
Proceedings of the 31st International Conference on Computational Linguistics, pages 9006–9012
January 19–24, 2025. ©2025 Association for Computational Linguistics

9006

Should We Use a Fixed Embedding Size? Customized Dimension Sizes for
Knowledge Graph Embedding

Zhanpeng Guan1,2, Zhao Zhang1,2*, Yiqing Wu1,2, Fuwei Zhang3, and Yongjun Xu1,2

1Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Institute of Artificial Intelligence, Beihang University
{guanzhanpeng22s, zhangzhao2021, wuyiqing20s, xyj}@ict.ac.cn

zhangfuwei@buaa.edu.cn

Abstract

Knowledge Graph Embedding (KGE) aims
to project entities and relations into a low-
dimensional space, so as to enable Knowledge
Graphs (KGs) to be effectively used by down-
stream AI tasks. Most existing KGs (e.g. Wiki-
data) suffer from the data imbalance issue, i.e.,
the occurrence frequencies vary significantly
among different entities. Current KGE models
use a fixed embedding size, leading to overfit-
ting for low-frequency entities and underfitting
for high-frequency ones. A simple method is
to manually set embedding sizes based on fre-
quency, but this is not feasible due to the com-
plexity and the large number of entities. To this
end, we propose CustomizE, which customizes
embedding sizes in a data-driven way, assign-
ing larger sizes for high-frequency entities and
smaller sizes for low-frequency ones. We use
bilevel optimization for stable learning of rep-
resentations and sizes. It is noteworthy that our
framework is universal and flexible, which is
suitable for various KGE models. Experiments
on link prediction tasks show its superiority
over state-of-the-art baselines.

1 Introduction

Knowledge Graphs (KGs) like Freebase (Bollacker
et al., 2008), Yago (Suchanek et al., 2007), and
Wikidata (Vrandečić and Krötzsch, 2014) are crit-
ical in AI-related applications, such as recom-
mender systems (Guo et al., 2020; Xu et al., 2024),
information retrieval (Su et al., 2022; Zhang et al.,
2022a), and question answering (Ren et al., 2021;
Jia et al., 2021). A fact in KGs is a triple (s, r, o),
where s and o are entities, and r is the relation,
e.g., (London, capital_Of,UK). KGE models en-
code entities and relations in a low-dimensional
space, which is crucial for knowledge completion,
fusion, and inference. Given a input triple (s, r, o),
KGE models output the representations of s, r, o,

*Corresponding author: Zhao Zhang.

1e7

N
um

be
r

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Entity Frequency
100806040200

×1e7

Figure 1: Entity Frequency Histogram of Wikidata.

and a score for the triple’s plausibility (Kazemi and
Poole, 2018).

However, real-world KGs suffer from the data
imbalance issue, where various entities showcase
significant differences in their occurrence frequen-
cies. Statistics of a real-world KG Wikidata (Vran-
dečić and Krötzsch, 2014) is shown in Fig 1.
The horizontal axis corresponds to the frequencies
(number of occurrences) of entities, and the vertical
axis represents the number of entities with a certain
frequency. Only a small number of entities occur
frequently, while most entities occur infrequently,
highlighting an imbalance in real-world KGs. Typ-
ically, entities outnumber relations, with a more
pronounced imbalance. In this paper, we focus on
addressing the data imbalance of entities.

Existing KGE models use a fixed embedding
size, leading to overfitting for low-frequency enti-
ties and underfitting for high-frequency ones. This
raises the question: should we use a fixed em-
bedding size? Related works in recommender
systems (Zhao et al., 2021; Qu et al., 2022)
and computer vision (Wan et al., 2020; Chavan
et al., 2022) show the benefits of varying dimen-
sion sizes, mainly for reducing memory usage.
GreenKGC (Wang et al., 2023) and HolmE (Zheng
et al., 2024) focus on maintaining the performance
using a unified low-dimensional embedding size



9007

for large-scale KGs. In this paper, we focus on
enhancing expressive capacity by adjusting sizes
based on frequency.

To this end, we propose CustomizE, a novel
KGE model that aims to assign smaller embed-
ding sizes to infrequent entities, while customiz-
ing larger sizes to frequent ones. Specifically,
we design a dimension customization framework,
which consists of an embedding module, a di-
mension selection module, a dimension alignment
module, and an application module. Inspired by
DARTS (Liu et al., 2018), we use a bilevel opti-
mization algorithm to update parameters, ensuring
stable convergence (Zhaok et al., 2021). Unlike
neural architecture search, which seeks a unified
embedding size, our method customizes sizes for
each entity.

