Base method, all other
approaches perform inference once every 5 video
clip sizes. The inference results are then replicated
for all five video clips. All methods are finetuned
on the training set.

5.2 Main Results
In this section, we added our framework to two
multi-modal retrieval models. To compare the ef-
fectiveness of different modules, we denote the

model that directly employs multimodal retrieval
as “Base”, and our proposed LLM as memory con-
troller as “Ours”. The RoFA results are presented
in the Table 1.

Method AltCLIP CN-CLIP_B CN-CLIP_L
Base 2.32 23.16 36.68

Ours−M 4.80 42.17 56.60
Ours−R 4.85 35.30 47.02
Ours 13.20 48.16 60.20

Table 1: RoFA results of proposed methods.While
Ours−R represents the removal of the retrieval module,
while Ours−M represents the removal of the memory
block module.

From the table, it can be observed that the ap-
proach combining retrieval model retrieval with
LLM achieved the highest performance. Partic-
ularly, our method combining the CN-CLIP_L
model achieved the best results, due to CN-
CLIP_L’s superior performance on the benchmark
compared to the other two retrieval models. In
most cases, using a single memory management
approach yields slightly inferior results compared
to using full summaries, as the structure of mem-
ory management lacks global information, lead-
ing to information drifting. In our observations,
longer videos are more likely to experience this phe-
nomenon. However, by retrieving entity candidates,
LLM can update only the attributes and categories
related to the referenced products in long videos.
This method of supervised signals can effectively
solve this problem. Additionally, our method exhib-
ited the most significant improvement on AltCLIP,
reaching nearly 300%. We speculate that this is be-
cause while AltCLIP performs poorly in retrieval
alone when we divide the task into two steps and
provide sufficient candidate options to the LLM,
the LLM can often select the best candidates. This
demonstrates that our method provides substantial
improvements when the retrieval model performs
poorly which suggests that in low-resource scenar-
ios where the retrieval model lacks training data,
leveraging the combination of the LLM can serve
as a good solution.

5.3 Static Results

Taking into account the difficulties encountered in
conducting experiments for comparing with exist-
ing approaches, including language barriers and
challenges in handling dynamic inputs, in this sec-
tion, we treat dynamic videos as complete enti-
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ties and compare our summary module with ex-
isting methods. The experimental metrics primar-
ily utilized are Recall and Mean Reciprocal Rank
(MRR) at K. We select a variety of representa-
tive approaches for comparison. These include
CLIP4Clip (Luo et al., 2022) in the domain of video
retrieval, a purely textual entity linking approach
BLINK (Logeswaran et al., 2019), the multimodal
entity linking method V2VTEL (Sun et al., 2022),
and other multimodal retrieval methods such as
AltCLIP and Chinese-CLIP. The experimental out-
comes are as exhibited in Table 2.

Method R@1 R@5 MRR@3 MRR@5
CLIP4clip 1.06 8.05 2.14 3.10
AltCLIP 8.95 20.62 12.4 13.3
V2VTEL 9.09 24.1 13.0 14.2
BLINK 42.2 72.7 53.7 54.8

CN-CLIP 55.1 75.3 62.2 63.2
Ours 57.7 82.3 66.0 66.8

Table 2: Static results of different methods.

From Table 2, it can be observed that our
summary method achieves the best performance,
demonstrating the effectiveness of our approach.
Furthermore, the performance of the CLIP4clip
and V2TVEL approaches compared to pure text-
based BLINK is poor, indicating that text plays a
more significant role in our scenario. Among the
proposed methods, only CN-CLIP and AltCLIP
incorporate multimodal inputs, and they exhibit fa-
vorable results, which is why we have chosen them
as our multimodal retrieval models.

5.4 Different LLMs Analysis
In order to compare the performance of different
large-scale language models, we also compare dif-
ferent LLMs as memory controllers. Consider-
ing the perspectives of closed-source, open-source,
and model size, we choose gpt-3.5-turbo, Qwen-
14B-Chat (Bai et al., 2023), Qwen1.5-14B-Chat,
ChatGLM3-6B (Zeng et al., 2022) as our large
language models. We fixed the small model as CN-
CLIP_L. Considering the billing cost of invoking
gpt-3.5-turbo, we chose a fixed test set of size 50.
We extended Rofa to Rofa@K, which means that
we compared not only the top-1 results but also the
top-K results. The experimental results are shown
in the Figure 3.

From the figure, it can be observed that all
the approaches incorporating large models out-
perform the baseline model. Among them, Chat-
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Figure 3: Rofa@K results of different LLMs.

