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Abstract

Visual question answering (VQA) poses a
multi-modal translation challenge that requires
the analysis of both images and questions si-
multaneously to generate appropriate responses.
Although VQA research has mainly focused on
text-based questions in English, speech-based
questions in English and other languages re-
main largely unexplored. Incorporating speech
could significantly enhance the utility of VQA
systems, as speech is the primary mode of hu-
man communication. To address this gap, this
work implements a speech-based VQA system
and introduces the textless multilingual visual
question answering (TM-VQA) dataset, featur-
ing speech-based questions in English, German,
Spanish, and French. This TM-VQA dataset
contains 658,111 pairs of speech-based ques-
tions and answers based on 123,287 images.
Finally, a novel, cross-attention-based unified
multi-modal framework is presented to evaluate
the efficacy of the TM-VQA dataset. The exper-
imental results indicate the effectiveness of the
proposed unified approach over the cascaded
framework for both text and speech-based VQA
systems. Dataset can be accessed at https:
//github.com/Synaptic-Coder/TM-VQA.

1 Introduction

Recent focuses of the computer vision (CV) com-
munity have shifted its attention toward address-
ing challenges at the intersection of CV and natu-
ral language processing (NLP) (Voigt et al., 2021;
Wiriyathammabhum et al., 2016). Visual question
answering (VQA) (Antol et al., 2015) is a key do-
main that requires the participation of these fields.
VQA system analyzes the visual content of an im-
age, in conjunction with related queries, to gen-
erate relevant responses. It has a wide range of
applications, including human-computer interac-
tion (Li et al., 2022; Gao et al., 2022), content
retrieval (Ding et al., 2024; Zhang et al., 2024),

⋆These authors have contributed equally to this work.

healthcare (Wu et al., 2022; Zhan et al., 2020), and
surveillance (Toor et al., 2019). However, current
VQA systems are often constrained by their re-
liance on text-based questions to produce answers.
Given that speech is the fundamental and primary
form of human communication, a speech-based
VQA system may offer significant advantages over
its conventional text-based counterpart. It may pro-
vide hands-free operation for users in situations
where typing is impractical, such as while driving
or in smart home settings. The ability to document
responses as text also ensures that users retain the
clarity and precision of visual information while
benefiting from the convenience of spoken queries.
Thus, this speech-based VQA system bridges the
gap between natural human communication and
machine understanding.

Implementing a spoken VQA system requires
training using a dataset that comprises triplets of vi-
sual images, spoken questions based on those visu-
als, and textual answers. Due to the inexistence of
datasets that meet these specifications, this work ex-
pands the VQA v2.0 dataset (Antol et al., 2015) due
to its high-quality content and size which reflects
real-world scenarios. Given that English-based
VQA systems have garnered attention so far (Zhu
et al., 2016; Krishna et al., 2017), this work takes
a step forward to address this gap by translating
the textual questions in three languages: German,
French, and Spanish, using a machine translation
(MT) model. Subsequently, these translations are
synthesized into spoken form using a multilingual
text-to-speech (TTS) system (Hayashi et al., 2021).
This resulted in the creation of a textless multilin-
gual visual question answering (TM-VQA) dataset
containing 2.6M question-answer pairs (658k pairs
for each language), derived from 123K images de-
picting real-life scenarios. To evaluate the efficacy
of the TM-VQA dataset, for both text and speech-
based VQA systems, the test set is further divided
into binary "Yes/No", numerical answer type, and

https://github.com/Synaptic-Coder/TM-VQA
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multi-class open-ended questions separately.
The cross-attention (CA) (Vaswani et al., 2017)

mechanism in the Transformer (Vaswani et al.,
2017) plays a crucial role in enabling effective in-
teractions between two distinct modalities or input
sequences. Unlike self-attention (SA), which mod-
els relationships within a single input sequence, CA
attends and models the relationship between two
distinct sequences. This approach is particularly
useful when combining information from different
sources, such as, from text or audio with images.
This CA can focus on specific regions of the image
relevant to the query, extracting pertinent details by
aligning visual and textual representations. Thus,
this work incorporates CA between the image and
text or speech embeddings and provides a compar-
ative analysis to demonstrate its effectiveness and
relevance in VQA systems.

