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Abstract

Knowledge Graph Embedding (KGE) aims
to project entities and relations into a low-
dimensional space, so as to enable Knowledge
Graphs (KGs) to be effectively used by down-
stream AI tasks. Most existing KGs (e.g. Wiki-
data) suffer from the data imbalance issue, i.e.,
the occurrence frequencies vary significantly
among different entities. Current KGE models
use a fixed embedding size, leading to overfit-
ting for low-frequency entities and underfitting
for high-frequency ones. A simple method is
to manually set embedding sizes based on fre-
quency, but this is not feasible due to the com-
plexity and the large number of entities. To this
end, we propose CustomizE, which customizes
embedding sizes in a data-driven way, assign-
ing larger sizes for high-frequency entities and
smaller sizes for low-frequency ones. We use
bilevel optimization for stable learning of rep-
resentations and sizes. It is noteworthy that our
framework is universal and flexible, which is
suitable for various KGE models. Experiments
on link prediction tasks show its superiority
over state-of-the-art baselines.

1 Introduction

Knowledge Graphs (KGs) like Freebase (Bollacker
et al., 2008), Yago (Suchanek et al., 2007), and
Wikidata (Vrandečić and Krötzsch, 2014) are crit-
ical in AI-related applications, such as recom-
mender systems (Guo et al., 2020; Xu et al., 2024),
information retrieval (Su et al., 2022; Zhang et al.,
2022a), and question answering (Ren et al., 2021;
Jia et al., 2021). A fact in KGs is a triple (s, r, o),
where s and o are entities, and r is the relation,
e.g., (London, capital_Of,UK). KGE models en-
code entities and relations in a low-dimensional
space, which is crucial for knowledge completion,
fusion, and inference. Given a input triple (s, r, o),
KGE models output the representations of s, r, o,
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Figure 1: Entity Frequency Histogram of Wikidata.

and a score for the triple’s plausibility (Kazemi and
Poole, 2018).

However, real-world KGs suffer from the data
imbalance issue, where various entities showcase
significant differences in their occurrence frequen-
cies. Statistics of a real-world KG Wikidata (Vran-
dečić and Krötzsch, 2014) is shown in Fig 1.
The horizontal axis corresponds to the frequencies
(number of occurrences) of entities, and the vertical
axis represents the number of entities with a certain
frequency. Only a small number of entities occur
frequently, while most entities occur infrequently,
highlighting an imbalance in real-world KGs. Typ-
ically, entities outnumber relations, with a more
pronounced imbalance. In this paper, we focus on
addressing the data imbalance of entities.

Existing KGE models use a fixed embedding
size, leading to overfitting for low-frequency enti-
ties and underfitting for high-frequency ones. This
raises the question: should we use a fixed em-
bedding size? Related works in recommender
systems (Zhao et al., 2021; Qu et al., 2022)
and computer vision (Wan et al., 2020; Chavan
et al., 2022) show the benefits of varying dimen-
sion sizes, mainly for reducing memory usage.
GreenKGC (Wang et al., 2023) and HolmE (Zheng
et al., 2024) focus on maintaining the performance
using a unified low-dimensional embedding size
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for large-scale KGs. In this paper, we focus on
enhancing expressive capacity by adjusting sizes
based on frequency.

To this end, we propose CustomizE, a novel
KGE model that aims to assign smaller embed-
ding sizes to infrequent entities, while customiz-
ing larger sizes to frequent ones. Specifically,
we design a dimension customization framework,
which consists of an embedding module, a di-
mension selection module, a dimension alignment
module, and an application module. Inspired by
DARTS (Liu et al., 2018), we use a bilevel opti-
mization algorithm to update parameters, ensuring
stable convergence (Zhaok et al., 2021). Unlike
neural architecture search, which seeks a unified
embedding size, our method customizes sizes for
each entity.

To summarize, we highlight our key contribu-
tions as follows:

• In this paper, we propose a novel model Cus-
tomizE, which customizes different embed-
ding sizes to various entities to address the
data imbalance issue in KGE.

• The technique of CustomizE is general and
flexible, which is applicable to numerous ex-
isting KGE models.

• We validate the effectiveness of CustomizE
over state-of-the-art KGE models on bench-
mark datasets.

2 Preliminaries

In this section, we provide some basic definitions
used in this paper.

Definition 1. Frequent/Infrequent Entities. In
a KG, the entities with top 20% frequencies are
named as frequent/high-frequency entities, while
the remaining 80% entities are infrequent/low-
frequency entities.

Definition 2. Frequent/Infrequent Triples. For
a triple, if both s and o are frequent entities, it is
termed a frequent triple. Conversely, if both s and o
are infrequent entities, it is labeled as an infrequent
triple.