To summarize, we highlight our key contribu-
tions as follows:

• In this paper, we propose a novel model Cus-
tomizE, which customizes different embed-
ding sizes to various entities to address the
data imbalance issue in KGE.

• The technique of CustomizE is general and
flexible, which is applicable to numerous ex-
isting KGE models.

• We validate the effectiveness of CustomizE
over state-of-the-art KGE models on bench-
mark datasets.

2 Preliminaries

In this section, we provide some basic definitions
used in this paper.

Definition 1. Frequent/Infrequent Entities. In
a KG, the entities with top 20% frequencies are
named as frequent/high-frequency entities, while
the remaining 80% entities are infrequent/low-
frequency entities.

Definition 2. Frequent/Infrequent Triples. For
a triple, if both s and o are frequent entities, it is
termed a frequent triple. Conversely, if both s and o
are infrequent entities, it is labeled as an infrequent
triple.

3 Methodology

In this section, we first give an overview of the di-
mension customization framework. Subsequently,
we introduce each part of the proposed framework

and provide the training details for the entire frame-
work. Finally, we apply them to KGE models and
propose CustomizE.

3.1 Overview
Figure 2 illustrates the dimension customization
framework, comprising four modules: embedding,
dimension selection, dimension alignment, and ap-
plication module. The embedding module con-
tains multiple lookup tables with varying embed-
ding sizes. For an entity e, it maps the entity
to an embedding edi ∈ Rdi from the i-th table
Edi ∈ Rn×di , where n is the number of entities
and di is the dimension size. Given N lookup
tables {Ed1 , ...,EdN }, we obtain a set of embed-
dings {ed1 , ..., edN } with various dimensions. The
subsequent subsections detail other modules.

3.2 Dimension Selection Module
3.2.1 Input and Output
As noted in Section 1, embedding sizes correlate
with entity frequencies. Input: Frequency buck-
ets, each representing a specific range. The bucket
embedding serves as the input. Output: A one-hot
vector â ∈ RN indicating the selected dimension
size, where N is the number of candidate embed-
ding sizes.

3.2.2 Relaxation
We use a multilayer perceptron (MLP) to capture
entity frequency information. To maintain differen-
tiability, we use temperature softmax (Hinton et al.,
2015) instead of standard softmax to approximate
the dimension selection probability a ∈ RN to a
discrete vector.

ai =
exp

(
hi/τ

)∑N
k=1 exp (h

k/τ)
, i ∈ {1, ..., N}, (1)

ai is the i-th entry of a. h is the MLP output
logits. τ is the temperature hyperparameter, as
τ → 0, the output approaches a one-hot vector.
To bridge the gap between training (approximate)
and inference (exact one-hot), we apply Straight-
Through Estimator (STE) (Bengio et al., 2013) to
a. The final output is defined as:

â = a + stop_gradient(setmax(a)− a), (2)

stop_gradient(·) prevents gradient back propaga-
tion. setmax(·) sets the maximum entry to 1 and
others to 0. STE ensures â = setmax(a) while
maintaining differentiability (Bengio et al., 2013).



9008

STE

alignment

e

Embeddings in different spaces

Embedding
Table

Frequency
Buckets

Dimension Selection Module Dimension Alignment Module

Embedding
Module

Application
Module

entity
KGE model

Figure 2: An overview of Dimension Customization Framework.

3.3 Dimension Alignment Module
After obtaining entity embeddings of different
sizes, we need to align the embeddings because vec-
tors with different dimensions cannot be directly
applied to existing KGE models. To unify the em-
beddings, we present an alignment method that
transforms embeddings with different sizes to the
same size.

êdi = LayerNorm
(
Wie

di + bi

)
, i ∈ {1, ..., N}.

(3)
Wi ∈ RdN×di and bi ∈ RdN represent the i-th
weight matrix and bias vector. LayerNorm(·) is
the layer normalization, which aims to make the
network converge to appropriate weights faster. Fi-
nally, embeddings with different sizes are aligned
to the same size.