In summary, the primary contributions of this
work are:

• Introduction of TM-VQA, a multilingual
VQA dataset containing 2.6M question-
answer pairs (658K for each language), de-
rived from 123K images textual and spoken
queries in four diverse languages: English
(En), German (De), French (Fr) and Spanish
(Es) to facilitate the development of text and
speech-based VQA systems.

• A novel multi-modal unified framework em-
ploying cross-attention to analyze multilin-
gual audio and image representations to gen-
erate responses.

• The performance of this unified system is
investigated by incorporating various audio,
image, and text features extracted from pre-
trained state-of-the-art models and compared
with cascaded ASR + VQA baselines. The
results obtained claim superior performance
in terms of accuracy for all categories of the
test set over the cascaded system.

2 Related Works

2.1 VQA datasets

The landscape of VQA systems evolved signifi-
cantly with the introduction of various datasets to
cater different aspects of VQA tasks (Gao et al.,
2018; Li et al., 2018; Goyal et al., 2017; Marino
et al., 2019; Liang et al., 2024; Singh et al., 2019;
Desta et al., 2018; Gokhale et al., 2020; Gao et al.,

2024; Goel et al., 2021; He et al., 2020; Rajkhowa
et al., 2024b). VQA v1.0 (Antol et al., 2015),
derived from the Microsoft COCO dataset, fea-
tures a balanced question and free-form answer.
DAQA (Fayek and Johnson, 2020) utilizes im-
ages collected from NYU-Depth V2 (Silberman
et al., 2012) that focuses on indoor scenes with
questions in natural language. CLEVR (Johnson
et al., 2017) incorporates synthetic objects and com-
plex questions to assess visual reasoning abilities.
GQA (Hudson and Manning, 2019) emphasizes
compositional reasoning and diverse relationships
between objects. VizWiz (Bigham et al., 2010; Gu-
rari et al., 2018), containing images and questions
from blind users, uniquely addresses accessibil-
ity challenges. TDIUC (Kafle and Kanan, 2016,
2017) serves as a diagnostic dataset to highlight
the limitations of existing VQA models. However,
these datasets were domain-specific and relatively
smaller in size. In contrast, VQA v2.0 (Antol et al.,
2015) offers several advantages over its predeces-
sors by introducing a more balanced distribution of
question types. Additionally, this dataset maintains
high-quality images covering real-world scenarios.
Despite the improvements, these datasets facilitated
the development of only text-based VQA systems.

The SBVQA dataset (Zhang et al., 2017) is
the first to enable the development of a spoken
VQA system. It consists of 200 hours of synthet-
ically generated spoken questions and 1 hour of
human-recorded speech in English. Similarly, the
fact-based VQA (FVSQA) (Ramnath et al., 2021)
dataset introduced a multilingual dimension con-
sisting of 5 hours of synthetically generated spoken
questions in English, Hindi, and Turkish. SBVQA
2.0 (Alasmary and Al-Ahmadi, 2023) incorporated
speaker variability to better mimic real-world con-
ditions. SBVQA and SBVQA 2.0 primarily fo-
cused on the English language, while FVSQA, de-
spite its multilingual approach, is smaller in scale.
Hence, existing datasets spanned limited domains
that either lacked sufficient size for multilingual
scenarios or catered predominantly to the English
language. Moreover, these datasets are limited to
open-ended questions, neglecting other types, such
as binary "Yes/No" and numerical questions, which
are crucial for real-world applications. This in-
spired the development of TM-VQA, an extension
of the VQA v2.0 dataset, which offers greater size
and coverage of a broader spectrum of domains,
including various question types, thereby making
it more suitable for real-world use cases.
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Figure 1: (a) Image and spectrogram visualization of corresponding speech-based question & answer in (b) En (Q:
" What is this photo taken looking through?", Ans: Net), (c) De (Q: " Durch was ist dieses Foto entstanden, durch
das man blickt?", Ans: Net), (d) Fr (Q: " Quelle est cette photo prise en regardant à travers ?", Ans: Net), (e) Es (Q:
"Qué es esta foto tomada mirando?", Ans: Net).

