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Abstract

The rapid development of large language mod-
els (LLMs) has significantly improved the gen-
eration of fluent and convincing text, raising
concerns about their potential misuse on social
media platforms. We present a comprehensive
methodology for creating nine Twitter datasets
to examine the generative capabilities of four
prominent LLMs: Llama 3, Mistral, Qwen2,
and GPT4o. These datasets encompass four
censored and five uncensored model configu-
rations, including 7B and 8B parameter base-
instruction models of the three open-source
LLMs. Additionally, we perform a data qual-
ity analysis to assess the characteristics of tex-
tual outputs from human, “censored,” and “un-
censored models,” employing semantic mean-
ing, lexical richness, structural patterns, content
characteristics, and detector performance met-
rics to identify differences and similarities. Our
evaluation demonstrates that uncensored mod-
els significantly undermine the effectiveness
of automated detection methods. This study
addresses a critical gap by exploring smaller
open-source models and the ramifications of
“uncensoring,” providing valuable insights into
how domain adaptation and content moderation
strategies influence both the detectability and
structural characteristics of machine-generated
text.

1 Introduction

Maintaining the integrity of digital communica-
tion platforms like Twitter has become increasingly
vital due to exponential advancements in large lan-
guage models (LLMs) in recent years. While the
misuse of technology by “bad actors” is not new,
the scale at which they can now disseminate mis-
information, hate speech, and convincingly imitate
others has grown alarmingly (Wu et al., 2024). This
development poses significant challenges distin-
guishing between human and machine-generated
content, especially on social media, where genera-

tive AI can have far-reaching consequences (Dhaini
et al., 2023).

The ongoing advancements in LLMs are fasci-
nating due to their transformative potential, yet
they pose significant risks. These models can gen-
erate highly convincing misinformation and fake
news on an unprecedented scale, undermining the
trust and reliability of digital communication plat-
forms (Jawahar et al., 2020; Crothers et al., 2022).
Consequently, it is critical to develop robust auto-
mated detection systems to identify and mitigate
the spread of false information. By addressing
these challenges, we can safeguard digital spaces,
ensure informed public discourse, and mitigate the
harmful impacts of generative AI.

However, the growing sophistication of LLMs
has made detecting machine-generated text increas-
ingly difficult (Da Silva Gameiro, 2024). Naive
approaches often fail because LLMs can incorpo-
rate recent information and adapt to specific writing
styles (Liu et al., 2024; Buz et al., 2024). Addition-
ally, the availability of small, efficient, open-source
LLMs allows “bad actors” to fine-tune models on
specific domains, producing highly fluent and con-
vincingly human-like text tailored to particular con-
texts.

Previous methods for detecting machine-
generated text often focus on general-purpose
datasets and models, which may not capture the
specific traits of social media text like informal
language, short messages, and emojis. These ap-
proaches typically rely on well-known models,
such as GPT variants (OpenAI, 2023), or “nano”
LLMs (fewer than 1.5 billion parameters), lack-
ing domain adaptation. They also overlook the
increasing use of open-source community models
(Kumarage et al., 2023a; Alamleh et al., 2023; Ab-
buri et al., 2023; Nguyen et al., 2023; Lai et al.,
2024; Wang et al., 2023). Our work expands on
this by evaluating a wider range of LLMs, includ-
ing both censored and uncensored models, as well
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as GPT4o, on domain-specific social media data,
offering a more realistic perspective on identifying
machine-generated content from “bad actors.”

To address these challenges, we use Twitter
datasets from TweetEval (Barbieri et al., 2020)
to differentiate between human and machine-
generated tweets. Our study focuses on four
main LLMs: Llama 3 (Touvron et al., 2023),
Mistral (Jiang et al., 2023), Qwen2 (Bai et al.,
2023), GPT4o (OpenAI, 2023), and five additional
community-driven uncensored models, resulting
in nine unique models with varying content mod-
eration and fine-tuning. We analyze these models
based on semantic meaning, lexical richness, struc-
ture, and content to identify differences between
censored and uncensored generative models. Ad-
ditionally, we evaluate the generated tweets using
detection methods like BERTweet (Nguyen et al.,
2020), DeBERTa (He et al., 2023), a soft-voting en-
semble, and stylometric features (Kumarage et al.,
2023a). Though limited to Twitter, this study of-
fers key insights into the strengths and limitations
of censored and uncensored open-source LLMs in
generating domain-specific content and detecting
machine-generated text in real-world applications.

Summary of Contributions
1. Novel Evaluation Framework: We introduce

a methodology for adapting public Twitter
datasets to assess both censored and uncen-
sored state-of-the-art LLMs, addressing a re-
search gap focused primarily on GPT models
(Section 3).

2. Comprehensive Quality Analysis: By ex-
amining semantics, lexical richness, structure,
toxicity, and detector performance, we reveal
how removing safety moderation enables mod-
els to produce more human-like yet potentially
more harmful text (Section 4.1).

3. Benchmark and Detector Insights: We pro-
vide nine benchmark subsets and show that
standard detectors deteriorate against uncen-
sored models, offering a foundation for future
improvements in detection and moderation
approaches (Section 4.3).

2 Related Work

Stylometric and Machine Learning Approaches
Stylometry and machine learning have been em-
ployed to automate the detection of machine-

generated fake news and text. Schuster et al. (2019)
demonstrated the effectiveness of stylometry in
identifying text origin but highlighted its limita-
tions in distinguishing legitimate and malicious
uses of language models. Bakhtin et al. (2019)
showed that energy-based models exhibit good gen-
eralization across different generator architectures
but are sensitive to the training set. Kumarage et al.
(2023a) proposed a novel algorithm using stylomet-
ric signals to detect AI-generated tweets generated
by GPT2 and EleutherAI-gpt-neo-1.3B (Gao et al.,
2020), showing that stylometric features can effec-
tively augment state-of-the-art detectors in Twitter
timelines or limited training data.

Recent studies have also tackled differentiating
human-written and AI-generated text in academic
contexts. Alamleh et al. (2023) demonstrated the
high accuracy of machine learning models, espe-
cially random forests and SVMs, in this task. Ab-
buri et al. (2023) introduced an ensemble neural
model that leverages probabilities from pre-trained
language models as features, yielding strong per-
formance in binary and multi-class classification
across English and Spanish. Nguyen et al. (2023)
showcased the power of ensembling lightweight
transformers, achieving 95.55% accuracy on a
shared task test set. However, (Lai et al., 2024)
observed that while single transformer-based mod-
els excel on in-distribution data, they struggle with
out-of-distribution samples.

Zero-shot and Few-shot Detection Methods

Zero-shot and few-shot detection methods have
shown promise in identifying machine-generated
text. DetectGPT (Mitchell et al., 2023) leverages
the curvature of a language model’s log probability
function to outperform existing baselines without
additional training. FLAIR (Wang et al., 2023)
uses carefully designed questions to elicit distinct
responses from bots and humans, proving effec-
tive in differentiating between the two in an online
setting.