GLM and Qwen-14B-Chat demonstrate better per-
formance, followed by gpt-3.5-turbo, and finally
Qwen1.5. The reason why gpt-3.5-turbo performs
worse than ChatGLM and Qwen might be at-
tributed to the more comprehensive Chinese e-
commerce corpus in the pretraining stage. How-
ever, Qwen1.5 exhibits overall poorer performance,
despite its strong capabilities in some open bench-
marks. Through our fine-grained observation, we
found that Qwen1.5 tends to provide explana-
tions when drawing conclusions. We speculate
that Qwen1.5 has been trained on a considerable
amount of Chain-of-Thought (Wei et al., 2022b)
data, which enhances its performance in general
tasks. However, when utilized for memory manage-
ment, it generates irrelevant data in the format of
CoT description, resulting in the accumulation of
redundant information in memory over time, which
leads to poor performance on OVEL.

It is noteworthy that, for the purpose of com-
parison, a standardized prompt was employed
across all models. However, in practical appli-
cations, different models may have distinct opti-
mal prompts, which could explain the underperfor-
mance of Qwen1.5.

6 Conclusion

In this paper, we propose an Online Video Entity
Linking (OVEL) task for online videos, construct
the LIVE dataset based on live streaming scenarios,
and introduce the RoFA metric, which considers
robustness, timeliness, and accuracy. Based on the
dataset, we present a method that combines LLM
with a retrieval model for memory management,
which handles the OVEL task efficiently. Experi-
mental results demonstrate the effectiveness of our
approach.
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Ethical Statements

As a dataset for live streaming scenes, the pre-
sented dataset in this paper includes appearances
by well-known broadcasters, which may have ad-
verse implications for their privacy rights and im-
age rights. Based on our collaboration with the
company, we obtained the raw video data and en-
sured that these raw data remained internal to the
organization. When releasing the dataset, to pre-
vent privacy breaches, we encoded the frame se-
quences within the videos. Only the embeddings
generated through visual encoders were made pub-
lic, ensuring that individuals could not be traced
back from the released benchmark.

Limitations

When processing multimodal information in this
paper, the visual processing approach is relatively
simplistic. We will consider these limitations in our
future works: (1) The video scenes are inherently
complex, where entities may exhibit temporal vari-
ations, appearing and disappearing over time; (2)
The scenes consist of numerous potential entities,
such as glasses worn by individuals and the cloth-
ing they are dressed in, which can pose challenges;
(3) Another challenge is that for real-time links to
long videos, as the length of the video increases,
recognition is more likely to receive interference
from irrelevant information, making the recogni-
tion more difficult.
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A Dataset Construction and Analysis

A.1 Dataset construction
As shown on the left side of Figure 4, we first
obtained the original files of 82 live stream videos
from Taobao live1. On average, each livestream

1https://taolive.taobao.com/

video had a duration of 5.6 hours and included an
average of 51.3 live product items. While crawling
the videos, we also obtained a list of the names of
the products featured in each live stream, as shown
lower left of Figure 4.

However, the order of the products may not cor-
respond directly. We need to complete video seg-
mentation and annotate the corresponding products
in those segments. We hired five data annotators
who followed a unified standard for annotation. On
average, each annotator spent two days on the task.
Additionally, two skillful individuals involved in
the project reviewed and corrected the annotations
for quality assurance. After completing the video
segmentation and product annotation, we needed
to retrieve corresponding images for the products
using the product names above. We employed a
combination of rule-based retrieval and manual in-
spection to gather product images. Initially, we con-
ducted a Google Image search2 using the names of
the products. Firstly, we filtered the search results
based on prominent Chinese e-commerce domain
names (such as www.taobao.com, www.jd.com,
and so on). Besides, we prioritized the results based
on the semantic similarity between the search re-
sults and product names. We intercepted the top ten
results after sorting. Finally, we manually selected
the most suitable product image from the top 10
candidate products as the completion of the image
information for the knowledge base. The procedure
of this step is shown in the middle of Figure 4.

And finally, to facilitate real-time input, we di-
vided the video into video clips. Previous research
has shown that in fine-grained entity linking, such
as “Nike Jordan 36th Generation High-Top Basket-
ball Shoes”, textual information plays a more sig-
nificant role in identification. Therefore, to better
process the text from the video speech, we utilized
OpenAI’s Whisper (Radford et al., 2022) model
to transcribe the speech in the video. The video
is sliced according to the sentence segmentation
results. That is, each sentence corresponds to the
smallest video slice, ultimately creating a simulated
real-time video input. The procedure of this step is
shown in the right of Figure 4.

B Other Experiments

B.1 Online Performance Analysis
In this section, we analyze the online performance
of different methods with CN-CLIP_L as the re-

2https://www.google.com/search
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Figure 4: The procedure of LIVE dataset construction.

trieval model. We assessed the time taken to give
a predicted entity and recorded the inference time
on the test set at intervals of every five video clips.
After calculating the average time for each method,
the smoothed results are presented in Figure 5.
From Figure 5, it can be observed that “Base” uti-
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Figure 5: Inference time of different method. The Rec-
ommended time is determined based on the optimal
inference time consumption provided by the actual ap-
plication scenario.

lizes the retrieval model and yields the best time
performance. The time cost of the Ours-M and
Our Ours-R significantly increases as the number
of video clips grows. It needs to be mentioned that
when the window size exceeds 200, these methods
surpass the recommended inference time, thereby

potentially failing to provide meaningful linked
entities within the given time interval. On the oppo-
site, Our method initially exhibits a rapid increase
in time cost, followed by a tendency toward stabil-
ity.