Table 1: Statistical overview of TM-VQA dataset containing the number of images and question-answer pairs with
the duration information of spoken questions (in hours) for the four languages.

Set # of Images # Q & A pairs Audio duration (in hours)
ENGLISH GERMAN FRENCH SPANISH

Train 82,783 443,757 220.4 258.17 220.82 201.82
Test 40,504 214,354 95.66 106.51 98.99 97.21

Total 123,287 658,111 316.06 364.68 319.81 299.03

2.2 VQA systems

Current VQA systems typically adopts a multi-
modal framework consisting of an image and
question encoder, and a fusion mechanism (Khan
et al., 2020; Lu et al., 2023). The image en-
coder extracts features from the visual input, while
the question encoder processes the text-based or
speech-based queries. The fusion component
then concatenates these two streams of represen-
tations and passes to an architecture consisting
of RNNs (Rumelhart et al., 1986; Jordan, 1997)
or Transformers (Vaswani et al., 2017), and ap-
propriate responses are generated at the output
of a classification layer. State-of-the-art mod-
els, such as vision-transformer (Dosovitskiy et al.,
2021), ResNet (He et al., 2016), VGG (Simonyan
and Zisserman, 2014), Faster RCNN (Ren et al.,
2016), etc were employed to extract image features,
whereas LaBSE (Feng et al., 2020), Clip (Rad-
ford et al., 2021), Word2Vec (Church, 2017), etc
were utilized for textual feature extraction. For au-
dio representations, large acoustic models such as
Wav2Vec2 (Baevski et al., 2020), HuBERT (Hsu
et al., 2021), and Whisper (Radford et al., 2023)
and statistical models such as Kaldi along with
hand-crafted features such as mel filterbanks and
mel frequency cepstral coefficients (MFCC) were
employed. Fusion techniques, such as MCB (Fukui
et al., 2016), MLB (Kim et al., 2016), and MU-
TAN (Ben-Younes et al., 2017), were proposed to
capture the interaction between image and text or

speech encoder. A double fusion network was pro-
posed to extract coarse and fine-grained features
from the images (Tian et al., 2022). However, most
existing frameworks relied on individual models
for each language-specific question-answer pair
and lacked an unified framework.

3 TM-VQA dataset
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Figure 2: Pie diagram signifying the distribution of
words for all question types.

The TM-VQA dataset extends the VQA v2.0 and
incorporates textual and spoken questions, gener-



9168

Figure 3: Word cloud representation for answers to
different question types.

ated using the SeamlessM4T multimodal and multi-
lingual AI translation model (Barrault et al., 2023),
in English, German, French, and Spanish. This
dataset comprises a total of 1,298.87 hours ( 320
hours for each language) of spoken queries. The
dataset’s statistics, including the number of images
and related question-answer pairs along with the
duration of the audio files, are presented in Table
1. Subsequently, this dataset is divided into non-
overlapping train and test sets. To provide a deeper
analysis, the test set is further categorized into "Yes
/ No", "open-ended", and numerical response-based
questions, and the performance will be evaluated
for these categories separately. Figure 1 illustrates
an image of a baseball player overlooking a net
and spectrogram visualization of queries posed in
English, German, French and Spanish respectively.
Figure 2 represents the pie distribution of first four
words for the questions in English language, where
the innermost ring represents the first word and
outwardly radiating rings represent the subsequent
words. The length of the arc is proportional to the
number of questions containing a particular word.
For clarity, words having a frequency of less than
35 are omitted. Figure 3 represents the word cloud
for answers for all the categories combined. The
most frequent answers are represented using larger
fonts while the less frequent by smaller fonts.