Mireshghallah et al. (2024) showed that smaller
language models are more effective at detecting
machine-generated text, regardless of the genera-
tor’s architecture or training data. Mitrovi’c et al.
(2023) explored how machine learning models dis-
tinguish between human-generated and ChatGPT-
generated text in short online reviews, identifying
patterns like polite language, lack of specific de-
tails, and impersonal tone.
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Adversarial Attacks and Defenses

AI-generated text detectors are vulnerable to ad-
versarial attacks, particularly those involving para-
phrasing. Krishna et al. (2023) introduced DIP-
PER, an 11b paraphrase generation model that can
evade several detectors, including watermarking,
GPTZero, DetectGPT, and OpenAI’s now defunct
text classifier (Tian, 2023; Mitchell et al., 2023;
Kirchner et al., 2023). Kumarage et al. (2023b)
challenged the reliability of current state-of-the-art
detectors by introducing EScaPe, a framework that
learns evasive soft prompts that guide pre-trained
language models to generate text that deceive de-
tectors.

To improve AI-generated text detection, (Hu
et al., 2023) proposed RADAR, which jointly trains
a detector and a paraphraser via adversarial learn-
ing, significantly outperforming existing methods.
Finally, (Sadasivan et al., 2023) revealed reliability
issues with watermarking, neural network-based,
zero-shot, and retrieval-based detectors by devel-
oping a recursive paraphrasing attack that compro-
mises watermarking and retrieval-based detectors
with minimal text quality degradation, exposing
their vulnerability to spoofing attacks.

Datasets and Benchmarks

Large-scale datasets are important for developing
effective machine-generated content detection algo-
rithms. Fagni et al. (2020) introduced TweepFake,
the first dataset of deepfake tweets based on GPT
2, recurrent neural networks, and Markov Chains,
benchmarking traditional machine learning, charac-
ter convolutional networks, and Bert-based models.
Yu et al. (2023) introduced CHEAT, a dataset con-
taining 35,304 ChatGPT-generated abstracts, ana-
lyzing the distribution differences between human-
written and ChatGPT-written abstracts. Li et al.
(2023) constructed a testbed for deepfake text detec-
tion, collecting human-written texts from diverse
domains and generating corresponding deepfake
texts using GPT 3.5, T5, and Llama.

Recent efforts have focused on advancing multi-
lingual machine-generated text detection. Macko
et al. (2023) introduced MULTITuDE, a benchmark
of over 74,000 texts across 11 languages, highlight-
ing the challenges detectors face when generalizing
to unseen languages and language families. Build-
ing on this, M4 (Wang et al., 2024b) expanded de-
tection to multi-domain, multi-generator, and multi-
lingual settings, demonstrating that detectors often

struggle with unfamiliar domains and LLMs. In a
continuation, M4GT-Bench (Wang et al., 2024a)
broadened the scope by covering nine languages,
six domains, and nine state-of-the-art LLMs while
introducing novel tasks like mixed human-machine
text detection.

3 Methodology

3.1 Datasets

We use the TweetEval unified benchmark (Barbieri
et al., 2020) for our human-labeled tweets. Specifi-
cally, we extract the emotion, irony, sentiment, hate
speech, and offensive language datasets for fine-
tuning our LLMs. We use the emotion recognition
subset to generate our synthetic tweets. Detailed
distributions are in Table 1.

Task Labels Train Val Test Total
Emotion recognition 4 3,257 374 1,421 5,052
Hate speech detection 2 9,000 1,000 2,970 12,970
Irony detection 2 2,862 955 784 4,601
Offensive language identification 2 11,916 1,324 860 14,100
Sentiment analysis 3 45,615 2,000 12,284 59,899
Total 13 72,650 5,653 18,319 96,622

Table 1: TweetEval datasets we use for fine-tuning our
large language models for domain adaptation to Twitter.

3.2 Large Language Models

Model Parameters Variant Abbreviation

Llama 3 8B Censored: Meta-Llama-3-8B-Instruct LL3
Uncensored: Dolphin-2.9-Llama 3-8B LL3-Dolphin
Uncensored: Hermes 2 Pro-Llama-3-8B LL3-Hermes

Mistral 7B Censored: Mistral-7B-Instruct-v0.2 Mistral
Uncensored: Dolphin-2.8-Mistral-7B-v02 Mistral-Dolphin
Uncensored: OpenHermes-2.5-Mistral-7B Mistral-Hermes

Qwen2 7B Censored: Qwen2-7B-Instruct Qwen2
Uncensored: Dolphin-2.9.2-Qwen2-7B Qwen2-Dolphin

GPT-4o Closed-source Censored GPT-4o

Table 2: Overview of the large language models (LLMs)
and their variants, including parameter sizes and the
corresponding abbreviations used in this study. We look
into the diversity of four LLM architectures (Llama 3,
Mistral, Qwen2, and GPT-4o) and distinguish between
censored and uncensored versions for subsequent analy-
ses.

We employ four primary large language models
(LLMs) families: Llama 3 (8B) (Touvron et al.,
2023), Mistral (7B) (Jiang et al., 2023), Qwen2
(7B) (Bai et al., 2023), and the closed-source GPT-
4o (OpenAI, 2023). These models were selected for
their robust performance across diverse natural lan-
guage processing tasks, balanced by their relatively
small parameter sizes and accessibility without re-
quiring extensive computational resources. Figure
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1 outlines our experimental workflow, while Ta-
ble 2 presents a comparative analysis of the model
variants, including abbreviations we will use in the
following sections.

Figure 1: Overview of the experimental workflow. We
begin with the TweetEval benchmark, selecting tweets
from multiple tasks (emotion, hate speech, offensive
language, sentiment, and irony) to fine-tune our LLMs.
The emotion dataset tweets serve as prompts for the fine-
tuned large language models (LLMs), which generate
synthetic, domain-specific text. The resulting human
and machine-generated tweets are combined, assessed
for data quality across semantic, lexical, structural, and
content dimensions, and finally evaluated by our six
detection methods (including BERT-based models, sty-
lometric features, and ensembles) to determine whether
each sample is human or machine-produced.

Meta’s Llama 3 (8B) offers an optimal bal-
ance between computational efficiency and fine-
tuning capability; we use three variants: the cen-
sored Meta-Llama-3-8B-Instruct, uncensored Her-
mes 2 Pro-Llama-3-8B (Teknium et al., 2024) fine-
tuned on the OpenHermes 2.5 dataset (Teknium,
2023), and the uncensored Dolphin-2.9-Llama-3-
8B aimed at reducing alignment biases (Ding et al.,
2023).

Mistral (7B) is recognized for surpassing larger
models like Llama 2 (13B) on benchmark tests.
We include the censored instruction-tuned Mistral-
7B-Instruct-v0.2, the uncensored Dolphin-2.8-

Mistral-7B-v02 variant, and the code-optimized
OpenHermes-2.5-Mistral-7B model.