3 Methodology

In this section, we first give an overview of the di-
mension customization framework. Subsequently,
we introduce each part of the proposed framework

and provide the training details for the entire frame-
work. Finally, we apply them to KGE models and
propose CustomizE.

3.1 Overview
Figure 2 illustrates the dimension customization
framework, comprising four modules: embedding,
dimension selection, dimension alignment, and ap-
plication module. The embedding module con-
tains multiple lookup tables with varying embed-
ding sizes. For an entity e, it maps the entity
to an embedding edi ∈ Rdi from the i-th table
Edi ∈ Rn×di , where n is the number of entities
and di is the dimension size. Given N lookup
tables {Ed1 , ...,EdN }, we obtain a set of embed-
dings {ed1 , ..., edN } with various dimensions. The
subsequent subsections detail other modules.

3.2 Dimension Selection Module
3.2.1 Input and Output
As noted in Section 1, embedding sizes correlate
with entity frequencies. Input: Frequency buck-
ets, each representing a specific range. The bucket
embedding serves as the input. Output: A one-hot
vector â ∈ RN indicating the selected dimension
size, where N is the number of candidate embed-
ding sizes.

3.2.2 Relaxation
We use a multilayer perceptron (MLP) to capture
entity frequency information. To maintain differen-
tiability, we use temperature softmax (Hinton et al.,
2015) instead of standard softmax to approximate
the dimension selection probability a ∈ RN to a
discrete vector.

ai =
exp

(
hi/τ

)∑N
k=1 exp (h

k/τ)
, i ∈ {1, ..., N}, (1)

ai is the i-th entry of a. h is the MLP output
logits. τ is the temperature hyperparameter, as
τ → 0, the output approaches a one-hot vector.
To bridge the gap between training (approximate)
and inference (exact one-hot), we apply Straight-
Through Estimator (STE) (Bengio et al., 2013) to
a. The final output is defined as:

â = a + stop_gradient(setmax(a)− a), (2)

stop_gradient(·) prevents gradient back propaga-
tion. setmax(·) sets the maximum entry to 1 and
others to 0. STE ensures â = setmax(a) while
maintaining differentiability (Bengio et al., 2013).
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Figure 2: An overview of Dimension Customization Framework.

3.3 Dimension Alignment Module
After obtaining entity embeddings of different
sizes, we need to align the embeddings because vec-
tors with different dimensions cannot be directly
applied to existing KGE models. To unify the em-
beddings, we present an alignment method that
transforms embeddings with different sizes to the
same size.

êdi = LayerNorm
(
Wie

di + bi

)
, i ∈ {1, ..., N}.

(3)
Wi ∈ RdN×di and bi ∈ RdN represent the i-th
weight matrix and bias vector. LayerNorm(·) is
the layer normalization, which aims to make the
network converge to appropriate weights faster. Fi-
nally, embeddings with different sizes are aligned
to the same size.

3.4 Bilevel Optimization
Previous studies (Ren et al., 2018; Borsos et al.,
2020) indicate that simultaneously learning embed-
ding sizes and data point representations can lead to
instability. Inspired by DARTS (Liu et al., 2018),
we propose a bilevel optimization algorithm for
alternate updates. We define Ψ as the dimension
selection module parameter and Θ as the parameter
for other modules. Specifically, we give the general
form of bilevel optimization:

min
Ψ

Louter

(
argmin

Θ
(Linner (Θ,Ψ∗)) ,Ψ

)
. (4)

Moreover, we employ an approximation scheme:

∇ΨLouter (Θ
∗(Ψ),Ψ)

≈∇ΨLouter (Θ− δ∇ΘLinner (Θ,Ψ),Ψ) ,
(5)

δ is the step size for the dimension selection
module parameters. Parameters with superscript
∗ indicate optimal values. The scheme approx-
imates Θ∗(Ψ) through incremental updates to
Θ, avoiding complete optimization of Θ∗(Ψ) =
argminΘ Linner (Θ,Ψ∗).