4 Proposed methodology

4.1 Background
The transformer encoder mainly consists of multi-
head attention (MHA) and multi-layer perceptron
(MLP) blocks. Given input audio embeddings Xa

and input image embeddings Xi, the encoder ap-
plies MHA on the inputs and is represented as:

Ya = Xa +MHA(Xa), (1)

Yi = Xi +MHA(Xi) (2)

where Ya and Yi are the output from the MHA
block. For conciseness, we skip the LayerNorm
(LN) in both the MHA and MLP layers. From (1),
MHA can be defined as:

MHA(Xa,i) = Softmax(
Q ·K⊤
√
dk

).V (3)

where Q,K,V denote linear transformation layers.
Outputs Ya and Yi obtained from (1). and (2) are
then fed to another MHA layer:

Za = Ya
′ +MHA(Ya

′), (4)

Zi = Yi
′ +MHA(Yi

′) (5)

Let Ff = CA(Xa,Xi) denote the fusion operation
between the audio and image modalities, where CA
denotes the cross-attention between the audio and
image embeddings. In order to incorporate the
fusion operation into the encoder block, the fusion
module is applied before and after the MHA layer.
Thus, (1) and (4) can be re-written as:

Ya
′ = Ya +CA(I)

a (Xa,Xi), (6)

Za
′ = Za +CA(II)

a (Ya
′,Yi

′), (7)

where Za
′ is the output from one of the Trans-

former encoder. Similarly, if we want to fuse the
image with audio representation then (2) and (5)
can be re-written as:

Yi
′ = Yi +CA

(I)
i (Xi,Xa), (8)

Zi
′ = Zi +CA

(II)
i (Yi

′,Ya
′). (9)

CA(I) and CA(II) are explained in the next section.

4.2 Fusion module
The proposed fusion module consists of two CA
blocks for learning the interaction between the au-
dio and image embeddings. The output from these
CA blocks are passed through an MLP layer fol-
lowed by a CNN layer. The two CA blocsk were
employed to incorporate cross-modality learning.
The first CA block identifies the agreement be-
tween the image and audio information. In a high
level scenario, this CA block extracts important
regions in the image based on the query. Mathemat-
ically, from the first CA block, the cross attention
scores CA(I)

a for audio and CA
(I)
i for the image is

computed as:

CA(I)
a = Softmax

(
Qa ·Ki

⊤
√
dk

)
·Va (10)
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Figure 4: Architectural representation of the proposed unified architecture supporting audio input in four languages.

.

CA
(I)
i = Softmax

(
Qi ·Ka

⊤
√
dk

)
·Vi (11)

The second CA block tries to discover inner-
relations from one modality to another as:

CA(II)
a = Softmax

(
Qi ·Ki

⊤
√
dk

)
·Va (12)

CA
(II)
i = Softmax

(
Qa ·Ka

⊤
√
dk

)
·Vi (13)

Following prior work (Houlsby et al., 2019), a
similar bottleneck module is employed consisting
of a down and up-projection layer made of CNN
blocks, along with a non-linear activation function.
The output Za

′ and Zi
′ are passed through an MLP

layer and then concatenated before the final classi-
fication layer having a softmax activation function.
This produces the final output ŷ ∈ RC , where C
denotes the number of classes (unique words) in
the textual answers from the training subset. Each
of these classes were converted into an one-hot
encoding vector having a dimension size equal to
the number of unique words. This is done to com-
pute binary cross-entropy loss (LBCE) between the
prediction and the ground-truth labels. Mathemati-
cally, LBCE is represented as:

LBCE = BCE(ŷ,y) (14)

where, y denotes the original label, ŷ denotes the
prediction and BCE is the binary cross entropy

function computed between y and ŷ. In this way,
the proposed model learns to align the audio and
image representations for analysis and generate ap-
propriate responses. Figure 4 presents architectural
representation of the unified framework.