Qwen2 (7B) advances multilingual capabilities
by supporting 27 additional languages beyond En-
glish and Chinese. It is evaluated in its censored
base-instruct and the uncensored Dolphin-2.9.2-
Qwen2-7B variant to assess the impact of censor-
ship across different languages and tasks. Lastly,
GPT-4o serves as a benchmark to compare open-
source models against proprietary technology, fa-
cilitating an analysis of performance, safety, and
bias control.

This diverse selection enables examining con-
tent moderation effects and the trade-offs between
model performance and responsible AI develop-
ment. Links to each open-source model weights
and documentation are provided in appendix A.3,
Table 11.

3.2.1 Fine-tuning on In-Domain Twitter Data
We adapt our LLMs to social media text by
fine-tuning them on the concatenated TweetEval
datasets (Table 1)—only using tweets longer than
ten characters, resulting in 96,225 tweets, split into
91,413 for training and 4,817 for validation.

To maintain the authenticity of the text, we apply
minimal preprocessing, masking only user men-
tions and URLs. Our fine-tuning process, im-
plemented with the Hugging Face Transformers
library (Wolf et al., 2019) and the PEFT frame-
work, using 4-bit Quantized Low-Rank Adaptation
(QLoRA) (Hu et al., 2022; Dettmers et al., 2023)
to reduce the number of trainable parameters while
preserving model performance. By leveraging the
diverse tweet types in the TweetEval datasets, we
aim to improve the models’ ability to generate
more relevant, high-quality tweets. Our trainer
and QLoRA configuration are detailed in Table 9
and Table 10 in Appendix A.2.

3.2.2 Synthetic Tweet Generation
We generate synthetic tweets using the original
emotion recognition dataset as a foundation. For
each human tweet, we create a prompt that instructs
the language model to produce a new tweet convey-
ing the same emotion. The prompt incorporates
the human tweet and specific generation guide-
lines, such as employing creative and diverse lin-
guistic techniques, substituting words or phrases
with semantically similar alternatives, and varying
sentence structures. We utilize the default greedy
decoding method, as preliminary experiments in-
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dicated it produces more nuanced and harder-to-
detect text than beam or contrastive search strate-
gies.

The generation process follows a structured di-
alogue between the user and the AI assistant, as
illustrated in Table 3. Initially, the user provides the
human tweet and generation guidelines, explicitly
specifying the desired emotion to ensure consis-
tency with the original. The assistant acknowledges
the request and prompts for the tweet content. This
explicit specification enables the language model to
focus on accurately reflecting the same emotional
content while introducing linguistic variations and
diversity.

Role Interaction and Prompt
User "You are an AI assistant tasked with

crafting tweets that convey the same
emotion as the original tweet, which is
{original_emotion}."

Assistant "Understood. Please share the original
tweet. I’ll generate a version that fol-
lows the provided guidelines."

User "Original tweet: {text}
Generate a complete tweet following
these guidelines:
- Expresses the same emotion as the
original tweet ({original_emotion})
using creative and diverse linguistic
techniques.
- Substitutes the original tweet’s
words/phrases with semantically simi-
lar alternatives and varies the sentence
structure.
- Only return the generated tweet,
refraining from using ’here’s a tweet
that conveys’.
Generated tweet:"

Table 3: Sample prompt and response template illus-
trating our interactive generation process. The user first
establishes the desired emotion and requests a refor-
mulated tweet, while the assistant acknowledges and
requests the original content. The user then provides
the initial tweet and detailed transformation guidelines.
This structured exchange guides the LLM in producing
a new, emotionally aligned tweet that employs creative
linguistic variations.

3.3 Post-Processing of Generated Tweets

Following the generation of synthetic tweets by
our language models, we merge them with human-
written tweets and apply several post-processing
steps to ensure the quality and consistency of the

combined dataset. The primary goal of these steps
is to remove low-quality or non-informative tweets
while maintaining a consistent format.

We eliminated rows with empty text fields in the
human-written and machine-generated tweets. Af-
ter this, we normalized and cleaned the remaining
text. Our normalization process includes expanding
contractions, fixing special characters (e.g., Demo-
jiizing emojis to their textual form), and removing
unwanted encoding replacements. Tweets that are
left empty after normalization are also removed.

Next, we clean the tweets by removing those
that do not primarily consist of text (e.g., tweets
containing less than 50% alphanumeric content).
Additionally, tweets containing unintended phrases
leaked from the model’s prompt are identified and
removed. These unintended phrases typically come
from language model behaviors, such as chatbot
responses. For example, common phrases include
“you are an AI assistant,” “is there anything else I
can help you with,” and “I cannot create explicit
content.”

Randomly sampling 50 samples from each
dataset, we found instances of AI-related hash-
tags that the models generated, often appearing
in otherwise coherent tweets. Examples of such
AI-generated hashtags include #aichatbot, #genera-
tivetweeting, #aiwritestweets, and #aibotassistant.
Tweets containing less than three of these hash-
tags only have the hashtags removed; if there are
more than three occurrences, we return an empty
string, subsequently removing that sample. We
also remove tweets that are too short to be mean-
ingful (fewer than 10 characters) and remove any
duplicate tweets that are identified to ensure data
uniqueness.

Model Family Model Rejection Rate (%)

Llama3
LL3 4.94

LL3-Dolphin 1.82
LL3-Hermes 0.87

Mistral
Mistral 2.30

Mistral-Dolphin 1.96
Mistral-Hermes 2.51

Qwen Qwen2 12.31
Qwen2-Dolphin 2.02

GPT4o GPT4o 0.14

Human Human 3.35

Table 4: Rejection rates for human and machine-
generated tweets by model family. Uncensored models
generally have lower rejection rates than censored coun-
terparts.

After completing these steps, the rejection rate is
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calculated as the percentage of the original dataset
removed during post-processing. This is computed
by comparing the total number of rows removed to
the original dataset length:

Original Length − Processed Length
Original Length

× 100

We apply this method to both human and
machine-generated tweets. Table 4 presents the
final rejection rates.

3.3.1 Human Vs. Machine-Generated Dataset
Creation

To evaluate the effectiveness of our fine-tuned lan-
guage models in generating synthetic tweets, we
construct datasets for each LLM variation using a
90/10/10 train-validation-test split. Each dataset
contains human-written and machine-generated
tweets, which are paired to maintain consistency.
This pairing ensures human-written and corre-
sponding machine-generated tweets are kept within
the same split (train, validation, or test) to prevent
cross-contamination. For example, if a human-
written tweet is in the training set, its machine-
generated counterpart cannot be in the validation
or test sets, and vice versa. This strict separation
ensures that the models are not indirectly exposed
to human-written and machine-generated versions
of the same context across different data splits, pre-
serving the integrity of the evaluation process and
providing a fair assessment of each model’s ability
to generalize to unseen content.

Split Human (0) Generated (1) Total

Training 3544 3544 7088
Validation 443 443 886
Test 443 443 886

Total 4430 4430 8860

Table 5: Distribution of train, validation, and test splits
and corresponding label counts for each of the nine
datasets.