3.4 Bilevel Optimization
Previous studies (Ren et al., 2018; Borsos et al.,
2020) indicate that simultaneously learning embed-
ding sizes and data point representations can lead to
instability. Inspired by DARTS (Liu et al., 2018),
we propose a bilevel optimization algorithm for
alternate updates. We define Ψ as the dimension
selection module parameter and Θ as the parameter
for other modules. Specifically, we give the general
form of bilevel optimization:

min
Ψ

Louter

(
argmin

Θ
(Linner (Θ,Ψ∗)) ,Ψ

)
. (4)

Moreover, we employ an approximation scheme:

∇ΨLouter (Θ
∗(Ψ),Ψ)

≈∇ΨLouter (Θ− δ∇ΘLinner (Θ,Ψ),Ψ) ,
(5)

δ is the step size for the dimension selection
module parameters. Parameters with superscript
∗ indicate optimal values. The scheme approx-
imates Θ∗(Ψ) through incremental updates to
Θ, avoiding complete optimization of Θ∗(Ψ) =
argminΘ Linner (Θ,Ψ∗).

3.5 Application to KGE models
The preceding subsections provide details of each
module and the optimization algorithm. Impor-
tantly, the dimension customization framework is
general and flexible, making it applicable to a vari-
ety of KGE models. It is worth mentioning that we
empirically verify the flexibility of our framework
in Appendix 4.3.3. We apply our framework to
ComplEx (Trouillon et al., 2016), proposing Cus-
tomizE. ComplEx maps entities and relations to
complex space. For a triple (s, r, o), the score func-
tion is:

score(s, r, o) = Re (< es,vr, ēo >) , (6)

where es, vr, eo are representations of s, r, o. ēo is
eo’s conjugate. Re(·) is the real part. < ·, ·, · > is
the inner product. The loss function is:

min
Θkge

∑
(s,r,o)

log (1 + exp (−Ysro · score(s, r, o)))

+ γ∥Θkge∥22, (7)

where Θkge ⊆ Θ are embeddings of s, r, o, Ysro ∈
{0, 1} indicates triple truth, γ∥Θkge∥22 is regular-
ization. Substituting Eq. (7) into Eq. (4) yields spe-
cific inner and outer losses for bilevel optimization.
CustomizE’s training procedure at each iteration:

• Update Ψ by descending ∇ΨLouter (Θ
∗,Ψ)

with approximation in Eq. (5) on SO.

• Update Θ by descending Linner (Θ,Ψ∗) on
SI .

SI and SO are splits of the training set ST (SI ∪
SO = ST ), used for inner and outer loop training
respectively.

4 Experiment

We answer the following research questions. RQ 1:
Does CustomizE perform better than other state-of-
the-art KGE models? RQ 2: How does CustomizE



9009

learn the dimension sizes for entities with different
frequencies in KG? RQ 3: Does the dimension cus-
tomization framework work on other KGE models?

4.1 Datasets, Metrics and Baselines.

We evaluate CustomizE with two benchmark
datasets: FB15k-237 (Toutanova and Chen, 2015)
and WN18RR (Dettmers et al., 2018). The above
datasets are widely used benchmarks in KGE, and
they both exhibit imbalanced data distributions.

Dataset Entity Relation Train Valid Test
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 1: Dataset Statistics.

Following prior work (Zhang et al., 2021), we
conduct experiments on the link prediction task,
also known as the knowledge graph completion
task. We compare CustomizE with other meth-
ods using two metrics: (i) Mean Reciprocal Rank
(MRR, the mean of the reciprocals of predicted
ranks); (ii) Hits@k (H@k, the proportion of ranks
not larger than k). Results are reported under the
"filtered" setting (Bordes et al., 2013).

In this paper, we compare the proposed method
with the following baselines. We categorize
them into five groups. Distance-based models:
TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019), MuRP (Balazevic et al.,
2019) and MuRE (Balazevic et al., 2019).
Tensor decomposition models: DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016),
QutaE (Zhang et al., 2019) and BoxE (Ab-
boud et al., 2020). Neural network models:
ConvE (Dettmers et al., 2018), HypER (Bal-
ažević et al., 2019), rules-LNN (Sen et al.,
2022) and M-DCN (Zhang et al., 2022b).
Data-imbalance-aware methods: LSU (Zhang
et al., 2021) and Mixup-ComplEx (Xie and
Ge, 2024), which are two models that address
the data imbalance issue with latent semantic
units and data mixup methods, respectively.
For the ablation study, we constructed three
variant of CustomizE: (1) CustomizE-rule, a
variant that allocates dimension sizes based on the
frequency of entities. Specifically, higher frequen-
cies are allocated larger sizes. (2) CustomizE-sim,
a variant that abandons the bilevel training proce-
dure. For CustomizE-sim, we train the embedding
sizes and representations of entities simultaneously.
(3) CustomizE-iter, a variant that alternately trains

the representations and embedding sizes without
the sophisticated gradient update method in bilevel
optimization.