5 Experimental methodology

5.1 Visual representations

Image features were extracted using pre-trained
CLIP-ViT (Radford et al., 2021), Swin Trans-
former (Liu et al., 2021), ResNet-152 (He et al.,
2016), and Faster-RCNN (Ren et al., 2016) to pro-
vide a comparative analysis. The CLIP-ViT is em-
ployed as it is trained using an image-text pair and
can differentiate the image and text in the embed-
ding space. Swin Transformer computes represen-
tations using shifted windows and enhances the
accuracy by confining the self-attention computa-
tion to non-overlapping local windows while si-
multaneously maintaining cross-window connec-
tions. It can model information at various scales
while maintaining a linear computational complex-
ity. ResNet-152, a deep convolutional neural net-
work (CNN) and part of the ResNet (Residual Net-
works) is known for its use of skip connections to
combat the vanishing gradient problem. It contains
152 layers and is widely used for feature extrac-
tion tasks due to its high accuracy and efficiency
in handling complex visuals. Faster R-CNN is an
advanced object detection model that integrates a
region proposal network (RPN) with CNN to gen-
erate object proposals which are then passed to a
classification layer for returning bounding boxes.
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This model can efficiently identify object regions
and classify them in a single, end-to-end frame-
work.

5.2 Text representations

For textual feature extraction, LaBSE (Feng
et al., 2020), mBERT (Devlin, 2018), and
mRoBERTa (Liu, 2019) are utilized. LaBSE
(Language-agnostic BERT Sentence Encoder), a
pre-trained model, is designed for generating high-
quality sentence embeddings that can work across
multiple languages. This model enables cross-
lingual tasks, such as multilingual retrieval and
translation. It produces language-agnostic repre-
sentations and is ideal for applications requiring
semantic understanding in diverse languages. Mul-
tilingual BERT (mBERT), a pre-trained model, is
designed to handle 104 languages and provides
language-agnostic embeddings for cross-lingual
tasks. It is useful for text embedding extrac-
tion as it generates contextualized representations
across different languages. Multilingual RoBERTa
(mRoBERTa), a variant of the RoBERTa model, is
designed to handle multiple languages and is an
improvement over multilingual BERT. It uses opti-
mized training techniques, which makes it effective
for cross-lingual tasks such as translation, sentence
classification, and language understanding across
various languages.

5.3 Audio representations

For the extraction of audio features, pre-trained
large acoustic models, such as Whisper large-
v3 (Radford et al., 2023) and Wav2Vec2 (Baevski
et al., 2020) are employed. Whisper large-v3 is a
multilingual acoustic model, known for its multi-
tasking ability which can accurately transcribe au-
dio and perform robust speech-to-text tasks across
various languages. It is particularly useful in audio
feature extraction for tasks like transcription, lan-
guage identification, and speaker recognition, due
to its high accuracy and robustness across noisy
environments. The Wav2Vec2-based XLSR-128
(Cross-Lingual Speech Representations), a large-
scale pre-trained model, designed for speech recog-
nition tasks is employed and is highly useful for
audio feature extraction as it can learn robust and
language-agnostic speech representations making
it effective for audio processing tasks.

5.4 Baseline and proposed model settings

A cascaded pipeline of an ASR followed by a
text-based VQA system is taken as a baseline (Ra-
jkhowa et al., 2023, 2024a). The ASR transcribes
the queries spoken in a particular language into
text. This text is then concatenated using CA and
passed to the Transformer encoder to generate the
responses in English text. This cascaded system is
compared with the proposed unified architecture
that can directly accept audio representations. This
unified architecture can bypass the intermediate
stage of ASR transcription and also reduce the er-
ror propagation from ASR to the VQA as seen in
the cascaded approach. Furthermore, it also has the
advantage of lower latency due to the involvement
of a single module and can be effectively incorpo-
rated into edge devices.