After constructing the datasets, we down-sample
them to match the size of the smallest dataset, as
some machine-generated tweets were excluded dur-
ing post-processing at a higher rate due to quality is-
sues (see section 3.3). Down-sampling ensures fair-
ness in evaluation by eliminating potential biases
from comparing datasets of unequal sizes, which
might skew results in favor of larger datasets. This
process ensures that performance differences re-
flect the content of the data rather than the dataset
size. Throughout this process, the human-written

tweets remain consistent across all datasets. Table
5 provides details of the train, validation, test splits,
and label distributions.

3.4 Machine-Generated Text Detectors

We use the BERTweet-base model (Nguyen et al.,
2020) and DeBERTaV3 base (He et al., 2023)
as our initial baseline models, which generally
show robust performance on Twitter-oriented down-
stream tasks. The models are fine-tuned on each of
our nine datasets using the hyperparameters speci-
fied in Table 7 in Appendix A.

To further improve the performance and robust-
ness of our machine-generated text detection sys-
tem, we implement a soft voting ensemble of five
BERTweet models and five DeBERTaV3 models.
Each model in the ensemble is trained indepen-
dently, only varying by initialization relying on ran-
dom, using the same hyperparameters and dataset
splits as the baseline model. During inference, the
ensemble predicts the class probabilities for each
input text, and the final prediction is determined
by averaging the probabilities across all models
and selecting the class with the highest average
probability.

Previous work (Fabien et al., 2020) has shown
that adding linguistic features concatenated with
the CLS token from bert-based models improves
detection capabilities in authorship attribution. To
test this on our nine datasets, we implement (Ku-
marage et al., 2023a) approach, utilizing a reduc-
tion network to gradually reduce the dimensionality
of the CLS + stylometric features, followed by a
final classification network to produce our probabil-
ities of human or generated. The linguistic features
integrated can be found in Table 8 in appendix A.

4 Results

We now present a detailed evaluation of nine large
language model (LLM) variants, examining how
different moderation strategies shape their linguis-
tic properties and detectability. Our findings reveal
that reducing moderation can improve a model’s
linguistic fidelity to human text but come at the
cost of increased toxicity and detection challenges.
In the following subsections, we interpret the rela-
tionships of semantics, lexical richness, structure,
toxicity, and detector performance to offer a nu-
anced perspective on the trade-offs introduced by
censorship and its removal.

Hyperparameter choices and LLM model links
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Mean ± SD Human vs Censored Human vs Uncensored Censored vs Uncensored

Metric Human Censored Uncensored p-val d CI (95%) p-val d CI (95%) p-val d CI (95%)

Lexical Richness
Vocabulary Size 15.65 ± 6.63 15.35 ± 6.86 15.62 ± 6.84 0.008** 0.044 [0.0817, 0.5213] 0.863 0.003 [-0.1924, 0.2375] 9.53e-05*** -0.040 [-0.4143, -0.1437]

MTTR 0.948 ± 0.074 0.955 ± 0.085 0.951 ± 0.087 2.75e-08*** -0.092 [-0.0099, -0.0049] 0.006** -0.043 [-0.0060, -0.0010] 1.87e-05*** 0.044 [0.0022, 0.0056]

Structural Patterns
N-gram Diversity 0.988 ± 0.053 0.987 ± 0.084 0.987 ± 0.089 0.355 0.014 [-0.0010, 0.0030] 0.292 0.015 [-0.0009, 0.0031] 0.884 0.001 [-0.0016, 0.0018]

N-gram Entropy 3.49 ± 0.942 3.39 ± 1.01 3.44 ± 0.995 3.11e-09*** 0.100 [0.0664, 0.1294] 0.001** 0.055 [0.0227, 0.0841] 2.19e-05*** -0.044 [-0.0643, -0.0247]

ISS 0.860 ± 0.031 0.852 ± 0.030 0.859 ± 0.032 2.08e-53*** 0.265 [0.0072, 0.0093] 0.002** 0.051 [0.0006, 0.0026] 7.77e-96*** -0.211 [-0.0073, -0.0060]

Semantics
BERTScore — 0.478 ± 0.061 0.476 ± 0.070 — — — — — — 0.001** 0.033 [0.0009, 0.0035]

Table 6: Comparisons of Text Quality Metrics Across Conditions with Confidence Intervals. Mean ± SD values are
reported for Human, Censored, and Uncensored conditions. Each pairwise comparison shows the p-value, Cohen’s
d (effect size), and 95% confidence intervals (CI) for the raw mean difference in the original units of the metric.
Significance levels after adjustments: *** p<0.001, ** p<0.01, * p<0.05. BERTScore is not applicable to the Human
condition as it already uses the Human and machine-generated pairs as candidate and reference sentences. ISS =
Intra-sample Similarity; MTTR = Moving Average Type-Token Ratio. Censored and Uncensored indicate models
with and without content filtering, respectively.

are in appendix A. Our statistical significance test-
ing guidelines are outlined in appendix B. Ap-
pendix C and D comprehensively describe the met-
rics and complete individual results, respectively.

4.1 Semantics, Lexical Richness, and
Structural Patterns

To understand how content moderation influences
language generation quality, we examine three in-
terrelated dimensions: lexical richness, structural
patterns, and semantic fidelity (table 6). These as-
pects help reveal how censorship constraints alter
model outputs’ diversity, internal coherence, and
capacity to approximate human-like language use.

4.1.1 Lexical Richness
We first examine vocabulary size and the Moving
Average Type-Token Ratio (MTTR) as measures
of lexical richness. Although differences across
conditions are statistically significant, they are gen-
erally accompanied by small effect sizes. In other
words, moderation strategies lead to only subtle
adjustments in word choice diversity rather than
driving any major shifts.

Human and uncensored outputs demonstrate
nearly identical vocabulary sizes, both slightly ex-
ceeding those of censored models. This outcome
shows that relaxing restrictions does not substan-
tially boost lexical richness; instead, it allows the
model’s range of words to align more closely with
human baselines. Similarly, while censored models
maintain a marginally higher MTTR, the difference
is minimal. Overall, these findings point to a mod-
est influence of censorship on lexical breadth, gen-
tly nudging the model’s vocabulary usage rather

than severely constraining it.

4.1.2 Structural Patterns
Next, we analyze the structural aspects of gener-
ated text through bigram diversity, bigram entropy,
and intra-sample similarity (ISS). Unlike lexical
richness, structural metrics reveal clearer patterns.
Although bigram diversity remains largely consis-
tent across human, censored, and uncensored texts,
bigram entropy and ISS highlight meaningful dis-
tinctions.

Human-produced text exhibits slightly higher
bigram entropy and ISS than censored outputs, re-
flecting a naturally balanced and cohesive arrange-
ment of word pairs. In contrast, censored models
show marginally more repetitive patterns, a likely
consequence of restrictive moderation that dimin-
ishes structural variety. Uncensored models more
closely approximate the human-like balance of en-
tropy and coherence, narrowing the gap between
constraint-driven repetition and the flexible pattern-
ing found in human language.