3.5 Application to KGE models
The preceding subsections provide details of each
module and the optimization algorithm. Impor-
tantly, the dimension customization framework is
general and flexible, making it applicable to a vari-
ety of KGE models. It is worth mentioning that we
empirically verify the flexibility of our framework
in Appendix 4.3.3. We apply our framework to
ComplEx (Trouillon et al., 2016), proposing Cus-
tomizE. ComplEx maps entities and relations to
complex space. For a triple (s, r, o), the score func-
tion is:

score(s, r, o) = Re (< es,vr, ēo >) , (6)

where es, vr, eo are representations of s, r, o. ēo is
eo’s conjugate. Re(·) is the real part. < ·, ·, · > is
the inner product. The loss function is:

min
Θkge

∑
(s,r,o)

log (1 + exp (−Ysro · score(s, r, o)))

+ γ∥Θkge∥22, (7)

where Θkge ⊆ Θ are embeddings of s, r, o, Ysro ∈
{0, 1} indicates triple truth, γ∥Θkge∥22 is regular-
ization. Substituting Eq. (7) into Eq. (4) yields spe-
cific inner and outer losses for bilevel optimization.
CustomizE’s training procedure at each iteration:

• Update Ψ by descending ∇ΨLouter (Θ
∗,Ψ)

with approximation in Eq. (5) on SO.

• Update Θ by descending Linner (Θ,Ψ∗) on
SI .

SI and SO are splits of the training set ST (SI ∪
SO = ST ), used for inner and outer loop training
respectively.

4 Experiment

We answer the following research questions. RQ 1:
Does CustomizE perform better than other state-of-
the-art KGE models? RQ 2: How does CustomizE
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learn the dimension sizes for entities with different
frequencies in KG? RQ 3: Does the dimension cus-
tomization framework work on other KGE models?

4.1 Datasets, Metrics and Baselines.

We evaluate CustomizE with two benchmark
datasets: FB15k-237 (Toutanova and Chen, 2015)
and WN18RR (Dettmers et al., 2018). The above
datasets are widely used benchmarks in KGE, and
they both exhibit imbalanced data distributions.

Dataset Entity Relation Train Valid Test
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 1: Dataset Statistics.

Following prior work (Zhang et al., 2021), we
conduct experiments on the link prediction task,
also known as the knowledge graph completion
task. We compare CustomizE with other meth-
ods using two metrics: (i) Mean Reciprocal Rank
(MRR, the mean of the reciprocals of predicted
ranks); (ii) Hits@k (H@k, the proportion of ranks
not larger than k). Results are reported under the
"filtered" setting (Bordes et al., 2013).

In this paper, we compare the proposed method
with the following baselines. We categorize
them into five groups. Distance-based models:
TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019), MuRP (Balazevic et al.,
2019) and MuRE (Balazevic et al., 2019).
Tensor decomposition models: DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016),
QutaE (Zhang et al., 2019) and BoxE (Ab-
boud et al., 2020). Neural network models:
ConvE (Dettmers et al., 2018), HypER (Bal-
ažević et al., 2019), rules-LNN (Sen et al.,
2022) and M-DCN (Zhang et al., 2022b).
Data-imbalance-aware methods: LSU (Zhang
et al., 2021) and Mixup-ComplEx (Xie and
Ge, 2024), which are two models that address
the data imbalance issue with latent semantic
units and data mixup methods, respectively.
For the ablation study, we constructed three
variant of CustomizE: (1) CustomizE-rule, a
variant that allocates dimension sizes based on the
frequency of entities. Specifically, higher frequen-
cies are allocated larger sizes. (2) CustomizE-sim,
a variant that abandons the bilevel training proce-
dure. For CustomizE-sim, we train the embedding
sizes and representations of entities simultaneously.
(3) CustomizE-iter, a variant that alternately trains

the representations and embedding sizes without
the sophisticated gradient update method in bilevel
optimization.

4.2 Experimental Details
During training, before starting each epoch, we
randomly split 80% of the training set as the in-
ner set SI , and 20% as the outer set SO. We
use Adagrad as the optimizer to update all pa-
rameters. We set the learning rate and batch size
to 0.15 and 512. We set the layer number of
MLP to 2 with ReLU as the activation function.
For FB15k-237 and WN18RR, we set the dimen-
sion candidate sets as {64, 128, 256, 512, 768} and
{32, 64, 128, 256, 512}, respectively. For temper-
ature softmax, we set τ = max(0.01, e−0.0003·t),
where t is the training step.