5.5 Experimental Settings

The proposed framework is trained for 300 epochs
having a batch size of 256. The model (best check-
point) corresponding to the lowest validation loss
is selected for evaluating the performance. Adam
optimizer is used having a learning rate (LR) of
3× 10−4, along with the CosineAnnealing sched-
uler. All these experiments were conducted using
4 H100 GPU having 80 gigabytes (GB) of high-
bandwidth memory (HBM2e) employing Ubuntu
20.04 LTS as the Operating System.

5.6 Evaluation Metrics

To effectively assess the performance of VQA sys-
tems, it’s crucial to choose appropriate metrics
for all the categories of question-answer scenarios.
Metrics like Top-1 accuracy offer straightforward
insights into how well the model can identify an-
swers. Top-1 focuses on the accuracy of the highest-
ranked prediction. This metric is commonly used
for VQA system evaluations.

6 Results

Table 2 presents a comparative analysis between
cascaded and unified text-based VQA systems.
Here, Faster-RCNN and mRoBERTa are used as
image and text encoders. From this table, it can be
observed that the unified system outperformed its
cascaded counterpart. The cascaded approach is
known to suffer error propagation from the ASR
transcription to other text-based systems and this
effect can be observed in the case of text-based
VQA. A similar trend can also be observed in
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Table 2: Comparative analysis between text-based cascaded and unified VQA systems employing Faster-RCNN and
mRoBERTa as image and text encoder. Performances computed using Top-1 accuracy metric are expressed in %.

Image Encoder Text Encoder Source language Model Type All Other Yes/No Num

Faster-RCNN mRoBERTa

ENGLISH
Cascaded 64.57 55.29 83.32 44.67
Unified 68.49 58.67 86.77 47.42

GERMAN
Cascaded 54.46 53.37 76.54 44.42
Unified 56.49 54.54 78.89 45.42

FRENCH
Cascaded 52.45 51.45 73.27 41.5
Unified 54.58 53.55 75.79 43.35

SPANISH
Cascaded 52.57 47.39 72.31 40.58
Unified 54.69 49.87 73.82 41.82

Table 3: Performance ablation (expressed in % using Top-1 accuracy metric) of the proposed unified text-based
system incorporating distinct state-of-the-art models in the image and text encoder for English source language.

Image Encoder Text Encoder All Other Yes/No Num
mBERT 64.76 54.63 81.54 45.21

mRoBERTa 64.57 55.5 82.31 45.49CLIP-ViT-B
LaBSE 64.98 54.65 82.43 46.5
mBERT 63.89 54.67 83.45 45.43

mRoBERTa 64.56 54.23 83.79 45.56Swin
Transformer

LaBSE 64.28 53.78 83.76 45.38
mBERT 60.33 50.43 79.4 43.6

mRoBERTa 60.86 51.2 78.54 43.27ResNet
LaBSE 60.59 50.39 79.72 43.57
mBERT 66.54 57.12 86.05 47.2

mRoBERTa 68.49 58.67 86.77 47.42Faster-RCNN
LaBSE 67.87 58.32 87.55 46.79

Table 4: Comparative analysis between speech-based cascaded and unified VQA systems employing Faster-RCNN
and Whisper as image and audio encoder. Performances computed using Top-1 accuracy metric are expressed in %.

Image encoder Audio encoder Source language Model Type All Other Yes/No Num

Faster-RCNN Whisper

ENGLISH
Cascaded 55.22 48.45 68.12 41.37
Unified 58.53 50.67 69.19 43.89

GERMAN
Cascaded 51.67 42.78 64.45 39.38
Unified 54.87 44.88 67.47 41.47

FRENCH
Cascaded 48.56 42.24 66.57 38.39
Unified 51.75 44.47 68.52 40.41

SPANISH
Cascaded 47.69 39.68 63.44 34.47
Unified 52.5 42.17 66.3 38.84

Table 5: Performance ablation (expressed in % using Top-1 accuracy metric) of the proposed unified speech-based
system incorporating distinct state-of-the-art models in the image and audio encoder for English source language.