4.2 Experimental Details
During training, before starting each epoch, we
randomly split 80% of the training set as the in-
ner set SI , and 20% as the outer set SO. We
use Adagrad as the optimizer to update all pa-
rameters. We set the learning rate and batch size
to 0.15 and 512. We set the layer number of
MLP to 2 with ReLU as the activation function.
For FB15k-237 and WN18RR, we set the dimen-
sion candidate sets as {64, 128, 256, 512, 768} and
{32, 64, 128, 256, 512}, respectively. For temper-
ature softmax, we set τ = max(0.01, e−0.0003·t),
where t is the training step.

4.3 Experimental Results
4.3.1 Main results (RQ1)

FB15k-237 WN18RR

MRR H@1 H@3 MRR H@1 H@3

TransE† 0.294 - - 0.226 - -
RotatE‡ 0.338 0.241 0.375 0.476 0.428 0.492
MuRP§ 0.335 0.243 0.367 0.481 0.440 0.495
MuRE§ 0.336 0.245 0.370 0.465 0.436 0.487

DistMult‡ 0.241 0.155 0.263 0.430 0.390 0.440
ComplEx‡ 0.247 0.158 0.275 0.440 0.410 0.460
QuatE§ 0.311 0.221 0.342 0.481 0.436 0.500
BoxE§ 0.337 - - 0.451 - -

ConvE‡ 0.325 0.237 0.356 0.430 0.400 0.440
HypER§ 0.341 0.252 - 0.465 0.436 -
rules-LNN§ 0.307 - 0.342 0.473 - 0.497
M-DCN§ 0.345 0.255 0.380 0.475 0.440 0.485

LSU♢ 0.336 0.251 0.364 0.475 0.402 0.468
Mixup-ComplEx§ 0.279 - - 0.401 - -

CustomizE-rule 0.322 0.236 0.353 0.448 0.425 0.458
CustomizE-sim 0.326 0.249 0.356 0.471 0.433 0.485
CustomizE-iter 0.341 0.251 0.370 0.472 0.436 0.488
CustomizE 0.351∗ 0.261∗ 0.385∗ 0.486∗ 0.446∗ 0.504∗

Table 2: Evaluation results on FB15k-237 and WN18RR
datasets. Superscripts †, ‡, ♯, and § indicate the results
are taken from (Zhang et al., 2020), (Wang et al., 2021),
(Rossi et al., 2021), and the original paper, respectively.
∗ denotes the improvement of CustomizE is statistically
significant compared with the best baseline at p-value
< 0.05 over paired t-test.

Comparing CustomizE with baselines (RQ1),
Table 2 shows: (1) CustomizE outperforms all
baselines, demonstrating its effectiveness. (2) Cus-
tomizE outperforms its base model ComplEx sig-
nificantly, demonstrating the effectiveness of the di-
mension customization framework. (3) CustomizE-
rule, CustomizE-sim, and CustomizE-iter under-



9010

perform CustomizE, highlighting the importance
of our dimension selection module and bilevel op-
timization algorithm.

Furthermore, we find the proposed dimension
customization framework can be successfully ap-
plied to various KGE methods. Due to space limita-
tions, this analysis is presented in Appendix 4.3.3.

4.3.2 Dimensionality Analysis (RQ2)
Figure 3 shows average dimensions for infrequent
and frequent entities (bars) and MRR scores for
corresponding triples (line with triangles). To en-
sure a fair comparison, we set the dimension of
ComplEx to the mean of that of CustomizE.

We find CustomizE effectively assigns smaller
dimension sizes to infrequent entities and larger di-
mension sizes for frequent ones, which both result
in enhanced performance on infrequent and fre-
quent triples. The above results comprehensively
demonstrate that CustomizE mitigates the overfit-
ting phenomenon of infrequent entities and the un-
derfitting phenomenon of frequent entities.

infreq. entities freq. entities
150

175

200

225

250

275

300

Di
m

en
sio

n

ComplEx
CustomizE

0.00

0.10

0.20

0.30

0.40

0.50

MRR

(a) FB15k-237

infreq. entities freq. entities
50

60

70

80

90

100

110

120
ComplEx
CustomizE

0.00

0.20

0.40

0.60

0.80

MRR

(b) WN18RR

Figure 3: Dimension size analysis.

4.3.3 Flexibility Analysis(RQ3)
We apply the Dimension Customization framework
(DimC) to other popular KGE models. Due to
space limitation, we only report results on FB15k-
237 in Table 3. The results provide comprehensive
evidence for the effectiveness and flexibility of the
framework.