Analyzing the reasons behind this situation: as
the number of video clips increases, the length of
the memory block also increases, resulting in an
information increase in all methods. In the later
stages of inference, due to its domain knowledge
from the retrieval model, our method tends to have
content that is more related to specific products and
remains fixed. On the other hand, the Ours-R may
continue to accumulate irrelevant information as
it lacks related knowledge. And Ours-M method
exhibits some instability due to variations in the
length of text in different video clips, the reason
is the lack of a complete memory, the extracted
information may be inconsistent in format, and
there may be insufficient or redundant.

B.2 Memory Block Analysis

Memory is a very important module proposed in
this paper, and its format and management form
are also particularly important. In the next two
sections, we will discuss the impact of memory
format and memory management on experimental
results.
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B.2.1 Memory format analysis

The memory block primarily stores attributes re-
lated to commodities, such as brand, category, etc.
However, determining how to store these attributes
is a crucial issue. We have opted for structured,
semi-structured, human, and model-generated sum-
maries as the forms of storage. Below are brief
descriptions of various memory formats:

1. Struct: The text composed of key-value pairs.

2. Semi-struct: The key-value name and at-
tribute natural language descriptions.

3. Human: Initial description of human natural
language.

4. LLM: LLM self-generation description.

Apart from using different prompts during initial-
ization, the same prompts are used for the process
of memory updating. The experimental results are
presented in Table 3.

Format Struct Semi-struct Human LLM
RoFA 60.20 50.94 57.72 59.36

Table 3: RoFA results of different memory formats.

From the table, it can be observed that the memory
in the form of Struct yields the best performance,
followed by the model-generated results. The Hu-
man storage method, which bears similarity to the
self-generated structure by LLM, exhibits inferior
performance. The least effective approach is the
Semi-struct method. This is because we treat the
OVEL task as an extraction task, and the struct data
represented in tuple form may be more suitable for
such tasks. LLM demonstrates a good understand-
ing of the data it generates, and the human storage
method, similar to llm’s, also exhibits decent per-
formance.

Upon analyzing the Semi-struct approach, we
found that it only contains “commodity name: com-
modity attribute:” forms. This has a higher prob-
ability of being influenced by the structure of the
recommended reference name by the small model.
This issue can be addressed by using better prompts.
Additionally, some crucial attributes such as brand
and category are placed within the attributes, mak-
ing them less prominent and resulting in suboptimal
performance.

[Instruction] Given a template information and two pieces of reference 
information, you need to update the template based on the reference information.
[Explanation]
[Input] [video clip information] [TopK recommend][Memory Block]

[TopK] Chuangwei Workshop egg tarts；Wufangzhai egg yolk cake
[Attention] If necessary, you can refer to the brands of recommended products. 
[Output]:

Product name: Matcha meringue Product category: Chuangwei Workshop
Product brand: Snacks             Product attributes: Matcha flavor, snacks

[Instruction] You should update the template information based on the 
recommended product and the voice text of the anchor introducing
[Explanation]
[Input] [video clip information] [TopK recommend][Memory Block]

[TopK] Chuangwei Workshop egg tarts；Wufangzhai egg yolk cake
[Attention] The reference product is not necessarily related to the live broadcast 
product. If it is related, only one is related. Do not add content that has nothing to 
do with the host’s voice and description information.
[Output]:

Product name: egg cake Product category: Wufangzha
Product brand: Snacks            Product attributes: Low sugar, cookies

Figure 6: Different prompt for Memory Management.

B.2.2 Memory management
The management of memory blocks is a crucial as-
pect discussed in this paper, which can be observed
in several key aspects. Firstly, in the context of live
streaming, simply relying on agent management
of memory over long time windows may result in
drift and a gradual deviation over time. The small
model provides references for the large language
model, and the large language model tends to ex-
cessively rely on information from the small model,
causing the memory to be associated with negative
samples. Consequently, the retrieval results of the
small model in the next iteration deviate, leading
to an increasing deviation over time. As shown in
Figure 6, the correct sample is “Wufangzhai egg
yolk”, but the first instance excessively relies on
the small model, resulting in a biased outcome. In
contrast, the second instance avoids such errors by
the well-designed prompt. Therefore, it is advised
to add error samples carefully to demonstrations
when using small models to help LLMs. Besides,
in practical applications, different llms may have
distinct optimal prompts, so use prompts carefully
and efficiently.
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