Image Encoder Audio Encoder All Other Yes/No Num

CLIP-ViT-B
Whisper 54.24 48.2 68.66 40.84

Wav2Vec2 54.33 48.38 68.7 40.47

Swin Transformer
Whisper 54.37 48.6 68.54 40.79

Wav2Vec2 54.28 47.53 67.85 41.21

ResNet
Whisper 52.39 46.5 65.49 38.69

Wac2Vec2 53.67 46.63 65.87 38.9

Faster-RCNN
Whisper 58.53 50.67 69.19 43.89

Wav2Vec2 58.69 50.73 69.68 43.79

Table 4 where the unified approach consistently
outperformed its cascaded counterpart for speech-
based VQA systems. From these two tables, it can

be inferred that a unified system can demonstrate
better performance while being computationally
efficient. Table 3 presents an ablation study for



9172

Audio Questions Predictions Ground Truth Correct
How many cats can be seen in the picture?

Wie viele Katzen sind auf dem Bild zu sehen?
Combien de chats peut-on voir sur la photo ?
¿Cuántos gatos se pueden ver en la imagen?

2 2 
2 2 
2 2 
2 2 

Audio Questions Predictions Ground Truth Correct
Is the lady in the middle sitting?

Sitzt die Dame in der Mitte?
La dame du milieu est-elle assise ?
¿Está sentada la señora del medio?

yes yes 
no yes  
yes yes 
no yes  

Audio Questions Predictions Ground Truth Correct
Is the bear eyes open?

Sind die Augen des Bären geöffnet?
Les yeux de l'ours sont-ils ouverts?

¿Están abiertos los ojos del oso?

yes yes 
yes yes 
yes yes 
yes yes 

Audio Questions Predictions Ground Truth Correct
What food item is shown?

Welches Lebensmittel wird angezeigt?
Quel aliment est présenté ?
¿Qué alimento se muestra?

pizza pizza 
yes pizza  

unknown pizza  
yes pizza  

Figure 5: Examples of different questions on each image show which region contributed the most to answering the
question. We see that the bright spots are the positions that get the most attention when asking a particular question.

unified text-based VQA systems that incorporate
distinct image and text representations extracted
using various state-of-the-art pre-trained models
for the English language. From this table, it can be
observed that the Faster-RCNN and mRoBERTa
combination provided the best performance. Faster-
RCNN, through its bounding box identification,
can effectively identify the object regions from
the image. mRoBERTa has demonstrated supe-
rior cross-lingual context understanding capability
among other pre-trained models. Table 5 presents
an ablation study for unified speech-based VQA
systems for the English language. Here, the com-
parison is made using various combinations of
distinct image and audio representations. From
this table, the Faster-RCNN and Wav2Vec2 combi-
nation outperformed the remaining combinations.
The performance of Wav2Vec2-based systems is
marginally better than Whisper. Overall, the ac-
curacy for VQA systems incorporating English as
the source language in input is higher than the rest
of the languages with Spanish being the lowest.
However, the English language has the advantage
as the target language is in English and it is eas-

ier to map the attention between the source and
target language pairs. In summary, it can be in-
ferred that Faster-RCNN and mRoBERTa combi-
nation is better for text-based VQA systems and
Faster-RCNN and Whisper combination is better
for speech-based VQA systems.

Fig 5. denotes the attention maps of the cross-
attention module in the proposed unified architec-
ture. It can be observed that the model can extract
the important parts of an image corresponding to
a particular question. The bright spots denote the
region that has received the most attention.

7 Conclusion

This work introduced a VQA dataset to facili-
tate speech-based VQA research and proposed
a novel unified VQA framework that employs
cross-attention. Experimental analysis indicates
the superiority of this unified architecture over cas-
caded systems with Faster-RCNN, mRoBERTa and
Wav2Vec2 as better models for image, text and au-
dio representations.
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8 Limitations

Cross-attention blocks increase the model’s com-
plexities thereby making it computationally expen-
sive. Moreover, the TM-VQA dataset is skewed
towards "Yes / No" type questions. Additionally,
the model is not tested using real speech. These
studies will be included in the future works.
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