FB15k-237

MRR H@1 H@3 H@10

TransE 0.294 - - 0.465
TransE + DimC 0.324 0.232 0.358 0.509

DistMult 0.241 0.155 0.263 0.419
DistMult + DimC 0.346 0.255 0.380 0.528

ConvE 0.325 0.237 0.356 0.501
ConvE + DimC 0.331 0.238 0.365 0.516

ComplEx 0.247 0.158 0.275 0.428
CustomizE 0.351 0.261 0.385 0.504

Table 3: Results of dimension customization framework
upon different representative KGE models.

5 Conclusion

In this paper, we propose CustomizE, a novel KGE
model that customizes different embedding sizes
to varying entities according to their frequencies.
Specifically, CustomizE is devised with the dimen-
sion customization framework, equipped with a
bilevel optimization algorithm crafted to steer the
model toward optimal dimension customization in
the training process. Particularly, CustomizE is
capable of assigning larger embedding sizes to fre-
quent entities, and smaller sizes to infrequent ones.
Furthermore, the proposed framework is general
and flexible, allowing its application to diverse ex-
isting KGE models. Finally, due to the appropriate
customized embedding sizes, evaluation on two
benchmark datasets demonstrates the effectiveness
of CustomizE.

6 Limitations

CustomizE effectively addresses data imbalance is-
sues in KGE by enabling entity-specific dimension
learning, enhancing representation precision and
model flexibility across diverse KG structures. In
line with other KGE models and bilevel optimiza-
tion approaches, our method encounters common
challenges in the field: it incurs higher computa-
tional costs for large-scale KGs and complicates hy-
perparameter tuning due to its adaptive dimension
selection mechanism. These aspects may impact
scalability and optimization efficiency in practical
applications.

Acknowledgements

The research work is supported by the National
Natural Science Foundation of China under Grant
No.62206266.



9011

References
Ralph Abboud, Ismail Ceylan, Thomas Lukasiewicz,

and Tommaso Salvatori. 2020. Boxe: A box em-
bedding model for knowledge base completion. Ad-
vances in Neural Information Processing Systems,
33:9649–9661.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. Multi-relational poincaré graph embeddings.
Advances in Neural Information Processing Systems,
32.

Ivana Balažević, Carl Allen, and Timothy M
Hospedales. 2019. Hypernetwork knowledge graph
embeddings. In Artificial Neural Networks and Ma-
chine Learning–ICANN 2019: Workshop and Special
Sessions: 28th International Conference on Artificial
Neural Networks, Munich, Germany, September 17–
19, 2019, Proceedings 28, pages 553–565. Springer.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Zalán Borsos, Mojmir Mutny, and Andreas Krause.
2020. Coresets via bilevel optimization for continual
learning and streaming. Advances in Neural Informa-
tion Processing Systems, 33:14879–14890.

Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu,
Kwang-Ting Cheng, and Eric P Xing. 2022. Vision
transformer slimming: Multi-dimension searching in
continuous optimization space. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4931–4941.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the AAAI
conference on artificial intelligence, volume 32.

Qingyu Guo, Fuzhen Zhuang, Chuan Qin, Hengshu
Zhu, Xing Xie, Hui Xiong, and Qing He. 2020. A
survey on knowledge graph-based recommender sys-
tems. IEEE Transactions on Knowledge and Data
Engineering.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and
Gerhard Weikum. 2021. Complex temporal question
answering on knowledge graphs. In Proceedings of
the 30th ACM international conference on informa-
tion & knowledge management, pages 792–802.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
Advances in neural information processing systems,
31.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018.
Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055.

Liang Qu, Yonghong Ye, Ningzhi Tang, Lixin Zhang,
Yuhui Shi, and Hongzhi Yin. 2022. Single-shot em-
bedding dimension search in recommender system.
In Proceedings of the 45th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 513–522.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michi-
hiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure
Leskovec, and Denny Zhou. 2021. Lego: Latent
execution-guided reasoning for multi-hop question
answering on knowledge graphs. In International
Conference on Machine Learning, pages 8959–8970.
PMLR.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel
Urtasun. 2018. Learning to reweight examples for
robust deep learning. In International conference on
machine learning, pages 4334–4343. PMLR.

Andrea Rossi, Denilson Barbosa, Donatella Firmani,
Antonio Matinata, and Paolo Merialdo. 2021. Knowl-
edge graph embedding for link prediction: A com-
parative analysis. ACM Transactions on Knowledge
Discovery from Data (TKDD), 15(2):1–49.