Figure 2 offers a visual perspective: While cen-
sored outputs cluster in regions of relatively lower
entropy, uncensored models gravitate toward the
human space, reflecting more intricate and less pre-
dictable lexical transitions. This result displays
a central tension: constraints that reduce harmful
or sensitive content may also dampen human lan-
guage’s natural complexity and variability.

4.1.3 Semantics
Turning to semantic similarity (BERTScore), both
censored and uncensored texts remain moderately
aligned with human references. Their subtle differ-
ences do not decisively favor one approach over the
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Figure 2: We plot each model and human text on n-gram
diversity (x-axis) and entropy (y-axis). GPT-4o appears
in the upper right, exceeding human complexity. Hu-
mans and some censored models (e.g., Mistral) cluster
near the center, indicating balanced variety. Certain cen-
sored models (e.g., Qwen2) remain lower in diversity
and entropy, while uncensored models trend upward,
increasing complexity compared to censored variants
but not always surpassing human levels.

other. We find that moderation does not severely
undermine the semantic integrity of generated text.
Instead, censorship appears to create greater vari-
ability in semantic alignment—some censored out-
puts closely match human semantics, while others
deviate more noticeably. Uncensored models, by
contrast, maintain a more consistent semantic qual-
ity.

Considering lexical, structural, and semantic fac-
tors together reveals that easing strict moderation
can help models regain human-like complexity and
coherence. However, this comes at the cost of pro-
ducing less filtered and variable content. The fol-
lowing section will explore the ethical implications
of these shifts, especially in relation to toxicity and
harmful content.

4.2 Content Characteristics

To explore the implications of censorship and its
absence on the nature of generated text, we analyze
fine-grained toxicity categories using the Toxic-
BERT model (Hanu and Unitary team, 2020). As
shown in Figure 3, human text frequently contains
higher levels of toxic, insulting, or hateful content.
Most censored models stay well below these toxi-
city baselines, showing that moderation measures
effectively limit overtly harmful language.

However, certain censored models, such as LL3,
break this pattern, showing that not all censored
configurations consistently suppress toxicity. At
the same time, many uncensored models exhibit
higher toxicity levels, sometimes nearing those of

human samples. Yet, some uncensored variants
(e.g., Qwen2-Dolphin and LL3’s uncensored ver-
sions) remain comparatively less toxic. This out-
come may reflect inherent stabilizing factors in
their training or architecture, even without explicit
filtering.

Overall, these toxicity results complement the
earlier semantic and structural findings. While eas-
ing moderation can enhance a model’s complexity
and resemblance to human-generated text, it also
increases the potential for harmful content. Bal-
ancing these competing interests is essential for de-
signing solutions that preserve linguistic richness
while mitigating social and ethical risks associated
with unrestricted text generation.

Figure 3: Comparison of fine-grained toxicity metrics.
Each cell indicates the percentage of text samples ex-
hibiting a given toxicity type. Human content is notably
more toxic than most censored outputs, while some
uncensored models approach human-level toxicity dis-
tributions.

4.3 Detector Performance

Figure 4 present our detector results across nine
LLM variants. Three key insights emerge.

First, the Soft Ensemble detector (a combi-
nation of five BERTweet or DeBERTa models)
consistently outperforms single-model approaches,
achieving the highest F1 scores, precision, and
recall. This increased stability of diverse initial-
ization collectively offers a more robust decision
boundary, mitigating individual model biases.

Second, attempts to augment BERTweet with
stylometric features fail to deliver tangible gains.
Adding stylometry slightly impairs performance
compared to the plain BERTweet baseline. We
find that stylometry captures subtle lexical and syn-
tactic cues that do not provide incremental value
once a strong neural baseline is established. As the
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Figure 4: Mean Precision, Recall, and F1 performance of our transformer-based detectors (BERTweet and DeBERTa
variants, with and without stylometric features, and ensemble methods) tested across different censored and
uncensored model outputs. Each heatmap cell represents the average metric score over five independent runs.

generated text becomes more human-like, simple
stylistic heuristics lose their discriminative power.

Third, and most critically, uncensored mod-
els significantly undermine detector effectiveness,
especially on complex open-source variants like
Mistral-Hermes and Qwen2-Dolphin. While cen-
sored models are still distinguishable from human
text, removing moderation causes the generated
content to mimic human linguistic patterns more
closely. This is reflected in both precision and re-
call metrics:

• Precision: For censored models, precision re-
mains relatively high. When detectors label
a tweet as machine-generated, they tend to
be correct. This reliability likely stems from
the restricted stylistic and lexical patterns im-
posed by censorship, which make these out-
puts easier to distinguish from authentic hu-
man text. On the other hand, when modera-
tion is lifted, precision declines. Freed from
artificial constraints, uncensored models pro-
duce more nuanced and human-like language,
causing detectors to misidentify an increas-
ing amount of machine-generated tweets as
genuine human content.

• Recall: Uncensored outputs deal a more se-
vere blow to recall. Since these models pro-
duce text nearly indistinguishable from hu-
man writing, detectors fail to identify a larger
fraction of them as generated. The reduction
in recall is pronounced for Mistral-Hermes
and Qwen2-Dolphin, signifying that a substan-
tial portion of their machine-generated tweets
goes undetected.

It is important to note that all human samples

remain identical across datasets, ensuring that per-
formance declines are solely attributable to changes
in the machine-generated subsets. Thus, this trend
cannot be explained by a shift in human text; rather,
it directly reflects the increasing human-likeness of
uncensored model outputs.

5 Conclusion

This study provides a nuanced view of the trade-
offs introduced by safety moderation in open-
source large language models, particularly when
generating domain-specific text. Our findings show
that while uncensored models achieve greater lex-
ical richness, structural complexity, and a closer
semantic alignment to human language, these gains
come with significant risks. Primarily, they elevate
toxicity closer to human baselines, complicate de-
tection efforts, and erode the safeguards intended
to protect online discourse. In contrast, censored
models maintain lower toxicity levels but produce
less diverse and more predictable outputs, showcas-
ing the delicate balance between mitigating harm
and preserving linguistic richness.

Our results highlight the urgent need for more
refined moderation strategies and sophisticated de-
tection frameworks. Future research should seek
moderation techniques that preserve a model’s cre-
ative potential without substantially increasing its
capacity to produce harmful or deceptive content.
Moreover, the diminishing effectiveness of current
detectors against human-like, uncensored text em-
phasizes the importance of developing robust de-
tection methods that can adapt to rapidly advancing
generative capabilities.
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6 Limitations

Our study concentrates on Twitter data, and the
resulting insights may not translate seamlessly to
other social media platforms or domains. Twitter’s
linguistic conventions—short utterances, hashtags,
and dynamic engagement patterns—differ substan-
tially from platforms like Reddit or Facebook, as
well as from more formal text sources such as
news articles and scientific publications. Future
work should validate and refine our methods across
diverse domains, languages, and evolving online
communities.

We also rely on the TweetEval dataset for
fine-tuning and evaluation. Although widely
used, TweetEval may not fully capture real-world
Twitter discourse’s vast topical, linguistic, and
demographic diversity. Social media language
evolves rapidly, and models fine-tuned on static
datasets risk becoming outdated. Periodic retrain-
ing on fresh samples and exploring additional
datasets would help maintain detector robustness
and broaden applicability.