4.3 Experimental Results
4.3.1 Main results (RQ1)

FB15k-237 WN18RR

MRR H@1 H@3 MRR H@1 H@3

TransE† 0.294 - - 0.226 - -
RotatE‡ 0.338 0.241 0.375 0.476 0.428 0.492
MuRP§ 0.335 0.243 0.367 0.481 0.440 0.495
MuRE§ 0.336 0.245 0.370 0.465 0.436 0.487

DistMult‡ 0.241 0.155 0.263 0.430 0.390 0.440
ComplEx‡ 0.247 0.158 0.275 0.440 0.410 0.460
QuatE§ 0.311 0.221 0.342 0.481 0.436 0.500
BoxE§ 0.337 - - 0.451 - -

ConvE‡ 0.325 0.237 0.356 0.430 0.400 0.440
HypER§ 0.341 0.252 - 0.465 0.436 -
rules-LNN§ 0.307 - 0.342 0.473 - 0.497
M-DCN§ 0.345 0.255 0.380 0.475 0.440 0.485

LSU♢ 0.336 0.251 0.364 0.475 0.402 0.468
Mixup-ComplEx§ 0.279 - - 0.401 - -

CustomizE-rule 0.322 0.236 0.353 0.448 0.425 0.458
CustomizE-sim 0.326 0.249 0.356 0.471 0.433 0.485
CustomizE-iter 0.341 0.251 0.370 0.472 0.436 0.488
CustomizE 0.351∗ 0.261∗ 0.385∗ 0.486∗ 0.446∗ 0.504∗

Table 2: Evaluation results on FB15k-237 and WN18RR
datasets. Superscripts †, ‡, ♯, and § indicate the results
are taken from (Zhang et al., 2020), (Wang et al., 2021),
(Rossi et al., 2021), and the original paper, respectively.
∗ denotes the improvement of CustomizE is statistically
significant compared with the best baseline at p-value
< 0.05 over paired t-test.

Comparing CustomizE with baselines (RQ1),
Table 2 shows: (1) CustomizE outperforms all
baselines, demonstrating its effectiveness. (2) Cus-
tomizE outperforms its base model ComplEx sig-
nificantly, demonstrating the effectiveness of the di-
mension customization framework. (3) CustomizE-
rule, CustomizE-sim, and CustomizE-iter under-
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perform CustomizE, highlighting the importance
of our dimension selection module and bilevel op-
timization algorithm.

Furthermore, we find the proposed dimension
customization framework can be successfully ap-
plied to various KGE methods. Due to space limita-
tions, this analysis is presented in Appendix 4.3.3.

4.3.2 Dimensionality Analysis (RQ2)
Figure 3 shows average dimensions for infrequent
and frequent entities (bars) and MRR scores for
corresponding triples (line with triangles). To en-
sure a fair comparison, we set the dimension of
ComplEx to the mean of that of CustomizE.

We find CustomizE effectively assigns smaller
dimension sizes to infrequent entities and larger di-
mension sizes for frequent ones, which both result
in enhanced performance on infrequent and fre-
quent triples. The above results comprehensively
demonstrate that CustomizE mitigates the overfit-
ting phenomenon of infrequent entities and the un-
derfitting phenomenon of frequent entities.
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Figure 3: Dimension size analysis.

4.3.3 Flexibility Analysis(RQ3)
We apply the Dimension Customization framework
(DimC) to other popular KGE models. Due to
space limitation, we only report results on FB15k-
237 in Table 3. The results provide comprehensive
evidence for the effectiveness and flexibility of the
framework.

FB15k-237

MRR H@1 H@3 H@10

TransE 0.294 - - 0.465
TransE + DimC 0.324 0.232 0.358 0.509

DistMult 0.241 0.155 0.263 0.419
DistMult + DimC 0.346 0.255 0.380 0.528

ConvE 0.325 0.237 0.356 0.501
ConvE + DimC 0.331 0.238 0.365 0.516

ComplEx 0.247 0.158 0.275 0.428
CustomizE 0.351 0.261 0.385 0.504

Table 3: Results of dimension customization framework
upon different representative KGE models.

5 Conclusion

In this paper, we propose CustomizE, a novel KGE
model that customizes different embedding sizes
to varying entities according to their frequencies.
Specifically, CustomizE is devised with the dimen-
sion customization framework, equipped with a
bilevel optimization algorithm crafted to steer the
model toward optimal dimension customization in
the training process. Particularly, CustomizE is
capable of assigning larger embedding sizes to fre-
quent entities, and smaller sizes to infrequent ones.
Furthermore, the proposed framework is general
and flexible, allowing its application to diverse ex-
isting KGE models. Finally, due to the appropriate
customized embedding sizes, evaluation on two
benchmark datasets demonstrates the effectiveness
of CustomizE.

6 Limitations

CustomizE effectively addresses data imbalance is-
sues in KGE by enabling entity-specific dimension
learning, enhancing representation precision and
model flexibility across diverse KG structures. In
line with other KGE models and bilevel optimiza-
tion approaches, our method encounters common
challenges in the field: it incurs higher computa-
tional costs for large-scale KGs and complicates hy-
perparameter tuning due to its adaptive dimension
selection mechanism. These aspects may impact
scalability and optimization efficiency in practical
applications.
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