Prithviraj Sen, Breno WSR de Carvalho, Ryan Riegel,
and Alexander Gray. 2022. Neuro-symbolic induc-
tive logic programming with logical neural networks.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8212–8219.

Zhan Su, Zhicheng Dou, Yutao Zhu, and Ji-Rong Wen.
2022. Knowledge enhanced search result diversifi-
cation. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 1687–1695.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International
Conference on Learning Representations.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on



9012

continuous vector space models and their composi-
tionality, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In The In-
ternational Conference on Machine Learning, pages
2071–2080.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He,
Yuandong Tian, Saining Xie, Bichen Wu, Matthew
Yu, Tao Xu, Kan Chen, et al. 2020. Fbnetv2:
Differentiable neural architecture search for spatial
and channel dimensions. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 12965–12974.

Shen Wang, Xiaokai Wei, Cicero Nogueira
Nogueira dos Santos, Zhiguo Wang, Ramesh
Nallapati, Andrew Arnold, Bing Xiang, Philip S
Yu, and Isabel F Cruz. 2021. Mixed-curvature
multi-relational graph neural network for knowledge
graph completion. In Proceedings of the Web
Conference 2021, pages 1761–1771.

Yun Cheng Wang, Xiou Ge, Bin Wang, and C-C Jay
Kuo. 2023. Greenkgc: A lightweight knowledge
graph completion method. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10596–
10613.

Tianyang Xie and Yong Ge. 2024. Enhance knowledge
graph embedding by mixup. IEEE Transactions on
Knowledge & Data Engineering, 36(02):569–580.

Caijun Xu, Fuwei Zhang, Zhao Zhang, Fuzhen Zhuang,
and Rui Liu. 2024. Exploring high-order user pref-
erence with knowledge graph for recommendation.
In Proceedings of the 33rd ACM International Con-
ference on Information and Knowledge Management,
pages 4138–4142.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In In-
ternational Conference on Learning Representations.

Fuwei Zhang, Zhao Zhang, Xiang Ao, Dehong Gao,
Fuzhen Zhuang, Yi Wei, and Qing He. 2022a. Mind
the gap: Cross-lingual information retrieval with hi-
erarchical knowledge enhancement. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 4345–4353.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. Advances
in neural information processing systems, 32.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020. Learning hierarchy-aware knowledge

graph embeddings for link prediction. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3065–3072.

Zhao Zhang, Fuzhen Zhuang, Meng Qu, Zheng-Yu Niu,
Hui Xiong, and Qing He. 2021. Knowledge graph
embedding with shared latent semantic units. Neural
Networks, 139:140–148.

Zhaoli Zhang, Zhifei Li, Hai Liu, and Neal N Xiong.
2022b. Multi-scale dynamic convolutional network
for knowledge graph embedding. IEEE Transactions
on Knowledge & Data Engineering, 34(05):2335–
2347.

Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang,
Weiwei Guo, Jun Shi, Sida Wang, Huiji Gao, and
Bo Long. 2021. Autodim: Field-aware embedding
dimension searchin recommender systems. In Pro-
ceedings of the Web Conference 2021, pages 3015–
3022.

Xiangyu Zhaok, Haochen Liu, Wenqi Fan, Hui Liu,
Jiliang Tang, Chong Wang, Ming Chen, Xudong
Zheng, Xiaobing Liu, and Xiwang Yang. 2021. Au-
toemb: Automated embedding dimensionality search
in streaming recommendations. In 2021 IEEE Inter-
national Conference on Data Mining (ICDM), pages
896–905. IEEE.

Zhuoxun Zheng, Baifan Zhou, Hui Yang, Zhipeng
Tan, Arild Waaler, Evgeny Kharlamov, and Ahmet
Soylu. 2024. Low-dimensional hyperbolic knowl-
edge graph embedding for better extrapolation to
under-represented data. In European Semantic Web
Conference, pages 100–120. Springer.


	Introduction
	Preliminaries
	Methodology
	Overview
	Dimension Selection Module
	Input and Output
	Relaxation

	Dimension Alignment Module
	Bilevel Optimization
	Application to KGE models

	Experiment
	Datasets, Metrics and Baselines.
	Experimental Details
	Experimental Results
	Main results (RQ1)
	Dimensionality Analysis (RQ2)
	Flexibility Analysis(RQ3)


	Conclusion
	Limitations