Finally, our focus on smaller LLM parameter
sizes (e.g., 7B and 8B) leaves open questions about
the scalability and domain-transfer capabilities of
substantially larger or smaller models. Future in-
vestigations could examine whether larger models
produce more human-like content that evades de-
tection or whether lightweight models trained on
niche datasets could still maintain sufficient distin-
guishability. Exploring varying model sizes and
training regimens will clarify the exchange between
model capacity, content fidelity, and detectability.

7 Ethical Considerations

Our work displays the dual-use nature of advanced
language models. While their generative prowess
can improve user experiences, it can also facili-
tate large-scale distribution of harmful or deceptive
content. We acknowledge the risk that improved
understanding of uncensored LLMs might enable
malicious actors to refine their tactics. To mitigate
this, our focus is on advancing detection mecha-
nisms, raising community awareness, and encour-
aging preemptive safeguards rather than enabling
misuse.

The potential for biases and unfair outcomes
also cannot be overlooked. Although we inves-
tigate models primarily on English Twitter data,
real-world deployments must consider multilingual
and multicultural settings. Ensuring that detectors

do not disproportionately mislabel or penalize con-
tent from marginalized communities or sensitive
contexts is of vast importance. Model developers,
platform operators, and regulators must collaborate
to define appropriate transparency standards, audit
processes, and accountability frameworks.

Ultimately, the evolution of LLM detection sys-
tems and moderation policies must align with hu-
man rights, privacy, and equity principles. Balanc-
ing open scientific inquiry with responsible disclo-
sure, our goal is to guide the ethical integration
of these technologies into digital ecosystems, en-
suring that innovations in language generation and
detection serve the public good rather than under-
mine it.
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A Appendix A

A.1 Hyperparameters for Detectors and
Stylometric Features

Hyperparameter Value

Model BERTweet
Epochs 20
Batch Size 32
Learning Rate 2 × 10−5

Early Stopping Validation Loss
Patience 5
Gradient Clipping 1.0
Warmup Proportion 0.1
N Estimators (Ensemble) 5

Table 7: Training hyperparameters used for fine-tuning
the BERTweet and DeBERTaV3 models, stylometric
variations, and the ensemble detectors. These parame-
ters were chosen based on best practices reported in
prior work to balance computational efficiency and
model stability.

Category Features

Phraseology Word & sentence counts, paragraph counts
Mean word length
Mean/SD of words per sentence/paragraph
Mean/SD of sentences per paragraph

Punctuation Total punctuation count
Counts of !, ?, :, ;, @, #

Linguistic Diversity Moving Avg. Type-Token Ratio (MTTR)
Readability (Flesch Reading Ease)

Table 8: Stylometric features integrated with BERT-
based detectors to capture linguistic nuances beyond sur-
face forms. These features include measures of phrase-
ology, punctuation usage, and text complexity.

A.2 QLoRA Fine-Tuning Configuration

Trainer Parameter Value

Per Device Train Batch Size 8
Gradient Accumulation Steps 4
Optimizer paged adamw 8bit
Learning Rate 2e-4
Weight Decay 0.001
Max Grad Norm 1.0
Max Steps 2,856
Warmup Ratio 0.05
LR Scheduler cosine
FP16 True

Table 9: Trainer configuration parameters for QLoRA-
based fine-tuning of the language models. These set-
tings were determined through pilot experiments and
literature-recommended defaults, aiming to maintain
training efficiency, numerical stability, and smooth con-
vergence when adapting the base instruct models to the
Twitter domain.

LoRA Parameter Value

R 16
LoRA Alpha 32
Target Modules q,k,v,o,gate,up,down proj
Bias none
LoRA Dropout 0.05
Task Type CAUSAL LM

Table 10: LoRA configuration used for parameter-
efficient fine-tuning. Adjusting the rank (R) and dropout
parameters allows for retaining model performance
while significantly reducing computational overhead.

A.3 Censored and Uncensored Model Links

Model Footnote/Link
Meta-Llama-3-8B-Instruct https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Hermes 2 Pro-Llama-3-8B https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B

Dolphin-2.9-Llama-3-8B https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b

Mistral-7B-Instruct-v0.2 https://huggingface.co/Mistralai/Mistral-7B-Instruct-v0.2

Dolphin-2.8-Mistral-7b-v02 https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02

OpenHermes-2.5-Mistral-7B https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B

Qwen2-7B-Instruct https://huggingface.co/Qwen/Qwen2-7B-Instruct

Dolphin-2.9.2-Qwen2-7B https://huggingface.co/cognitivecomputations/Dolphin-2.9.2-qwen2-7b

Table 11: Links to the open-source models used in this
study. These repositories provide model weights and
documentation.

B Appendix B

B.1 Statistical Testing
In our evaluation, we categorized our data into
three groups: human, censored, and uncensored.
We conducted pairwise comparisons to assess dif-
ferences in each metric among these groups (i.e.,
human vs. censored, human vs. uncensored, and
censored vs. uncensored).

With large sample sizes (approximately 4430
human, 17720 censored, and 22150 uncensored
instances), standard normality and variance homo-
geneity tests (e.g., Shapiro-Wilk, Levene’s test)

https://api.semanticscholar.org/CorpusID:268093756
https://api.semanticscholar.org/CorpusID:268093756
https://arxiv.org/abs/2310.14724
https://arxiv.org/abs/2310.14724
https://arxiv.org/abs/2310.14724
https://api.semanticscholar.org/CorpusID:258298978
https://api.semanticscholar.org/CorpusID:258298978
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B
https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b
https://huggingface.co/Mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/cognitivecomputations/Dolphin-2.9.2-qwen2-7b


9057

become overly sensitive and can flag even negligi-
ble deviations as statistically significant (Lin et al.,
2013). Since the Central Limit Theorem ensures
that the sampling distribution of the mean approx-
imates normality for large samples, we did not
explicitly test for distributional assumptions.

Our statistical testing protocol was as follows:

1. Welch’s t-test: We employed Welch’s t-test
for each pairwise comparison to evaluate
whether mean differences were statistically
significant. Welch’s t-test is well-suited to
large and potentially heterogeneous datasets,
as it does not assume equal variances or equal
sample sizes (Welch, 1947).

2. Effect Size (Cohen’s d): Beyond p-values,
we computed Cohen’s d to gauge the practical
importance of observed differences. While
statistical significance can be influenced by
large sample sizes, effect size metrics provide
additional insight into the magnitude of differ-
ences (Cohen, 1988).

3. Confidence Intervals: We also derived 95%
confidence intervals for mean differences to
quantify our estimates’ precision and help vi-
sualize the range of plausible effect sizes.

4. Multiple Comparison Adjustment: Given
multiple pairwise comparisons, we applied the
Benjamini-Hochberg procedure to control the
False Discovery Rate (FDR). This step miti-
gates the risk of inflating Type I errors (false
positives) due to multiple testing (Benjamini
and Hochberg, 1995).

Our approach ensures that conclusions drawn
from these comparisons are both statistically and
practically meaningful, especially in the context of
large-scale datasets.

C Appendix C

C.1 Metric Formulas

C.1.1 BERTScore
BERTScore (Zhang* et al., 2020) evaluates the
similarity between a candidate sentence C and a
reference sentence R using contextual embeddings
from a pre-trained language model (e.g., BERT).
We use the F1 metric using the official implemen-
tation found at https://github.com/Tiiiger/
bert_score.

C.1.2 Vocabulary Size
Vocabulary size measures the richness of the lan-
guage in the corpus. A larger vocabulary suggests
more diverse word usage, while a smaller vocabu-
lary indicates more repetition or simpler language
structures.

The vocabulary size is the number of unique
words in the corpus:

Vocabulary Size = |{unique words}| (1)

C.1.3 Moving Type-Token Ratio (MTTR)
The Moving Type-Token Ratio (MTTR) measures
lexical variety by analyzing the diversity of words
within a sliding window of fixed size across a text.
Unlike the traditional TTR, which considers the en-
tire text, MTTR provides a more granular view of
language diversity by calculating the Type-Token
Ratio (TTR) within each window and then aver-
aging these values. Higher MTTR values indicate
consistently diverse language use across different
segments of the text, while lower values suggest
repetitive language within the windows.

The MTTR is calculated as follows:

MTTR =
1

N

N∑
i=1

|{unique words in window i}|
w

(2)
where:

• w is the fixed window size (e.g., 10 words).

• N is the total number of windows, determined
by the length of the text and the window size.

• |{unique words in window i}| represents the
number of unique words within the i-th win-
dow.

If the total number of words in the text is less than
the window size w, the MTTR is equivalent to the
traditional TTR:

MTTR =
|{unique words}|

Total Number of Words
(3)

This approach allows for a localized assessment of
lexical diversity, providing insights into how word
variety fluctuates throughout the text.

C.1.4 N-gram Diversity
N-gram diversity quantifies how varied the se-
quences of words (n-grams) are in the corpus. A
higher value suggests more unique word combina-
tions, while a lower value indicates repeated word
usage patterns.

https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score
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N-gram diversity is calculated as:

N-gram Diversity =
|{unique n-grams}|

Total Number of n-grams
(4)

Note

• We evaluate bigrams in our work.

C.1.5 N-gram Entropy
N-gram entropy measures the unpredictability or
randomness of word sequences in the text. Higher
entropy reflects more diverse word combinations,
while lower entropy suggests more predictable,
repetitive patterns.

N-gram entropy is calculated using Shannon’s
entropy formula:

N-gram Entropy = −
N∑
i=1

pi log2(pi) (5)

where pi is the probability of the i-th n-gram, de-
fined as:

pi =
Frequency of n-gram i

Total Number of n-grams
(6)

Note

• We evaluate bigrams in our work.

C.1.6 Intra-sample Similarity
Intra-sample similarity assesses how coherent or
repetitive a sample is by comparing the similarity
of word embeddings within each sentence. High
similarity indicates sentences with closely related
words, while lower similarity suggests more varied
or unrelated content. This metric can highlight the
degree of internal coherence within a sample.

It is calculated as follows:

Intra-sample Similarity =
N∑N

i=1 |Si − θ|
(7)

where:

• N is the total number of sentences in the sam-
ple.

• Si is the average cosine similarity between all
pairs of words in the i-th sentence.

• θ is the minimum word similarity threshold
(default value: 0.5).

The average cosine similarity for a sentence is
computed as:

Si =
2

M(M − 1)

M∑
j=1

M∑
k=j+1

cos(wj ,wk) (8)

where:

• M is the number of words in the sentence.

• wj and wk are the word embeddings for the
j-th and k-th words, respectively.

• cos(wj ,wk) denotes the cosine similarity be-
tween the word embeddings.

Note

• The factor 2
M(M−1) in the average cosine sim-

ilarity formula accounts for the number of
unique word pairs in a sentence of length M .

• Word embeddings (wj , wk) are computed us-
ing BERTweet.

• Sentences containing only one word are ex-
cluded from similarity calculations, as cosine
similarity requires at least two word vectors.

D Appendix D

D.1 Semantic Meaning, Lexical Richness, and
Structural Patterns Individual Model
Results

D.1.1 BERTScore

Figure 5: Average BERTScore across different censored
and uncensored model variants. Higher BERTScore val-
ues indicate that model outputs are semantically more
aligned with the human reference texts. The results
show minimal differences in overall semantic fidelity
among models, with both censored and uncensored ver-
sions achieving scores close to one another. This sug-
gests that while removing moderation constraints may
slightly shift linguistic patterns, it does not substantially
degrade semantic alignment with the original tweets.
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D.1.2 Vocabulary Size

Figure 6: Average vocabulary size measured across
human-written texts, censored models, and uncensored
models. While some censored models (e.g., Qwen2)
show a smaller lexicon, others like GPT-4o exceed the
human baseline, indicating greater lexical diversity. Un-
censored models generally fall closer to human-level
vocabulary sizes, narrowing the gap in lexical variety.

D.1.3 MTTR

Figure 7: Comparison of the Moving Average Type-
Token Ratio (MTTR) across human-written tweets, cen-
sored models, and uncensored models. MTTR values
are all quite close, with both censored and uncensored
outputs showing levels of lexical variability on par with
human samples. Our results indicate that adjustments
to moderation do not markedly diminish or enhance the
consistency of word diversity when measured over small
text windows, preserving a largely stable distribution of
word usage patterns.

D.1.4 N-gram Diversity

Figure 8: Average n-gram diversity across human-
written text, censored models, and uncensored models.
All values cluster close to one, indicating a high level
of word combination variety regardless of moderation
status. While some uncensored models and GPT-4o
slightly exceed the human baseline, and certain cen-
sored models fall just below it, these differences are
marginal.

D.1.5 N-Gram Entropy

Figure 9: Average n-gram entropy across human-written
text, censored models, and uncensored models. N-gram
entropy measures the unpredictability and complexity
of word sequences: higher values indicate more varied
and less predictable patterns. Most censored models
exhibit lower entropy than human-generated text, re-
flecting more repetitive sequences. In contrast, several
uncensored models rise to or exceed human-level en-
tropy, indicating that removing moderation constraints
fosters more linguistically diverse and unpredictable
text generation.
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D.1.6 Intra-sample Similarity

Figure 10: Average intra-sample similarity across
human-written texts, censored models, and uncensored
models. Intra-sample similarity quantifies how closely
related words and sentences are within a single text sam-
ple. Although the values are relatively high across all
conditions, human-written tweets display slightly higher
similarity, suggesting a more cohesive and contextually
interlinked structure.

D.1.7 Detector Performance
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Dataset Model Precision Recall F1 Score Accuracy MCC

LL3

Bertweet 0.895±0.011 0.921±0.008 0.908±0.005 0.907±0.005 0.814±0.010
DeBERTa 0.855±0.015 0.925±0.020 0.888±0.004 0.884±0.004 0.771±0.008
Bertweet + Stylo 0.886±0.015 0.920±0.008 0.903±0.006 0.901±0.007 0.802±0.013
DeBERTa + Stylo 0.849±0.017 0.917±0.028 0.882±0.011 0.877±0.011 0.757±0.022
Bertweet Ensemble 0.914±0.005 0.937±0.005 0.925±0.003 0.924±0.003 0.849±0.006
DeBERTa Ensemble 0.889±0.021 0.928±0.031 0.908±0.015 0.906±0.015 0.813±0.030

LL3-Hermes

Bertweet 0.907±0.014 0.880±0.015 0.893±0.008 0.895±0.008 0.790±0.017
DeBERTa 0.899±0.007 0.871±0.022 0.885±0.009 0.886±0.007 0.774±0.013
Bertweet + Stylo 0.903±0.009 0.879±0.018 0.891±0.008 0.892±0.007 0.785±0.014
DeBERTa + Stylo 0.894±0.012 0.881±0.024 0.887±0.016 0.888±0.014 0.776±0.029
Bertweet Ensemble 0.902±0.006 0.915±0.010 0.909±0.005 0.908±0.005 0.816±0.010
DeBERTa Ensemble 0.901±0.015 0.889±0.021 0.895±0.011 0.896±0.010 0.791±0.020

LL3-Dolphin

Bertweet 0.914±0.010 0.840±0.022 0.875±0.011 0.880±0.009 0.763±0.016
DeBERTa 0.883±0.016 0.866±0.015 0.874±0.006 0.875±0.006 0.751±0.012
Bertweet + Stylo 0.913±0.007 0.838±0.014 0.874±0.008 0.879±0.007 0.761±0.013
DeBERTa + Stylo 0.880±0.005 0.876±0.012 0.878±0.006 0.878±0.005 0.757±0.011
Bertweet Ensemble 0.924±0.024 0.865±0.032 0.892±0.009 0.896±0.007 0.795±0.012
DeBERTa Ensemble 0.894±0.005 0.873±0.008 0.883±0.003 0.885±0.003 0.770±0.006

Mistral

Bertweet 0.917±0.014 0.946±0.006 0.931±0.005 0.930±0.006 0.861±0.011
DeBERTa 0.889±0.013 0.969±0.009 0.927±0.007 0.924±0.008 0.852±0.015
Bertweet + Stylo 0.909±0.011 0.933±0.015 0.921±0.005 0.920±0.005 0.840±0.009
DeBERTa + Stylo 0.905±0.013 0.953±0.012 0.929±0.006 0.927±0.006 0.855±0.012
Bertweet Ensemble 0.936±0.006 0.954±0.004 0.945±0.002 0.945±0.002 0.890±0.005
DeBERTa Ensemble 0.916±0.009 0.963±0.009 0.939±0.002 0.937±0.003 0.875±0.005

Mistral-Dolphin

Bertweet 0.904±0.013 0.884±0.011 0.894±0.010 0.895±0.010 0.790±0.020
DeBERTa 0.863±0.009 0.879±0.013 0.871±0.007 0.870±0.007 0.739±0.015
Bertweet + Stylo 0.890±0.005 0.873±0.019 0.881±0.010 0.882±0.009 0.765±0.017
DeBERTa + Stylo 0.858±0.018 0.868±0.010 0.863±0.005 0.862±0.007 0.724±0.014
Bertweet Ensemble 0.887±0.019 0.887±0.015 0.887±0.003 0.886±0.005 0.773±0.010
DeBERTa Ensemble 0.864±0.010 0.890±0.020 0.876±0.005 0.875±0.003 0.750±0.007

Mistral-Hermes

Bertweet 0.759±0.010 0.763±0.023 0.761±0.009 0.760±0.006 0.521±0.012
DeBERTa 0.703±0.019 0.851±0.020 0.770±0.012 0.745±0.016 0.502±0.029
Bertweet + Stylo 0.733±0.008 0.790±0.013 0.760±0.007 0.751±0.006 0.504±0.013
DeBERTa + Stylo 0.713±0.027 0.838±0.018 0.770±0.014 0.750±0.021 0.502±0.037
Bertweet Ensemble 0.743±0.020 0.808±0.023 0.774±0.003 0.764±0.008 0.531±0.013
DeBERTa Ensemble 0.740±0.026 0.843±0.021 0.787±0.008 0.772±0.014 0.551±0.025

Qwen2

Bertweet 0.952±0.010 0.926±0.012 0.939±0.004 0.940±0.003 0.880±0.007
DeBERTa 0.954±0.013 0.959±0.017 0.956±0.007 0.956±0.006 0.912±0.012
Bertweet + Stylo 0.949±0.007 0.912±0.017 0.930±0.008 0.932±0.007 0.864±0.014
DeBERTa + Stylo 0.959±0.010 0.938±0.018 0.948±0.006 0.949±0.005 0.898±0.010
Bertweet Ensemble 0.950±0.006 0.960±0.005 0.955±0.003 0.954±0.003 0.909±0.006
DeBERTa Ensemble 0.959±0.015 0.964±0.005 0.961±0.006 0.961±0.006 0.922±0.012

Qwen2-Dolphin

Bertweet 0.864±0.012 0.808±0.027 0.835±0.011 0.840±0.008 0.682±0.015
DeBERTa 0.854±0.015 0.851±0.023 0.852±0.008 0.852±0.007 0.705±0.014
Bertweet + Stylo 0.831±0.068 0.747±0.050 0.787±0.058 0.797±0.057 0.598±0.115
DeBERTa + Stylo 0.833±0.011 0.848±0.009 0.841±0.009 0.839±0.010 0.678±0.019
Bertweet Ensemble 0.873±0.011 0.854±0.016 0.863±0.003 0.865±0.002 0.730±0.003
DeBERTa Ensemble 0.861±0.019 0.853±0.013 0.857±0.007 0.857±0.008 0.715±0.016

GPT4o

Bertweet 0.875±0.008 0.949±0.006 0.910±0.003 0.907±0.003 0.816±0.006
DeBERTa 0.836±0.028 0.936±0.032 0.883±0.006 0.876±0.008 0.759±0.013
Bertweet + Stylo 0.860±0.015 0.940±0.012 0.898±0.007 0.893±0.008 0.790±0.015
DeBERTa + Stylo 0.820±0.016 0.944±0.015 0.877±0.004 0.868±0.006 0.745±0.008
Bertweet Ensemble 0.884±0.013 0.961±0.006 0.921±0.007 0.917±0.008 0.838±0.014
DeBERTa Ensemble 0.873±0.004 0.959±0.007 0.914±0.002 0.910±0.002 0.824±0.005

Table 12: Comparison of BERTweet, DeBERTa, and their ensemble and stylometry-augmented variants across
multiple datasets. Metrics include Precision, Recall, F1 Score, Accuracy, and Matthews Correlation Coefficient
(MCC), averaged over five random seeds. Bold values highlight the best performance for each dataset-metric pair.
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